
COORDINATED HIGHWAYS ACTION RESPONSE TEAM
STATE HIGHWAY ADMINISTRATION

CHART Release 10

Detailed Design
Revision 3

Contract SHA-06-CHART

 Document # WO28-DS-001

 Work Order 28, Deliverable 4

 August 14, 2012

 By

 CSC

CHART R10 Detailed Design – Rev 3 ii 08/14/2012

Revision Description Pages Affected Date
0 Initial Release All 2/28/2012

1 Added image of the warning message

shown when changing the display

configuration assigned to a DMS.

4-13, 4-14

03/06/2012

1 Changed true display section to show

samples of character matrix, line

matrix, and full matrix signs with non-

pixel areas dark gray.

4-15

03/06/2012

1 Changed to image for adding a travel

time/toll rate template to show a new

true display image for a character

matrix sign.

4-24

03/06/2012

1 Changed the section on selection of

multiple response plan items to show

select all and select none links.

4-30, 4-31

03/06/2012

1 Added some text explaining how old

images will be restored to a monitor

after an auto-tour ends.

4-35, 4-37, 8-38

04/15/2012

1 Updated requirements matrix for new

requirements

7-6,10,11,12,13,20,22,23 05/09/2012

2 Updated screenshots for LevA689, 974,

1012, 1014, 1079, 1101, and 1130.

Also updated most screenshots for the

Notification feature to match R10

implementation, as a number of these

changed.

4-65 to 4-86 7/17/2012

3 Updated screenshots and RVTM for

LevA1134, 1135.

4-86, 4-87, 7-37 – 7-39 8/14/2012

3 Updated screenshot for LevA 689 4-79 8/28/2012

CHART R10 Detailed Design – Rev 3 iii 08/14/2012

Table of Contents

1 Introduction ... 1-1

1.1 Purpose ... 1-1

1.2 Objectives ... 1-2

1.3 Scope ... 1-2

1.4 Design Process .. 1-2

1.5 Design Tools ... 1-2

1.6 Work Products ... 1-2

2 Architecture .. 2-4

2.1 Network/Hardware .. 2-4

2.2 Software .. 2-4

2.3 Security ... 2-11

2.4 Data ... 2-11

3 Key Design Concepts ... 3-1

3.1 DMS Fonts .. 3-1

3.2 Areas of Responsibility .. 3-2

3.3 Video Enhancements ... 3-3

3.4 Decision Support for Cameras .. 3-3

3.5 Integrated Notification .. 3-4

3.6 Error Processing .. 3-5

3.7 Packaging ... 3-5

3.8 Assumptions and Constraints ... 3-8

4 Human Machine Interface .. 4-1

4.1 DMS Font Feature ... 4-1

4.2 Video Enhancements ... 4-32

4.3 Areas of Responsibilty Feature ... 4-38

4.4 Decision Support Feature .. 4-55

4.5 Integrated Notification Feature .. 4-65

4.6 Miscellaneous Changes from PRs ... 4-78

5 Deprecated Functionalities .. 5-87

6 Acronyms/Glossary .. 6-1

7 Mapping To Requirements ... 7-1

8 Use Case Diagrams .. 8-1

8.1 HighLevelUseCases (Use Case Diagram) ... 8-1

8.2 ManageAreasOfResponsibility (Use Case Diagram) .. 8-5

8.3 ManageNotifications (Use Case Diagram) ... 8-7

8.4 MapDeviceAndTrafficEventUses (Use Case Diagram) .. 8-10

8.5 R10ConfigureDMSTravelerInfoMsgSettings (Use Case Diagram) ... 8-13

8.6 R10DMSManagementUses (Use Case Diagram)... 8-16

8.7 R10ImportRITISData (Use Case Diagram) .. 8-20

CHART R10 Detailed Design – Rev 3 iv 08/14/2012

8.8 R10LibraryAndPlanUses (Use Case Diagram) ... 8-21

8.9 R10ManageDMSDisplayConfigs (Use Case Diagram) ... 8-23

8.10 R10ManageNotificationRecipients (Use Case Diagram) .. 8-24

8.11 R10ManageTravelerInformationMessages (Use Case Diagram) .. 8-27

8.12 R10VerifyNTCIPDMSCompatibility (Use Case Diagram) .. 8-32

8.13 R10VideoEnhancements (Use Case Diagram)... 8-34

8.14 ConfigureDecisionSupport (Use Case Diagram) ... 8-37

8.15 RespondToTrafficEvent (Use Case Diagram) ... 8-40

9 System Interfaces Design (IDL) ... 9-1

9.1 CameraControlIDLClasses (Class Diagram) .. 9-1

9.2 CameraControlIDLR10 (Class Diagram) .. 9-10

9.3 Common (Class Diagram) ... 9-11

9.4 Common2 (Class Diagram) ... 9-16

9.5 DMSControl (Class Diagram) .. 9-19

9.6 DMSControl2 (Class Diagram) .. 9-28

9.7 DecisionSupport (Class Diagram) .. 9-31

9.8 ExternalDMS (Class Diagram) ... 9-33

9.9 MessageTemplateManagement (Class Diagram) .. 9-37

9.10 MonitorControl (Class Diagram) ... 9-39

9.11 NotificationManagement (Class Diagram) .. 9-41

9.12 ResourceManagement (Class Diagram)... 9-45

9.13 TrafficEventManagement (Class Diagram) .. 9-49

9.14 VideoControl (Class Diagram) ... 9-54

9.15 VideoControlR10 (Class Diagram) .. 9-61

10 Package Designs .. 10-1

10.1 CameraControlModule ... 10-1

10.2 DecisionSupportUtility .. 10-20

10.3 DMSControlModule .. 10-24

10.4 DMSNTCIPComplianceTester ... 10-62

10.5 DMSProtocolsPkg .. 10-69

10.6 DMSUtilityPkg ... 10-78

10.7 MonitorControlModule ... 10-86

10.8 NotificationModulePkg ... 10-106

10.9 TrafficEventModulePkg2 .. 10-126

10.10 UtilityPkg.ObjectCache ... 10-139

10.11 chartlite.data .. 10-153

10.12 chartlite.data.dms-data ... 10-156

10.13 chartlite.data.notification-data ... 10-170

10.14 chartlite.data.templates-data .. 10-175

10.15 chartlite.data.video-data ... 10-180

10.16 chartlite.servlet.aor-servlet ... 10-183

10.17 chartlite.servlet.servlet-dms .. 10-189

10.18 chartlite.servlet.video ... 10-227

CHART R10 Detailed Design – Rev 3 v 08/14/2012

10.19 chartlite.truedisplay ... 10-232

10.20 webservices.wsutil.aor-util .. 10-235

CHART R10 Detailed Design – Rev 3 vi 08/14/2012

Table of Figures

Figure 2-1 CHART and External Interfaces .. 2-8
Figure 2-2 R10 Server Deployment ... 2-9
Figure 2-3 R10 GUI Deployment .. 2-10
Figure 2-4 CHART R9S ERD ... 2-20
Figure 2-5 CHART R9S Archive Database ERD .. 2-25
Figure 4-1 Enable / Disable Auto Mode link available on Monitor Details page .. 4-34
Figure 4-2 Auto Mode Settings on Configure Monitor Page ... 4-35
Figure 4-3 Auto Mode Tour List displayed on Monitor Details page ... 4-36
Figure 4-4 Auto Mode Tour List displayed on Monitor Details page ... 4-36
Figure 4-5 Temporary Presets displayed on Camera Details page .. 4-37
Figure 4-6 System Profile Settings page for Camera Related Settings. ... 4-38
Figure 4-7. Accessing the Areas of Responsibility from the System Settings Page. ... 4-38
Figure 4-8. The Area of Responsibility List Page with Links for Adding, Editing, and Removing an Area of

Responsibility. ... 4-39
Figure 4-9. The Add Area of Responsibility Form. ... 4-40
Figure 4-10. Entering a Name and Selecting a Color Using the Color Chooser. ... 4-40
Figure 4-11. Drawing a Polygon on the Area of Responsibility Map. .. 4-41
Figure 4-12. A Completed Polygon on the Area of Responsibility Map. .. 4-42
Figure 4-13. The Area of Responsibility List Page with the Newly Added Area of Responsibility. 4-42
Figure 4-14. Adding Additional Polygons on the Area of Responsibility Map. .. 4-43
Figure 4-15. The Polygon Menu with the Modify Polygon Action Selected. ... 4-44
Figure 4-16. Reshaping a Polygon on the Area of Responsibility Map. .. 4-44
Figure 4-17. Resizing a Polygon on the Area of Responsibility Map. .. 4-45
Figure 4-18. Moving a Polygon on the Area of Responsibility Map. .. 4-46
Figure 4-19. The Polygon Menu with the Select Polygon Action Selected and the Delete Button Enabled. 4-46
Figure 4-20. Viewing Other Areas of Responsibility on the Area of Responsibility Map. 4-47
Figure 4-21. Removal Confirmation Dialog for Unassociated Area of Responsibility. .. 4-47
Figure 4-22. Removal Confirmation Dialog for Associated Area of Responsibility. .. 4-48
Figure 4-23. The Areas of Responsibility Section of the Monitor Details Page. ... 4-48
Figure 4-24. The Areas of Responsibility Section of the Operations Center Details Page. 4-48
Figure 4-25. The Area of Responsibility Associations Form. ... 4-49
Figure 4-26. The Area of Responsibility Associations Form with an Unassociated Area of Responsibility Selected. 4-

50
Figure 4-27. The Area of Responsibility Associations Form with One Associated Area of Responsibility. 4-51
Figure 4-28. The Areas of Responsibility Section with One Associated Area of Responsibility. 4-51
Figure 4-29. The Disassociate Link in the Areas of Responsibility Section.. 4-52
Figure 4-30. The Disassociate Areas of Responsibility Confirmation Dialog. .. 4-52
Figure 4-31. The Area of Responsibility Associations Form with an Associated Area of Responsibility Selected. 4-52
Figure 4-32. The Area of Responsibility Associations Form with Associated Areas of Responsibility. 4-53
Figure 4-33. The Home Page Map Layer Switcher Showing the Areas of Responsibility Layers. 4-53
Figure 4-34. The Home Page Map with the Home AORs Layer Visible. ... 4-54
Figure 4-35. The Home Page Map with All Area of Responsibility Layers Visible. .. 4-54
Figure 4-36. Applicable Areas of Responsibility on the Traffic Event Details Page. ... 4-55
Figure 4-37. Traffic Event Response Plan Showing Video Tour Response Plan Item. ... 4-56
Figure 4-38. Camera Control Session Created from a Response Plan Video Tour Item. .. 4-57
Figure 4-39. Camera Control Session Showing that a Temporary Preset Has Been Created for the Response Tour

Entry. ... 4-58
Figure 4-40. Traffic Event Response Video Tour Entry Using the Newly Created Temporary Preset. 4-58
Figure 4-41. Traffic Event Response Video Tour Entry Using the Newly Created Temporary Preset. 4-59
Figure 4-42. Response Details Panel Showing Options for Adding Cameras to the Response Plan Video Tour. .. 4-59
Figure 4-43. Select List of Cameras to Add, Ordered by Distance from Traffic Event. .. 4-60
Figure 4-44. Adding Cameras to the Response Plan Video Tour by Searching. ... 4-61
Figure 4-45. Adding Suggested Cameras to the Response Plan Video Tour. .. 4-62

CHART R10 Detailed Design – Rev 3 vii 08/14/2012

Figure 4-46. Viewing and Editing the Response Plan Video Tour. ... 4-62
Figure 4-47. Editing the Response Plan Video Tour. .. 4-63
Figure 4-48. Changing the Preset for a Tour Entry. .. 4-64
Figure 4-49. Configuring Camera Distance Settings. .. 4-65
Figure 4-50. Newly added notification related functional rights ... 4-66
Figure 4-51. Accessing the Notification Contacts from the System Settings Page. .. 4-67
Figure 4-52. The Notification Contacts List Page with Links for Adding, Editing, and Removing a Notification

Contact. .. 4-67
Figure 4-53. The Add Notification Contact Form. .. 4-69
Figure 4-54. Choosing notification groups for a notification contact .. 4-70
Figure 4-55. The form for editing a notification contact. .. 4-71
Figure 4-56. The list of notification contacts with the remove link highlighted .. 4-72
Figure 4-57. Removal confirmation dialog for a notification contact.. 4-72
Figure 4-58. Accessing the notification groups from the system settings page ... 4-73
Figure 4-59. Viewing the list of notification groups .. 4-73
Figure 4-60. Viewing the add notification group form .. 4-75
Figure 4-61. Selecting contacts for a notification group .. 4-76
Figure 4-62. The edit notification group form ... 4-77
Figure 4-63. The Notification Groups list with the Remove link .. 4-78
Figure 4-64. The group removal confirmation .. 4-78
Figure 4-65 "Listen" link on the Traffic Event Details page ... 4-79
Figure 4-66 "Listen" link on the Library Details page ... 4-79
Figure 4-67 "Listen" link on the Plan Details page ... 4-79
Figure 4-68 CHART Service Monitoring Details page – Warning Settings (part 1) ... 4-80
Figure 4-69 CHART Service Monitoring Details page – Warning Settings (part 2) ... 4-81
Figure 4-70 CHART Service Details with warning status ... 4-82
Figure 4-71 Event Details page, with Lat/Long not required to close event.. 4-83
Figure 4-72 Event history log entries showing notification recipients ... 4-83
Figure 4-73 Notification Details showing individuals in table .. 4-84
Figure 4-74 Lane state editing on Event Details page ... 4-85
Figure 4-75 DMS Details page – Failure notification groups .. 4-85
Figure 4-76 DMS Alert And Notification Settings .. 4-86
Figure 4-77 Incident Type: Weather Closure, Utility .. 4-86
Figure 4-78 Action Types: Signal Involved In Crash, Signal Twisted .. 4-87
Figure 9-1. CameraControlIDLClasses (Class Diagram) .. 9-1
Figure 9-2. CameraControlIDLR10 (Class Diagram).. 9-10
Figure 9-3. Common (Class Diagram) .. 9-11
Figure 9-4. Common2 (Class Diagram) .. 9-16
Figure 9-5. DMSControl (Class Diagram) .. 9-20
Figure 9-6. DMSControl2 (Class Diagram)... 9-29
Figure 9-7. DecisionSupport (Class Diagram)... 9-31
Figure 9-8. ExternalDMS (Class Diagram) ... 9-33
Figure 9-9. MessageTemplateManagement (Class Diagram) .. 9-37
Figure 9-10. MonitorControl (Class Diagram) .. 9-40
Figure 9-11. NotificationManagement (Class Diagram) ... 9-42
Figure 9-12. ResourceManagement (Class Diagram) .. 9-45
Figure 9-13. TrafficEventManagement (Class Diagram) .. 9-49
Figure 9-14. VideoControl (Class Diagram) ... 9-54
Figure 9-15. VideoControlR10 (Class Diagram) ... 9-61
Figure 10-1. DMSDisplayConfigReqHdlr:filterDMSDisplayConfigList (Sequence Diagram) 10-195

CHART R10 Detailed Design – Rev 3 1-1 08/14/2012

1 Introduction

1.1 Purpose

This document describes the design of the software for CHART Release 10. This build provides

the following new features:

 DMS Font Support: CHART R10 enhances the DMS true display images shown

throughout the system to better represent the messages being displayed on the devices by

considering the sign type, font, and other display related parameters. These parameters

are also used in CHART R10 to determine if a message will fit on a particular sign.

These changes affect all places in CHART where a DMS message is shown, including

the various DMS editors that exist in the system. Prior to CHART R10 the system

treated all DMSs as character matrix signs and utilized a single fixed width font to

represent the message on each sign. This did not allow CHART to properly represent the

actual size and messages on newer full matrix signs and has required work arounds such

as estimating the sign size and discontinuing use of variable width fonts.

 Areas of Responsibility: R10 adds the ability for an administrator to define areas of

responsibility (AORs) by drawing polygons on the system map. Once an area of

responsibility is defined it can be assigned to operations centers or monitors. In R10 the

system will utilize the areas of responsibility that are assigned to monitors to determine if

the monitor should be used as a target for a traffic event’s response plan video tour. If

the traffic event is within the boundary of at least one of the monitor’s assigned AORs

that monitor will be used as a target for traffic event video tour. Areas of Responsibility

that have been assigned to operations centers will be displayed on the system map. By

default users will see only the areas of responsibility that are assigned to the operations

center that they are logged in at. However, they can make the AORs that have been

assigned to other operations centers visible by toggling the appropriate map layer.

 Video Enhancements:

o Auto Mode Monitors: New mode for Monitors that will allow the display of a

dynamic list of Cameras/Presets (Auto Mode Tour List) to aid in Traffic Event

Response. This new functionality supports the Decision Support for Cameras

feature.

o Camera Temporary Presets: New type of preset that are used temporarily by

traffic event video response plan items in conjunction with Monitor Auto Mode.

This new functionality supports the Decision Support for Cameras feature.

o Camera Reject Move to Preset Request: This feature addresses an existing

problem (since presets were allowed in tours) by preventing excessive use of

camera PTZ units. Ex. a tour has been started on multiple monitors at different

times. Camera/preset changes in the tours are out of synch causing high volume

of camera movements (dueling tours). A sysem wide minimum dwell time setting

used when move to preset request is initiated in the context of a tour. The camera

will reject a move to preset (from a tour) if camera has been in the current

position less than the minimum dwell time.

CHART R10 Detailed Design – Rev 3 1-2 08/14/2012

 Decision Support for Cameras: R10 adds the ability to utilize cameras in the response

plan of a traffic event. Camera suggestions can be requested, or cameras can be added

using the existing select lists and search buttons. All cameras that are added to the

response plan of a traffic event are added to a single video tour response plan item.

When executed this response plan item adds all of the video tour entries for the cameras

that have been added to each monitor that has the location of the traffic event in at least

one of its areas of responsibility. If these monitors are in auto mode, or are subsequently

placed in auto mode, they will display the cameras (along with any others added by other

traffic events) as part of their auto mode video tour. When the response plan item is

revoked the cameras are automatically removed from the monitors where they were

added.

 Integrated Notification: CHART R10 includes built-in support for notification contacts,

contact groups, and for sending notifications. The third party tool used prior to CHART

R10 (Attention! CC) is no longer used.

 PRs: CHART R10 will contain changes for several PRs which will be identified for

inclusion in R10 at a later time. This document does not address any such PRs.

1.2 Objectives

The main objective of this detailed design document is to provide software developers with a

framework in which to implement the requirements identified in the CHART R10 Requirements

document. A matrix mapping requirements to the design is presented in Section 7 (Mapping to

Requirements).

1.3 Scope

This design is limited to Release 10 of the CHART system. It addresses both the design of the

server components of CHART and the Graphical User Interface (GUI) components of CHART

to support the new features being added. This design does not include designs for components

implemented in earlier releases of the CHART system.

1.4 Design Process

The design was created by capturing the requirements of the system in UML Use Case diagrams.

Class diagrams were generated showing the high level objects that address the Use Cases.

Sequence diagrams were generated to show how each piece of major functionality will be

achieved. This process was iterative in nature – the creation of sequence diagrams sometimes

caused re-engineering of the class diagrams, and vice versa.

1.5 Design Tools

The work products contained within this design will be extracted from the Tau Unified Modeling

Language (UML) Suite design tool. Within this tool, the design will be contained in the CHART

project, Release 10, Analysis phase and System Design phase.

1.6 Work Products

The final CHART Release 10 design consists of the following work products:

CHART R10 Detailed Design – Rev 3 1-3 08/14/2012

 Human-Machine Interface section which provides descriptions of the screens that are

changing or being added in order to allow the user to perform the described uses.

 Use Case diagrams that capture the requirements of the system

 UML Class diagrams, showing the software objects which allow the system to

accommodate the uses of the system described in the Use Case diagrams

 UML Sequence diagrams showing how the classes interact to accomplish major

functions of the system

 Requirement Verification Traceability Matrix that shows how this design meets the

documented requirements for this feature

CHART R10 Detailed Design – Rev 3 2-4 08/14/2012

2 Architecture

The sections below discuss specific elements of the architecture and software components that

are created, changed, or used in CHART Release 10.

2.1 Network/Hardware

CHART Release 10 features do not impact the network or hardware architecture of the CHART

system.

2.2 Software

CHART uses the Common Object Request Broker Architecture (CORBA) as the base

architecture, with custom built software objects made available on the network allowing their

data to be accessed via well defined CORBA interfaces. Communications to remote devices use

the Field Management Server (FMS) architecture. Newer external interfaces such as the User

Management web service, Data Exporter, and GIS service employ a web services architecture

combining an HTTP request/response structure to pass XML messages.

Except where noted in the subsections below, CHART Release 10 features do not impact the

software architecture of the CHART System.

2.2.1 COTS Products

2.2.1.1 CHART

CHART uses numerous COTS products for both run-time and development. Following are the

COTS products being added in Release 10:

Product Name Description

JavaMail API The CHART Notification Service uses the JavaMail API

1.4.4, an optional Java package which provides SMTP e-

mail support.

MSSQL Server CHART uses MS SQLServer (2008 R2) as its database

and uses the MS SQL Server JDBC libraries

(sqljdbc4.jar) for all database transactions.

CHART Release 10 no longer requires the following COTS products that were required in earlier

releases:

Product Name Description
Attention! CC CHART no longer uses Attention! CC Version 2.1 to

provide notification services. These services are now

provided from within the CHART notification service.

Attention! CC API CHART no longer uses Attention! CC API Version 2.1 to

interface with Attention! CC. This is no longer required

because CHART no longer uses Attention! CC

CHART R10 Detailed Design – Rev 3 2-5 08/14/2012

Product Name Description
Attention! NS CHART no longer uses Attention! NS Version 7.0 to

provide notification services. Notification services are

provided by the CHART notification service.

Oracle CHART no longer uses Oracle 10.1.0.5 as its database

and therefore no longer uses the Oracle 10G JDBC

libraries (ojdbc1.4.jar) for database transactions.

The following table contains existing COTS products that have not changed for CHART Release

10:

Product Name Description
Apache ActiveMQ CHART uses this to connect to RITIS JMS queues

Apache Jakarta Ant CHART uses Apache Jakarta Ant 1.6.5 to build CHART

applications and deployment jars.

Apache Tomcat CHART uses Apache Tomcat 6.0.29 as the GUI web

server.

Apache XML-RPC CHART uses the apache xmlrpc java library 3.1.2

protocol that uses XML over HTTP to implement remote

procedure calls. The video Flash streaming “red button”

(“kill switch”) API uses XML over HTTP remote

procedure calls.

Bison/Flex CHART uses Bison and Flex as part of the process of

compiling binary macro files used for performing camera

menu operations on Vicon Surveyor VFT cameras.

bsn.autosuggest The EORS integration feature uses version 2.1.3 of the

bsn.autosuggest JavaScript code from

brandspankingnew.net. This tool is freely available and

is included as source code in the CHART GUI. It

provides a simple JavaScript tool that can be associated

with a text entry field. When the user types characters in

the field, the tool waits until there has been no typing for

a configurable number of milliseconds (to make sure the

user is done typing) then places an AJAX call to a web

server which can return suggested results that match the

user entered text. The bsn.autosuggest tool then parses

the results (XML or JSON) and displays a UI element

that shows the user the suggestions and lets them select

one of them by clicking on it. If a suggested element is

selected by the user, a configurable JS method is invoked

to allow the application to use the selected suggestion.

Use of this tool is being expanded in CHART Release 10

to help the user locate notification contacts for viewing

CHART R10 Detailed Design – Rev 3 2-6 08/14/2012

Product Name Description
and editing.

CoreTec Decoder Control CHART uses a CoreTec supplied decoder control API for

commanding CoreTec decoders.

Dialogic API CHART uses the Dialogic API for sending and receiving

Dual Tone Multi Frequency (DTMF) tones for HAR

communications.

Flex3 SDK The CHART GUI will use the Flex3 SDK, version 3.3 to

provide the Flex compiler, the standard Flex libraries, and

examples for building Flex applications.

GIF89 Encoder Utility classes that can create .gif files with optional

animation. This utility is used for the creation of DMS

True Display windows.

JAXB CHART uses the jaxb java library to automate the tedious

task of hand-coding field-by-field XML translation and

validation for exported data.

JDOM CHART uses JDOM b7 (beta-7) dated 2001-07-07.

JDOM provides a way to represent an XML document for

easy and efficient reading, manipulation, and writing.

JacORB CHART uses a compiled, patched version of JacORB

2.3.1. The JacORB source code, including the patched

code, is kept in the CHART source repository.

Java Run-Time (JRE) CHART uses 1.6.0_21

JavaService CHART uses JavaService to install the server side Java

software components as Windows services.

JAXEN CHART uses JAXEN 1.0-beta-8 dated 2002-01-09. The

Jaxen project is a Java XPath Engine. Jaxen is a universal

object model walker, capable of evaluating XPath

expressions across multiple models.

JoeSNMP CHART uses JoeSNMP version 0.2.6 dated 2001-11-11.

JoeSNMP is a Java based implementation of the SNMP

protocol. CHART uses for commanding iMPath MPEG-

2 decoders and for communications with NTCIP DMSs.

JSON-simple CHART uses the JSON-simple java library to

encode/decode strings that use JSON (JavaScript Object

Notation).

JTS CHART uses the Java Topology Suite (JTS) version 1.8.0

for geographical utility classes.

Log4J CHART uses the log4J version 1.2.15 for logging

purposes.

NSIS CHART uses the Nullsoft Scriptable Installation System

(NSIS), version 2.45, as the server side installation

CHART R10 Detailed Design – Rev 3 2-7 08/14/2012

Product Name Description
package.

Nuance Text To Speech For text-to-speech (TTS) conversion CHART uses a TTS

engine that integrates with Microsoft Speech Application

Programming Interface (MSSAPI), version 5.1. CHART

uses Nuance Vocalizer 4.0 with Nuance SAPI 5.1

Integration for Nuance Vocalizer 4.0.

OpenLayers The Integrated Map feature uses the Open Layers

JavaScript API 2.10 (http://openlayers.org/) in order to

render interactive maps within a web application without

relying on vendor specific software. Open Layers is an

open source product released under a BSD style license

which can be found at

(http://svn.openlayers.org/trunk/openlayers/license.txt).

O’Reilly Servlet Provides classes that allow the CHART GUI to handle

file uploads via multi-part form submission.

Prototype Javascript

Library

The CHART GUI uses the Prototype JavaScript library,

version 1.6.1, a cross-browser compatible JavaScript

library provides many features (including easy Ajax

support).

SAXPath CHART uses SAXPath 1.0-beta-6 dated 2001-09-27.

SAXPath is an event-based API for XPath parsers, that is,

for parsers which parse XPath expressions.

SQLServer JDBC Driver CHART uses this driver to lookup GIS related data and

also to store Location Aliases in SQL Server databases.

Velocity Template Engine Provides classes that CHART GUI uses in order to create

dynamic web pages using velocity templates, CHART

uses Velocity version 1.6.1 and tools version 1.4.

Vicon V1500 API CHART uses a Vicon supplied API for commanding the

ViconV1500 CPU to switch video on the Vicon V1500

switch

2.2.2 Deployment /Interface Compatibility

2.2.2.1 CHART

2.2.2.1.1 External Interfaces

This section describes the external interfaces being added in Release 10 of CHART.

http://www.garshol.priv.no/xmltools/standard/XPath.html

CHART R10 Detailed Design – Rev 3 2-8 08/14/2012

Figure 2-1 CHART and External Interfaces

The external interfaces modified/added for R10 are:

1. The method in which e-mail and text notifications are delivered has changed. Rather

than using a COTS product to deliver notifications the notifications will be delivered

directly from the CHART system. CHART requires access to at least one mail server so

that it may send e-mails from the notification service using the SMTP protocol. A second

e-mail server can also be configured as a back-up in case the first mail server cannot be

accessed.

Server and GUI deployment diagrams are shown in the next two figures. Both of these diagrams

are changed to show SQLServer as the RDBMS instead of Oracle. Additionally, the server

deployment diagram is changed in R10 to have the Notification Service communicate directly

with a mail server instead of using a COTS Notification Tool.

CHART R10 Detailed Design – Rev 3 2-9 08/14/2012

Figure 2-2 R10 Server Deployment

Video Service

Travel Route Service

See GUI Deployment Diagram

for details.

Web Server

Runs on one

primary server and

one backup server

EORS Service

Schedule Service

Traffic Event Service

MSSQL

Linked Server

Field Management Server

Communications Service

Video Device

[Cameras Monitors]

Alert Service

Firewall

SQLServer RDBMS Service

RITIS Service

Vector

Field Devices

[DMSs HARs SHAZAMs TSSs]

EORS Server

INRIX Import Service

EORS DB

Watchdog Service 1

Email Server
SMTP

Mapping DB SQL Server

Watchdog Service 2

Firewall

Tomcat

CHART Mapping Application Server

CHART Mapping Service

Data Exporter Server (internal)

Data Export Service

Data Exporter Server (external)

Data Exporter Service

UserManagerWebService

JMS

HTTP

Roadway Location Lookup Service

--

GIS Service

Export Client Service

Geo Area Module

INRIX Web Service

RITIS System

Email-Pager Providers

GIS Lane Service

TCPIP JDBC

TCPIP

HTTP

HTTP

IIOP

HTTPS

Tomcat

IIOP

IIOP

TCPIP-JDBC

IIOP

ISDN POTS

Telephony

TCPIP

IIOP

SMTP

HTTPS

IIOP

Weather Web Service

Toll Rate Import Service

CORBA Trading Service

CORBA Event Services

User Manager Service

DMS Service

HAR Service

TSS Service

Message Utility Service

Notification Service

CHART Mapping DB Server

CHART R10 Detailed Design – Rev 3 2-10 08/14/2012

Figure 2-3 R10 GUI Deployment

2.2.2.1.2 Internal Interfaces

This section describes the internal interfaces being added or modified in Release 10 of the

CHART system.

1. The R10 DMS Fonts feature utilizes the existing GUI interface with some new and

modified web pages that will communicate to the GUI web server via http. The CHART

system DMS IDL has been altered to support the new DMS Fonts functionality.

Configuration parameters related to display properties have been removed from the DMS

Configuration and placed into a DMS Display Configuration. A new factory has been

added to provide access to DMS Display Configuration data and to allow DMS Display

Configurations to be added, edited, and deleted.

2. The R10 Integrated Notification feature utilizes the existing GUI interface with the

addition of web pages for managing contacts and contact groups. These web pages will

communicate to the GUI web server using http. IDL changes are included for the new

contact management API, hosted by the notification service.

3. The R10 Video Enahancements feature utilizes the existing GUI interface with updated

Monitor and Camera details pages, Monitor Configuration pages and Monitor List pages.

VideoControl, MonitorControl and CameraControl IDL has been modified to support

Auto Mode monitors and Camera Temporary Presests.

IIOP

HTTPS-HTML

TCPIP-JDBC TCPIP-JDBC

IIOP

HTTPS-XML

HTTPS-JSON

HTTPS

HTTPS-XML

GIS Lane Config Service

CHART Export Client Service

CHART Application Server

See Server Deployment Diagram

for more details.

Microsoft IIS

GUI Flex2 Application

Audio Recording Applet

Internet Explorer

TCPIP-JDBC

Apache Tomcat

GUI Web Server

TCPIP - JDBC

MSSQLServer

 RDBMS Service

CHART Services

CORBA Trading Service

CHART Application Server

CHART GUI Servlet

CHART Mapping Application Server

Adobe Flash Player 9

HTTPS-XML

Lane Editor

Web Service

CHART Database Server

CORBA Event Service

Operator Workstation

Java 6 Plug In

CHART Mapping Service

CHART R10 Detailed Design – Rev 3 2-11 08/14/2012

4. The R10 AORs feature adds a new GIS/mapping web service for the management of

Areas of Responsibility. This web service interface has been designed to meet the

immediate needs of CHART release 10, and to support other applications that may need

to utilize areas of responsibility in the future.

5. The R10 Decision Support feature utilizes the new Areas of Responsibility Web Service

in order to determine what AORs a traffic event is within. This information is used to

determine which monitors to display the traffic event’s response plan video tour cameras

on.

6. The R10 Decision Support feature utilizes the existing GUI interface with updates to the

traffic event details reponse panel. Decision support also modifies the camera control

form and decision support system profile configuration pages.

2.3 Security

This section describes the security being added or modified in Release 10 of the CHART system.

Unless otherwise noted, features being added for CHART Release 10 do not change security

aspects of the CHART system.

2.4 Data

CHART Release 10 will be tested with the fielded MS SQL Server version.

2.4.1 Data Storage

The CHART System stores most of its data in a non-spatial MS SQL Server database.

Additionally the Integrated Map feature adds the ability to store location aliases to the spatial

SQL Server database. Some data is stored in flat files on the CHART servers.

This section describes all of these types of data.

2.4.1.1 Database

2.4.1.1.1 Database Architecture

Except as noted CHART Release 10 features do not impact the overall architecture of the

CHART database.

2.4.1.1.2 Logical Design

2.4.1.1.2.1 CHART Entity Relationship Diagram (ERD)

CHART Database entity relationship diagrams are shown below in the multiple pages of figures

labeled collectively as one Figure. These diagrams represent the database design prior to R10

and the Table Definition Report sections that follow describe the changes that will be made for

R10.

CHART R10 Detailed Design – Rev 3 2-12 08/14/2012

ALERT
ALERT_ID

DESCRIPTION

ALERT_TYPE

ALERT_STATE

CREATION_TIME

RESPONSIBLE_USER

RESPONSIBLE_CENTER_ID

RESPONSIBLE_CENTER_NAME

NEXT_ACTION_TIME

LAST_STATE_CHANGE_TIME

PREV_ESCALATION_RESET_TIME

DETAIL_ID1

DETAIL_ID2

DETAIL_TEXT1

OFFLINE_INDICATOR

DB_CODE

DETAIL_TEXT2

DETAIL_TEXT3

ALERT_AMG
AL_ALERT_ID

ALERT_AMG_LIST_TYPE

HIST_RECORD_INDEX

SORT_ORDER_NUM

AMG_TYPE

AMG_ID

AMG_NAME

DB_CODE

ALERT_HISTORY
AL_ALERT_ID

RECORD_INDEX

CHART_TIMESTAMP

ALERT_STATE

ALERT_ACTION

CENTER_ID

USER_NAME

USER_COMMENT

NEXT_ACTION_TIME

DB_CODE

APPLICATION_ROLE_ASSIGNMENT
APP_APPLICATION_ID

ROL_ROLE_ID

ARB_QUEUE_ENTRY
DEVICE_ID

OWNER_ID

OWNER_SUB_ID

ENTRY_TYPE

HM_HAR_MSG_PK

DMS_MESSAGE_TEXT

USE_BEACONS

IS_MULTI

USE_ALL_DEVICES

PRIORITY

CENTER_ID

CENTER_NAME

USER_NAME

OWNER_IOR

RPI_IOR

ARBQ_ENTRY_EVENT_DATA
AQE_DEVICE_ID

AQE_OWNER_ID

AQE_OWNER_SUB_ID

EVENT_ID

EVENT_IOR

ARBQ_ENTRY_EVENT_IOR
AQE_DEVICE_ID

AQE_OWNER_ID

AQE_OWNER_SUB_ID

TRAFFIC_EVENT_IOR

ARBQ_ENTRY_HAR_NOTIFIER
AQE_DEVICE_ID

AQE_OWNER_ID

AQE_OWNER_SUB_ID

NOTIFIER_ID

ARBQ_ENTRY_SUB_DEVICE
AQE_DEVICE_ID

AQE_OWNER_ID

AQE_OWNER_SUB_ID

SUB_DEVICE_ID

ASSOCIATED_EVENT
EVENT_EVENT_ID_ASSOC_TO

EVENT_EVENT_ID

CREATED_TIMESTAMP

DB_CODE

BRIDGE_CIRCUIT
DEVICE_ID

ORG_ORGANIZATION_ID

DEVICE_NAME

COLLECTOR_NAME

ORG_COLLECTOR_ORGANIZATION_ID

COLLECTOR_CONNECTION_ID

COLLECTOR_CONNECTION_TYPE

PROVIDER_NAME

ORG_PROVIDER_ORGANIZATION_ID

PROVIDER_CONNECTION_ID

PROVIDER_CONNECTION_TYPE

BRIDGE_CIRCUIT_STATUS
BRIDGE_CIRCUIT_DEVICE_ID

COLLECTOR_COMM_MODE

COLLECTOR_OP_STATUS

COLLECTOR_STATUS_CHANGE_TIME

COLLECTOR_LAST_CONTACT_TIME

CURRENT_CAM_DEVICE_ID

CURRENT_PROVIDER_DEVICE_ID

PROVIDER_COMM_MODE

PROVIDER_OP_STATUS

PROVIDER_STATUS_CHANGE_TIME

PROVIDER_LAST_CONTACT_TIME

CAMERA
DEVICE_ID

CAMERA_MODEL_ID

ORG_ORGANIZATION_ID

DEVICE_NAME

LOCATION_PROFILE_TYPE

LOCATION_PROFILE_ID

TMDD_CCTV_IMAGE

CAMERA_NUMBER

CAMERA_CONTROLLABLE

TMDD_CONTROL_TYPE

TMDD_REQUEST_COMMAND_TYPES

ENABLE_DEVICE_LOG

NO_VIDEO_AVAIL_INDICATOR

DEVICE_LOCATION_DESC

TMDD_DEVICE_NAME

POLL_INTERVAL_CONTROLLED_SECS

POLLING_ENABLED_UNCONTROLLED

DEFAULT_CAMERA_TITLE

DEFAULT_CAMERA_TITLE_LINE2

CONTROL_CONNECTION_TYPE

CONTROL_CONNECTION_ID

POLL_INTERVAL_UNCTRLD_SECS

DB_CODE

CREATED_TIMESTAMP

UPDATED_TIMESTAMP

DSP_STATUS_ENABLED

DSP_STATUS_LENGTH

DISPLAY_CAMERA_ON_PUBLIC_MAP

DISPLAY_CAMERA_ON_INTRANET_MAP

MAINT_ORGANIZATION_ID

SMNP_COMMUNITY_STRING

HDLC_FRAME_REQUIRED

MINIMUM_PAN_SPEED

MAXIMUM_PAN_SPEED

MINIMUM_TILT_SPEED

MAXIMUM_TILT_SPEED

ZOOM_SPEED

FOCUS_SPEED

MIN_ZOOM_POSITION

MAX_ZOOM_POSITION

CAMERA_MONITOR
CAMERA_DEVICE_ID

TOUR_ID

TOUR_SUSPENDED_INDICA...

MONITOR_DEVICE_ID

CAMERA_PRESET
CAMERA_DEVICE_ID

PRESET_NUM

DESCRIPTION

FOCUS

ZOOM

PAN

TILT

CAMERA_REGION_ENTRY
CAM_CAMERA_ID

REGION_NAME

CAMERA_REVOKED_CONTROL

CAM_CAMERA_ID

REVOKED_CONTROL_ORGID

CAMERA_REVOKED_DISPLAY

CAM_CAMERA_ID

REVOKED_DISPLAY_ORGID

CAMERA_STATUS
CAMERA_DEVICE_ID

SHORT_ERROR_STATUS

AUTO_FOCUS_INDICATOR

AUTO_IRIS_INDICATOR

AUTO_COLOR_INDICATOR

TMDD_CCTV_STATUS

POWER_STATE

LENS_SPEED

COMM_MODE

TMDD_CCTV_ERROR

DEVICE_STATUS_CHANGE_SECS

CONTROL_INDICATOR

USER_DISPLAY_STATUS

MONITOR_STAT_CHANGE_TIME_SECS

CURRENT_CAMERA_TITLE

CURRENT_CAMERA_TITLE_LINE2

LAST_ATTEMPTED_POLL_TIME_SECS

LAST_SUCCESSFUL_POLL_TIME_SECS

LAST_CONTACT_TIME_SECS

USER_CONTROL_STATUS

CONTROLLING_MONITOR_GROUP_ID

CONTROLLING_USER_NAME

CONTROLLING_OP_CENTER_ID

OP_STATUS

LAST_COMMAND_TIME_SECS

BLOCKED_TO_PUBLIC

CURRENT_CAMERA_PRESET

CONTROL_MONITOR_REQUIRED

CAMERA_VIDEO_CONNECTION
CONNECTION_ID

CONNECTION_TYPE

CAMERA_DEVICE_ID

CENTER
CENTER_ID

CENTER_NAME

CREATED_TIMESTAMP

UPDATED_TIMESTAMP

DB_CODE

MG_DEFAULT_MONITOR_GROUP_ID

CENTER_OWNING_ORGANIZATION

MAX_VIDEO_SESSIONS

CHART_ROLE
ROLE_ID

ROLE_NAME

ROLE_DESCRIPTION

DB_CODE

EXTERNAL_APPLICATION
APPLICATION_ID

EXTERNAL_ID

IS_DATA_CONSUMER

IS_DATA_SUPPLIER

APPLICATION_DESCRIPTION

PUBLIC_KEY

CONTACT_FIRST_NAME

CONTACT_LAST_NAME

CONTACT_PRIMARY_PHONE

CONTACT_EMAIL_ADDRESS

HAR_MSG
HAR_MSG_PK

USE_HEADER

USE_TRAILER

DB_CODE

REGION

REGION_NAME

CHART R10 Detailed Design – Rev 3 2-13 08/14/2012

CENTER_HANDOFF_REPORT
CENTER_ID

SAVED_BY_USER

SAVED_TIMESTAMP

REPORT_TEXT

CENTER_HISTORY
CEN_CENTER_ID

PREVIOUS_CENTER_NAME

FIRST_USED_TIMESTAMP

LAST_USED_TIMESTAMP

DELETED_INDICATOR

DB_CODE

CENTER_LOGIN
CEN_CENTER_ID

LOGIN_SESSION_IOR

USER_NAME

CH2_DICTIONARY
DICTIONARY_ID

DICTIONARY_DESC

DB_CODE

CHART_ACTION
EVENT_EVENT_ID

ACTION_EVENT_CODE

CREATED_TIMESTAMP

DB_CODE

DESCRIPTION

CHART_ALIAS
ALIAS_ID

PUBLIC_NAME

INTERNAL_NAME

DESCRIPTION

CHART_PLAN
PLAN_ID

PLAN_NAME

DB_CODE

CREATE_NAME

CREATE_TIME

LAST_USED_TIME

CODE_LIST
CODE_TYPE_NAME

CREATED_TIMESTAMP

UPDATED_TIMESTAMP

DB_CODE

CODE_LIST_ITEM
CDL_CODE_TYPE_NAME

TYPE_CODE

TYPE_NAME

ACTIVE_INDICATOR

SORT_ORDER_NUMBER

CREATED_TIMESTAMP

UPDATED_TIMESTAMP

DB_CODE

CODEC
CODEC_ID

CONNECTION_MODEL_TYPE

CODEC_HOST

CODEC_COMMAND_PORT

CODEC_VIDEO_PORT

CODEC_CONTROL_CONNECTION
CODEC_CONTROL_CONNECTION_ID

COD_CODEC_ID

CONTROL_PORT

BAUD_RATE

DATA_BITS

FLOW_CONTROL

PARITY

STOP_BITS

CODEC_VIDEO_CONNECTION
CODEC_VIDEO_CONNECTION_ID

COD_CODEC_ID

VIDEO_MULTICAST_ADDRESS

VIDEO_MULTICAST_PORT

FABRIC_ID

COM_PORT_CONTROL_CONNECTION
COM_PORT_CONTROL_CONNECTION_ID

COM_PORT_NAME

BAUD_RATE

DATA_BITS

FLOW_CONTROL

PARITY

STOP_BITS

COMMAND_PROCESSOR_CONNECTION
CMD_PROCESSOR_CONNECTION_ID

ORG_ORGANIZATION_ID

COM_PORT_NAME

BAUD_RATE

DATA_BITS

FLOW_CONTROL

PARITY

STOP_BITS

ENABLE_DEVICE_LOG

COMMUNICATIONS_FAILURE_LOG
PORT_MANAGER_NAME

PORT_TYPE

PORT_NAME

FAILURE_CODE

MODEM_RESPONSE_CODE

SYSTEM_TIMESTAMP

LOG_TEXT

COMMUNICATIONS_LOG
LOG_ENTRY_ID

EVENT_EVENT_ID

DB_CODE

SYSTEM_TIMESTAMP

USER_TIMESTAMP

SOURCE_CODE

AUTHOR

CEN_CENTER_ID

CENTER_NAME

HOST_NAME

UPDATED_TIMESTAMP

LOG_SEQ

SOURCE_DESCRIPTION

LOG_TEXT

MESSAGE_TYPE

CONSTITUENT_HAR
MASTER_HAR_ID

HAR_ID

CONTACT
CONTACT_ID

EMAIL_ADDRESS

FIRST_NAME

LAST_NAME

PRIMARY_PHONE

DEVICE_ALERT_NOTIFICATION
OBJECT_ID

DEVICE_TYPE

COMMFAIL_ALERT_CENTER_ID

HWFAIL_ALERT_CENTER_ID

COMMFAIL_NOTIF_GROUP_ID

COMMFAIL_NOTIF_GROUP_NAME

HWFAIL_NOTIF_GROUP_ID

HWFAIL_NOTIF_GROUP_NAME

DEVICE_EVENT
DEVICE_ID

EVENT_EVENT_ID

RPI_RPI_ID

DEVICE_USAGE_CODE

DICTIONARY_WORD
CD_DICTIONARY_ID

DICTIONARY_WORD

DEVICE_APPLICABILITY

APPROVED_CODE

DB_CODE

DISABLED_VEHICLE_INDICATOR
EVENT_EVENT_ID

DISABLED_VEHICLE_INDICATOR_COD

DB_CODE

CREATED_TIMESTAMP

DMS
DEVICE_ID

DMS_MODEL_ID

ORG_ORGANIZATION_ID

DB_CODE

DEVICE_NAME

DEVICE_LOCATION

HAR_DEVICE_ID

COMM_LOSS_TIMEOUT

DEFAULT_JUSTIFICATION_LINE

DEFAULT_PAGE_OFF_TIME

DEFAULT_PAGE_ON_TIME

DROP_ADDRESS

INITIAL_RESPONSE_TIMEOUT

BEACON_TYPE

SIGN_TYPE

DEFAULT_PHONE_NUMBER

DMS_DIRECTIONAL_CODE

POLL_INTERVAL

POLLING_ENABLED

PORT_TYPE

PORT_MANAGER_TIMEOUT

BAUD_RATE

DATA_BITS

FLOW_CONTROL

PARITY

STOP_BITS

ENABLE_DEVICE_LOG

VMS_CHARACTER_HEIGHT_PIXELS

VMS_CHARACTER_WIDTH_PIXELS

VMS_MAX_PAGES

VMS_SIGN_HEIGHT_PIXELS

VMS_SIGN_WIDTH_PIXELS

CREATED_TIMESTAMP

UPDATED_TIMESTAMP

SHAZAM_BEACON_STATE

SHAZAM_IS_MESSAGE_TEXT_MULTI

DMS_SHAZAM_MSG

COMMUNITY_STRING

CEN_ALERT_CENTER_ID

TRAVEL_TIME_QUEUE_LEVEL

TOLL_RATE_QUEUE_LEVEL

OVERRIDE_SCHEDULE_IND

ENABLED_SPECIFIC_TIMES_IND

TCP_HOST

TCP_PORT

DEFAULT_FONT_NUMBER

DEFAULT_LINE_SPACING

COMMFAIL_ALERT_CENTER_ID

COMMFAIL_NOTIF_GROUP_ID

COMMFAIL_NOTIF_GROUP_NAME

HWFAIL_NOTIF_GROUP_ID

HWFAIL_NOTIF_GROUP_NAME

EXT_ID_SYSTEM_ID

EXT_ID_AGENCY_ID

EXT_ID_DMS_ID

HDLC_FRAME_REQUIRED

DEFAULT_INTERCHARACTER_SPACING

DEFAULT_PAGE_JUSTIFICATION

MAINT_ORGANIZATION_ID

DMS_FONT
DMS_DEVICE_ID

FONT_FONT_ID

DB_CODE

FONT
FONT_ID

FONT_WIDTH

FONT_HEIGHT

DB_CODE

CHART R10 Detailed Design – Rev 3 2-14 08/14/2012

DMS_PHONE_NUMBER
DMS_DEVICE_ID

PORT_MANAGER_NAME

PHONE_NUMBER

SORT_ORDER_NUMBER

DB_CODE

DMS_RELATED_ROUTE

DMS_DEVICE_ID

TRAVEL_ROUTE_ID

DMS_STATUS
DMS_DEVICE_ID

CEN_CENTER_ID

DEVICE_STATE_CODE

BEACON_STATE

PIXEL_TEST

DMS_INITIALIZED

COMM_STATUS

LAST_CONTACT_TIME

SHORT_ERROR_STATUS

STATUS_CHANGE_TIME

STATUS_LOG_DATE

LAST_ATTEMPTED_POLL_TIME

CURRENT_MESSAGE_TEXT

TRAV_MSG_ID

TRAV_MSG_STATE

TRAV_MSG_REASON

CONTROL_MODE

MESSAGE_SOURCE

DETECTED_SIZE_HORIZ_PIXELS

DETECTED_SIZE_VERT_PIXELS

DMS_TRAV_ROUTE_MSG
DMS_DEVICE_ID

MSG_ID

TEMPLATE_ID

AUTO_ROW_POSITIONING_IND

DMS_TRAV_ROUTE_MSG_CONFIG_LOG
SYSTEM_TIMESTAMP

DMS_DEVICE_ID

DEVICE_NAME

SCHEDULE_CONFIG_FLAG

DMS_TRAV_ROUTE_MSG_MSGS_LOG
SYSTEM_TIMESTAMP

MSGS_LOG_SEQUENCE

DMS_DEVICE_ID

DMS_TRAV_ROUTE_MSG_ID

DMS_TRAV_ROUTE_MSG_TEMPLATE_ID

DMS_TRAV_ROUTE_MSG_ROUTE
DTRM_MSG_ID

TRAVEL_ROUTE_ID

SORT_ORDER_NUM

DMS_TRAV_ROUTE_MSG_ROUTE_LOG
SYSTEM_TIMESTAMP

MSG_ROUTE_LOG_SEQUENCE

DMS_DEVICE_ID

DMS_TRAV_ROUTE_MSG_ID

TR_ROUTE_ID

DMS_TRAV_ROUTE_MSG_ROUTES_LOG
SYSTEM_TIMESTAMP

DMS_DEVICE_ID

DMS_TRAV_ROUTE_MSG_ID

TRAV_ROUTE_ID

DMS_TRAV_ROUTE_MSG_STATUS_LOG
SYSTEM_TIMESTAMP

STAT_LOG_SEQUENCE

DMS_DEVICE_ID

DEVICE_NAME

COMMUNICATION_MODE

OPERATIONAL_STATUS

SCHEDULE_ENABLED_INDICATOR

ENABLED_DMS_TRAV_ROUTE_MSG_ID

DMS_MESSAGE

DMS_TRAV_ROUTE_MSG_STATE

DMS_TRAV_ROUTE_MSG_REASON

DMS_TRAV_TIME_SCHEDULE
DMS_DEVICE_ID

START_HOUR

START_MIN

END_HOUR

END_MIN

DMS_TRAVEL_INFO_MSG_TEMPLATE
MESSAGE_TEMPLATE_ID

TEMPLATE_DESCRIPTION

NUMBER_ROWS

NUMBER_COLUMNS

NUMBER_PAGES

TEMPLATE_MESSAGE

DESTINATION_ALIGNMENT

MISSING_DATA_OPTION

DS_DISABLED_DEVICES

DEVICE_ID

EVENT_ID

DS_DMS_MSG_TEMPLATE
MESSAGE_TEMPLATE_ID

TEMPLATE_DESCRIPTION

TEMPLATE_MESSAGE

SHOW_BEACONS

DS_MSG_TEMPL_FILTER
MSG_TEMPLATE_ID

FILTER_TYPE_ID

EVENT_TYPE

DIST_TYPE

PROX_SAME_ROUTE

PROX_SAME_DIR

PROX_SAME_DIR_UP

PROX_SAME_DIR_DOWN

PROX_OPP_DIR

PROX_OPP_DIR_UP

PROX_OPP_DIR_DOWN

PROX_OTHER_ROUTE

MAX_COLUMNS

DS_MSG_TEMPL_FILTER_TYPES

FILTER_TYPE_ID

DESCRIPTION

EVENT
EVENT_ID

LANE_CONFIG_ID

DB_CODE

EVENT_CODE

EORS_TRACKING_NUMBER

CEN_CENTER_ID

CEN_ORIGINATING_CENTER_ID

PRIMARY_FLAG

LICENSE_PLATE_INFO

VEHICLE_INFO

OFFLINE_IND

MAX_QUEUE_LENGTH

EVENT_STATUS_CODE

SCENE_CLEARED_TIMESTAMP

DELAY_CLEARED_TIMESTAMP

CONFIRMED_TIMESTAMP

FALSE_ALARM_IND

EVENT_CLOSED_DATE

EVENT_OPEN_DATE

SOURCE_CODE

HAZMAT_CODE

INCIDENT_CODE

WEATHER_CLEANUP_INDICATOR

WEATHER_EVACUATION_INDICATOR

PAVEMENT_CONDITION_CODE

UPDATED_TIMESTAMP

OTHER_DESCRIPTION

DESCRIPTION

SOURCE_DESCRIPTION

LANE_STATE_DESCRIPTION

EVENT_STILL_OPEN_REMINDER_TIME

DISPLAY_WEBSITE_ALERT

WEBSITE_ALERT_TEXT

DESCRIPTION_OVERRIDDEN

AUX_DESCRIPTION

EVENT_INIT_USER_NAME

EVENT_INIT_CENTER_ID

EVENT_INIT_SCHEDULE_ID

EVENT_INIT_EXT_SYSTEM

EVENT_INIT_EXT_AGENCY

EVENT_INIT_EXT_EVENT

EVENT_STILL_OPEN_REL_REM_TIME

PENDING_EVENT_CREATION_TIME

PENDING_EVENT_LAST_USED_TIME

EXTERNAL_EVENT_IND

EXTERNAL_INTERESTING_IND

PUBLIC_DESCRIPTION

OWNING_ORGANIZATION

PUBLIC_INCIDENT_CODE

PRIORITY_LIST_ORDER

EST_TIME_TO_CLEAR_MINS

OP_CENTER_POC

ON_SCENE_POC

COMMENTS

REGIONAL_FLAG

WEATHER_INFO_JSON

EVENT_DEVICE_PROX_INFO
DEVICE_ID

EVENT_ID

DEVICE_TYPE

SAME_ROUTE

DIR_TYPE

UPSTREAM

EVENT_HISTORY
LOG_ENTRY_ID

EVENT_EVENT_ID

DB_CODE

SYSTEM_TIMESTAMP

USER_TIMESTAMP

SOURCE_CODE

CEN_CENTER_ID

CENTER_NAME

AUTHOR

HOST_NAME

ACTION_CODE

UPDATED_TIMESTAMP

DEVICE_ID

DEVICE_NAME

BEACON_STATE

LOG_SEQ

SOURCE_DESCRIPTION

LOG_TEXT

MESSAGE_TYPE

EVENT_NOTIFICATION
NOTIF_ID

NOTIF_MANAGER_ID

EVENT_ID

EVENT_PARTICIPANT
CEN_CENTER_ID

RT_RCT_RESOURCE_CATEGORY_CODE

RT_RESOURCE_CODE

DB_CODE

EVENT_RESOURCE
RESOURCE_ID

EVENT_EVENT_ID

DB_CODE

RT_RESOURCE_CODE

RT_RCT_RESOURCE_CATEGORY_CODE

OBJECT_TYPE_CODE

PARTICIPANT_NAME

NOTIFIED_TIMESTAMP

RESPONDED_TIMESTAMP

DEPARTURE_TIMESTAMP

CREATED_TIMESTAMP

UPDATED_TIMESTAMP

EXECUTABLE_ACTION
OWNER_ID

SORT_ORDER_NUM

OWNER_TYPE

ACTION_TYPE

DETAIL1_ID

DB_CODE

EXPORT_SUBSCRIPTION
CLIENT_ID

SUBSCRIPTION_DATA_TYPE

TARGET_URL

EXPIRATION_TIME

NOTIFICATION_RECORD
NOTIF_ID

NOTIF_TYPE

NOTIF_RECORD_COUNT

NOTIF_MANAGER_ID

EVENT_FACTORY_ID

EVENT_ID

AUTHOR

NOTIF_OP_CENTER_ID

NOTIF_INIT_OP_CENTER_NAME

NOTIF_CREATE_DATE

NOTIF_MESSAGE

OFFLINE_IND

CHART R10 Detailed Design – Rev 3 2-15 08/14/2012

EXTERNAL_EVENT_FILTER

RULE_ID

CHART_RULE

EXTERNAL_OBJECT_EXCLUSION
EXCLUSION_ID

EXTERNAL_OBJECT_ID

EXTERNAL_OBJECT_TYPE

EXTERNAL_SYSTEM

EXTERNAL_AGENCY

FLASH_VIDEO_STREAM_CONTROL
CAMERA_DEVICE_ID

FLASH_VIDEO_HOST

PASSWORD

PORT

EXTERNAL_SFS_HOST

IS_PUBLIC

STREAM_BLOCKED

FOLDER

ID

NAME

FOLDER_OBJECT

FOLDER_ID

OBJECT_ID

FOLDER_OP_CENTER

FOLDER_ID

CENTER_ID

FONT_SEQ

font_seq_id

FUNCTIONAL_RIGHT
FR_ID

FR_NAME

FR_DESCRIPTION

DB_CODE

GEO_AREA
GEO_ID

NAME

DESCRIPTION

GEO_AREA_POINT
GA_GEO_ID

POINT_ORDER

LATITUDE

LONGITUDE

HAR
DEVICE_ID

HAR_MODEL_ID

ORG_ORGANIZATION_ID

DB_CODE

DEVICE_NAME

DEVICE_LOCATION

HAR_ACCESS_PIN

DEFAULT_PHONE_NUMBER

DEFAULT_MONITOR_PHONE_NUMBER

MAX_TIME

PORT_TYPE

PORT_MANAGER_TIMEOUT

MONITOR_PORT_TYPE

MONITOR_PORT_MANAGER_TIMEOUT

DEFAULT_HEADER_CLIP_PK

DEFAULT_BODY_CLIP_PK

DEFAULT_TRAILER_CLIP_PK

CREATED_TIMESTAMP

UPDATED_TIMESTAMP

ENABLE_DEVICE_LOG

MASTER_HAR_ID

FREQUENCY_KHZ

BAND

CALL_SIGN

DISABLE_DTMF_RESPONSE_MODE

MAINT_ORGANIZATION_ID

TCP_HOST

TCP_PORT

MIN_DC_VOLTAGE

MAX_VSWR

POLL_INTERVAL_SECONDS

POLL_ENABLED

HAR_AUDIO_OWNER
HCA_HAR_CLIP_AUDIO_ID

DB_CODE

LAST_INTEREST_TIMESTAMP

OWNER_ID

HAR_CLIP_AUDIO
HAR_CLIP_AUDIO_ID

HAR_AUDIO

DB_CODE

HAR_MSG
HAR_MSG_PK

USE_HEADER

USE_TRAILER

DB_CODE

HAR_MSG_CLIP
HAR_CLIP_PK

HCA_HAR_CLIP_AUDIO_ID

CLIP_POSITION_CODE

RUN_LENGTH

RUN_LENGTH_CODE

CLIP_TYPE_CODE

DB_CODE

PRESTORED_SLOT_NUMBER

CLIP_DESCRIPTION

CLIP_TEXT

AUDIO_CLIP_MANAGER_NAME

HAR_NOTIFIER
HAR_DEVICE_ID

HN_DEVICE_ID

DEVICE_CODE

ACTIVE_INDICATOR

DB_CODE

HAR_PHONE_NUMBER
HAR_DEVICE_ID

PORT_MANAGER_NAME

PHONE_NUMBER

SORT_ORDER_NUMBER

MONITOR_INDICATOR

DB_CODE

HAR_SLOT_CONFIG
HAR_DEVICE_ID

SLOT_NUMBER

HMC_HAR_CLIP_PK

SLOT_USAGE_CODE

DB_CODE

HAR_STATUS
HAR_DEVICE_ID

CEN_CENTER_ID

DEVICE_STATE_CODE

TRANSMITTER_STATE

HAR_INITIALIZED

COMM_STATUS

LAST_CONTACT_TIME

STATUS_CHANGE_TIME

LAST_DATESTAMP_REFRESH_TIME

HM_HAR_MSG_PK

LAST_SETUP_TIME

LAST_STATUS_MISMATCH_TIME

POWER_STATUS

DC_VOLTAGE

BROADCAST_MONITOR_PCT

HAR_MODE

HAR_SUB_MODE

HAR_SYNC_MODE

XMIT_SET_POWER

XMIT_FORWARD_POWER

XMIT_REFLECTED_POWER

XMIT_VSWR

XMIT_MODULATION_PCT

DCC_VERSION_INFO

HAR_VERSION_INFO

HAR_TIMESTAMP

hm_seq

hm_seq_id

INCIDENT
EVENT_EVENT_ID

INCIDENT_CODE

CREATED_TIMESTAMP

DB_CODE

INCIDENT_VEHICLES_INVOLVED
VEHICLES_INVOLVED_PK

EVENT_EVENT_ID

VEHICLES_INVOLVED_CODE

VEHICLE_SUBCATEGORY_CODE

VEHICLE_QTY

CREATED_TIMESTAMP

DB_CODE

LINK_DATA_IMPORT
IMPORT_ID

SYSTEM_TIMESTAMP

EXT_SYS_NAME

link_data_import_seq

link_data_import_seq_id

CHART R10 Detailed Design – Rev 3 2-16 08/14/2012

HAR_MSG

HAR_MSG_PK

USE_HEADER

USE_TRAILER

DB_CODE

HAR_MSG_CLIP

HAR_CLIP_PK

HCA_HAR_CLIP_AUDIO_ID

CLIP_POSITION_CODE

RUN_LENGTH

RUN_LENGTH_CODE

CLIP_TYPE_CODE

DB_CODE

PRESTORED_SLOT_NUMBER

CLIP_DESCRIPTION

CLIP_TEXT

AUDIO_CLIP_MANAGER_NAME

LINK_RAW_DATA

LINK_DATA_IMPORT_ID

EXT_LINK_ID

LINK_TRAVEL_TIME_EFF_TIME

LINK_TRAVEL_TIME_SECS

LINK_TRAVEL_TIME_QUAL

LINK_SPEED_MPH

LINK_SMOOTHED_DATA

LINK_DATA_IMPORT_ID

EXT_LINK_ID

LINK_TRAVEL_TIME_EFF_TIME

LINK_TRAVEL_TIME_SECS

LINK_TRAVEL_TIME_QUAL

LINK_SPEED_MPH

LINK_TRAVEL_TIME

RL_LINK_ID

LINK_TRAVEL_TIME_EFF_TIME

LINK_TRAVEL_TIME_SECS

LINK_TRAVEL_TIME_QUAL

LINK_TRAVEL_TIME_TREND

log_seq

log_seq_id

LRMS_GEOMETRY

TMDD_LOCATION_ID

TMDD_LOC_EXT_LRMS_LATITUDE

TMDD_LOC_EXT_LRMS_LONGITUDE

TMDD_LOC_EXT_HORIZONTAL_DATUM

TMDD_LOC_EXT_VERTICAL_DATUM

TMDD_LOC_EXT_LRMS_HEIGHT

TMDD_LOC_VERTICAL_LEVEL

MESSAGE_LIBRARY

ML_ID

ML_NAME

CREATED_BY

DB_CODE

MONITOR

DEVICE_ID

ORG_ORGANIZATION_ID

DEVICE_NAME

PUBLIC_FLAG

CONNECTION_ID

CONNECTION_TYPE

CREATED_TIMESTAMP

UPDATED_TIMESTAMP

DB_CODE

MAINT_ORGANIZATION_ID

MONITOR_GROUP

MONITOR_GROUP_ID

MONITOR_GROUP_NAME

ORG_ORGANIZATION_ID

PRIORITY

GUARANTEED_NUM_ROUTES

MONITOR_GROUP_CAMERA_STATUS

MONITOR_GROUP_ID

CAM_DEVICE_ID

MONITOR_GROUP_ENTRY

MONITOR_GROUP_ID

MON_DEVICE_ID

MONITOR_GROUP_RECORD

MONITOR_STATUS

MONITOR_DEVICE_ID

OP_STATUS

COMM_MODE

STATUS_CHANGE_TIME

CURRENT_CAM_DEVICE_ID

CURRENT_TOUR_TOUR_ID

LAST_CONTACT_TIME

TOUR_SUSPENDED_INDICATOR

CURRENT_PROVIDER_DEVICE_ID

MSG_CLIP_LIST

HM_HAR_MSG_PK

HMC_HAR_CLIP_PK

BODY_SEQUENCE

DB_CODE

msg_clip_seq

msg_clip_seq_id

MSG_FORMATS_DISTANCE

MESSAGE_FORMAT_ID

MESSAGE_TEMPLATE_ID

NAME

FORMAT

EXAMPLE

FORMAT_LENGTH

MILES_START_INDEX

MILES_END_INDEX

TENTHS_MILE_START_INDEX

TENTHS_MILE_END_INDEX

SUPPRESS_LEAD_ZEROS_NO_MILES

MSG_FORMATS_TOLL_RATE

MESSAGE_FORMAT_ID

MESSAGE_TEMPLATE_ID

NAME

FORMAT

EXAMPLE

FORMAT_LENGTH

DOLLARS_START_INDEX

DOLLARS_END_INDEX

CENTS_START_INDEX

CENTS_END_INDEX

DOLLAR_SIGN_INDEX

SUPPRESS_DOLLAR_SIGN

SUPPRESS_LEAD_ZEROS_IN_DOLLAR

MSG_FORMATS_TOLL_RATE_TIME

MESSAGE_FORMAT_ID

MESSAGE_TEMPLATE_ID

NAME

FORMAT

EXAMPLE

FORMAT_LENGTH

HOUR_START_INDEX

HOUR_END_INDEX

MINUTES_START_INDEX

MINUTES_END_INDEX

AM_PM_START_INDEX

AM_PM_END_INDEX

MSG_FORMATS_TRAVEL_TIME

MESSAGE_FORMAT_ID

MESSAGE_TEMPLATE_ID

NAME

FORMAT

EXAMPLE

FORMAT_LENGTH

HOUR_START_INDEX

HOUR_END_INDEX

SUPPRESS_HRS_LEAD_ZEROS

MINUTES_START_INDEX

MINUTES_END_INDEX

SUPPRESS_MIN_LEAD_ZEROS

START_HR_LITERAL_INDEX

END_HR_LITERAL_INDEX

SUPPRESS_HR_LITERAL

COLON_INDEX

SUPPRESS_COLON_LITERAL

MSG_FORMATS_TRAVEL_TIME_RANGE

MESSAGE_FORMAT_ID

MESSAGE_TEMPLATE_ID

NAME

FORMAT

EXAMPLE

FORMAT_LENGTH

LOW_START_INDEX

LOW_END_INDEX

HIGH_START_INDEX

HIGH_END_INDEX

SUPPRESS_LEADING_ZEROS

MSG_LOG_SEQ

msg_log_seq_id

MSG_ROUTE_LOG_SEQ

msg_route_log_seq_id

NOTIFICATION_REQUEST

NOTIF_ID

RECIPIENT_ID

RECIPIENT_NAME

TARGET_TYPE

NOTIFICATION_STATUS

NOTIF_ID

RECIPIENT_NAME

NOTIF_STATUS_TYPE

NOTIF_STATUS_TEXT

STATUS_CREATE_TIME

OBJECT_LOCATION

OBJECT_ID

LOCATION_TEXT

LOCATION_DESC_OVERRIDDEN

COUNTY_NAME

COUNTY_FIPS_CODE

COUNTY_CODE

USPS_STATE_CODE

STATE_FULL_NAME

STATE_FIPS_CODE

REGION_NAME

ROUTE_SPEC_TYPE

ROUTE_FREE_FORM_TEXT

ROUTE_TYPE

ROUTE_PREFIX

ROUTE_NUMBER

ROUTE_SUFFIX

INT_FEAT_TYPE

INT_FEAT_PROX_TYPE

ROAD_NAME

INT_ROUTE_SPEC_TYPE

INT_ROUTE_FREE_FORM_TEXT

INT_ROUTE_TYPE

INT_ROAD_NAME

INT_ROUTE_PREFIX

INT_ROUTE_NUMBER

INT_ROUTE_SUFFIX

INT_FEAT_MILEPOST_TYPE

INT_FEAT_MILLI_MILEPOST_DATA

ROADWAY_LOC_ALIAS_PUB_NAME

ROADWAY_LOC_ALIAS_INT_NAME

LATITUDE_UDEG

LONGITUDE_UDEG

GEOLOC_SOURCE_TYPE

GEOLOC_SOURCE_DESC

SHOW_ROUTE_NAME

SHOW_INT_ROUTE_NAME

DIRECTION_CODE

OBJECT_TYPE

INT_FEAT_EXIT_NUMBER

INT_FEAT_EXIT_SUFFIX

INT_FEAT_EXIT_ROAD_NAME

SEC_INT_FEAT_TYPE

SEC_INT_ROUTE_SPEC_TYPE

SEC_INT_ROUTE_FREE_FORM_TEXT

SEC_INT_ROUTE_TYPE

SEC_INT_ROAD_NAME

SEC_INT_ROUTE_PREFIX

SEC_INT_ROUTE_NUMBER

SEC_INT_ROUTE_SUFFIX

SEC_INT_FEAT_MILEPOST_TYPE

SEC_INT_FEAT_MILLI_MPOST_DATA

SEC_INT_FEAT_EXIT_NUMBER

SEC_INT_FEAT_EXIT_SUFFIX

SEC_INT_FEAT_EXIT_ROAD_NAME

SHOW_SEC_INT_ROUTE_NAME

CHART R10 Detailed Design – Rev 3 2-17 08/14/2012

CH2_DICTIONARY
DICTIONARY_ID

DICTIONARY_DESC

DB_CODE

CHART_PLAN
PLAN_ID

PLAN_NAME

DB_CODE

CREATE_NAME

CREATE_TIME

LAST_USED_TIME

CHART_ROLE
ROLE_ID

ROLE_NAME

ROLE_DESCRIPTION

DB_CODE

OBJECT_LOCATION_ALIAS
OBJECT_ID

PUBLIC_NAME

INTERNAL_NAME

OPERATIONS_LOG
SYSTEM_TIMESTAMP

ACTION_CODE

AUTHOR

DEVICE_NAME

CEN_CENTER_ID

HOST_NAME

LOG_TEXT

DEVICE_NAME2

DEVICE_ID

DEVICE_ID2

ORGANIZATION
ORGANIZATION_ID

ORGANIZATION_NAME

DB_CODE

PLAN_FILTER
PLA_PLAN_ID

PLAN_FILTER_TYPE

ID_FILTER_VALUE

STRING_FILTER_VALUE

NUMERIC_FILTER_VALUE

DB_CODEPLAN_ITEM
PLAN_ITEM_ID

DEVICE_ID

SM_MSG_ID

PLA_PLAN_ID

MSG_TYPE_CODE

PLAN_ITEM_NAME

DB_CODE

PLAN_ITEM_DIRECTION
PI_PLAN_ITEM_ID

HAR_DIRECTIONAL_CODE

PROFILE_BINARY_PROPERTY
UI_USER_NAME

CHART_KEY

CHART_VALUE

DB_CODE

PROFILE_PROPERTY
CHART_KEY

UI_USER_NAME

CHART_VALUE

DB_CODE

PRONUNCIATIONS
CD_DICTIONARY_ID

PRONUNCIATION

DICTIONARY_WORD

APPROVED_CODE

PROVIDER_COLLECTOR
PROVIDER_ID

COLLECTOR_IDRESOURCE_CATEGORY_TYPE
RESOURCE_CATEGORY_CODE

RESOURCE_CATEGORY_NAME

ACTIVE_INDICATOR

SORT_ORDER_NUMBER

CREATED_TIMESTAMP

UPDATED_TIMESTAMP

DB_CODE

RESOURCE_TYPE
RCT_RESOURCE_CATEGORY_CODE

RESOURCE_CODE

RESOURCE_NAME

ACTIVE_INDICATOR

SORT_ORDER_NUMBER

CREATED_TIMESTAMP

UPDATED_TIMESTAMP

DB_CODE

RESPONSE_PLAN_ITEM
RPI_ID

TARGET_ID

DEVICE_CODE

DB_CODE

EVENT_EVENT_ID

IS_MESSAGE_TEXT_MULTI

RPI_BEACON_STATE

HM_HAR_MSG_PK

RPI_MSG_DESCRIPTION

RPI_MESSAGE_TEXT

TARGET_IOR

ROADWAY_LINK
LINK_ID

EXT_SYS_NAME

EXT_LINK_ID

LINK_NAME

USPS_STATE_CODE

STATE_FIPS_CODE

COUNTY_NAME

COUNTY_FIPS_CODE

ROUTE_SPEC_TYPE

ROUTE_FREE_FORM_TEXT

ROUTE_TYPE

ROUTE_PREFIX

ROUTE_NUMBER

ROUTE_SUFFIX

MILLI_MILES

START_LAT_UDEG

START_LONG_UDEG

END_LAT_UDEG

END_LONG_UDEG

ROAD_NAME

DIRECTION_CODE

ROADWAY_LOCATION_ALIAS
PUBLIC_NAME

INTERNAL_NAME

USPS_STATE_CODE

STATE_FIPS_CODE

REGION_NAME

COUNTY_NAME

COUNTY_FIPS_CODE

COUNTY_CODE

DIRECTION_CODE

ROUTE_SPEC_TYPE

ROUTE_FREE_FORM_TEXT

ROUTE_TYPE

ROAD_NAME

ROUTE_PREFIX

ROUTE_NUMBER

ROUTE_SUFFIX

INT_FEAT_TYPE

INT_FEAT_PROX_TYPE

INT_FEAT_PROX_DIST

INT_ROUTE_SPEC_TYPE

INT_ROUTE_FREE_FORM_TEXT

INT_ROUTE_TYPE

INT_ROAD_NAME

INT_ROUTE_PREFIX

INT_ROUTE_NUMBER

INT_ROUTE_SUFFIX

INT_FEAT_MILEPOST_TYPE

INT_FEAT_MILLI_MILEPOST_DATA

DESCRIPTION

STATE_FULL_NAME

LATITUDE_UDEG

LONGITUDE_UDEG

ROADWAY_LOCATION_COUNTY
NAME

CHART_MAPPING_CODE

FIPS_CODE

USPS_STATE_CODE

DESCRIPTION

ROADWAY_LOCATION_REGION
NAME

USPS_STATE_CODE

DESCRIPTION

ROADWAY_LOCATION_ROUTE_PREFIX
ROUTE_PREFIX

USPS_STATE_CODE

ROUTE_TYPE

DESCRIPTION

ROADWAY_LOCATION_STATE
NAME

USPS_CODE

FIPS_CODE

DESCRIPTION

ROLE_ASSIGNMENT
UI_USER_NAME

ROL_ROLE_ID

DB_CODE

USER_ID
USER_NAME

PASSWORD

DB_CODE

CHART R10 Detailed Design – Rev 3 2-18 08/14/2012

HAR_MSG
HAR_MSG_PK

USE_HEADER

USE_TRAILER

DB_CODE

MESSAGE_LIBRARY
ML_ID

ML_NAME

CREATED_BY

DB_CODE

ROUTE_TOLL_RATE
TR_ROUTE_ID

TOLL_RATE_EFF_TIME

TOLL_RATE_EXP_TIME

TOLL_RATE_CENTS

TOLL_RATE_REASON_CODE

TOLL_RATE_INAPPLICABLE...

ROUTE_TOLL_RATE_TEXT
TR_ROUTE_ID

ROUTE_TOLL_RATE_EFF_TIME

ROUTE_TOLL_RATE_REASON_STR

ROUTE_TRAVEL_TIME
TR_ROUTE_ID

ROUTE_TRAVEL_TIME_EFF_TIME

ROUTE_TRAVEL_TIME_SECS

ROUTE_TRAVEL_TIME_TREND

TRAVEL_TIME_INAPPLICABLE_IND

ROUTE_ACT_TRAVEL_TIME_SECS

ROUTE_TRAVEL_TIME_TEXT
TR_ROUTE_ID

ROUTE_TRAVEL_TIME_EFF_TIME

ROUTE_TRAVEL_TIME_CALC

ROUTE_TRAVEL_TIME_REASON_CODE

ROUTES
ID

SERVER

PARTICIPATING_CKT_ID

PARTICIPATING_CKT_TYPE

PARTICIPATING_CKT_INDEX

CHART_TIMESTAMP

SOURCE_CONNECTION_ID

DESTINATION_CONNECTION_ID

ROUTE_NAME

SCHEDULE
SCHEDULE_ID

NAME

DESCRIPTION

RECEIVING_CENTER_ID

ENABLED

LAST_USE_TIME

SUPPRESS_NEXT_ACTIVATION_TIME

SCHEDULE_TYPE

BEGIN_DATE

END_DATE

SUNDAY

MONDAY

TUESDAY

WEDNESDAY

THURSDAY

FRIDAY

SATURDAY

DB_CODE

SCHEDULE_DOW_OCCURRENCE
SC_SCHEDULE_ID

CHART_HOUR

CHART_MINUTE

DB_CODE

SCHEDULE_MULTIDATE
SC_SCHEDULE_ID

OCCURRENCE_TIME

DB_CODE

SHAZAM
DEVICE_ID

SHAZAM_MODEL_ID

ORG_ORGANIZATION_ID

DB_CODE

DEVICE_NAME

DEVICE_LOCATION

HAR_DEVICE_ID

SHAZAM_ACCESS_PIN

DEFAULT_PHONE_NUMBER

SHAZAM_DIRECTIONAL_CODE

REFRESH_INTERVAL

REFRESH_ENABLED

PORT_TYPE

PORT_MANAGER_TIMEOUT

CREATED_TIMESTAMP

UPDATED_TIMESTAMP

MESSAGE

MAINT_ORGANIZATION_ID

TCP_HOST

TCP_PORT

RELAY_NUMBER

SHAZAM_PHONE_NUMBER
SHAZAM_DEVICE_ID

PORT_MANAGER_NAME

PHONE_NUMBER

SORT_ORDER_NUMBER

DB_CODE

SHAZAM_STATUS
SHAZAM_DEVICE_ID

CEN_CENTER_ID

DEVICE_STATE_CODE

BEACON_STATE

COMM_STATUS

STATUS_CHANGE_TIME

LAST_ATTEMPTED_REFRESH_TIME

LAST_CONTACT_TIME

BEACON_STATE_ACTUAL

STANDARD_LANE
CONFIG_NAME

LANE_NUMBER

DB_CODE

LANE_CODE

LANE_DESCRIPTION

LANE_REFERENCE_DIRECTION

LANE_ORIENTATION

STORED_MESSAGE
MSG_ID

ML_ML_ID

HM_HAR_MSG_PK

MSG_TYPE_CODE

CATEGORY

DB_CODE

IS_MESSAGE_TEXT_MULTI

MESSAGE_BEACON

LAST_MODIFIED_BY

MSG_DESCRIPTION

MESSAGE_TEXT

SYSTEM_BINARY_PROFILE
CHART_KEY

CHART_VALUE

DB_CODE

SYSTEM_PROFILE
CHART_KEY

CHART_VALUE

DB_CODE

SYSTEM_TIMESTAMP

TOLL_DATA_IMPORT
IMPORT_ID

SYSTEM_TIMESTAMP

EXT_SYS_NAME

toll_data_import_seq

toll_data_import_seq_id

TOLL_RATE_ROUTES
TOLL_RATE_EXT_SYS_NAME

TOLL_RATE_EXT_START_ID

TOLL_RATE_EXT_END_ID

TOLL_RATE_EXT_DESC

LAST_RECEIVED_TIME

TOLL_RAW_DATA
TOLL_DATA_IMPORT_ID

EXT_SYS_START_ID

EXT_SYS_END_ID

EXT_SYS_ROUTE_DESC

TOLL_RATE_EFF_TIME

TOLL_RATE_EXP_TIME

TOLL_RATE_CENTS

TOUR
TOUR_ID

TOUR_CONFIG_ID

TOUR_NAME

DWELL_TIME

CREATED_TIMESTAMP

DELETED_TIMESTAMP

DB_CODE

CATEGORY

TOUR_ENTRY
TOUR_CONFIG_ID

CAMERA_DEVICE_ID

PRESET

SEQ_NUM

CREATED_TIMESTAMP

DELETED_TIMESTAMP

DB_CODE

TOUR_STATUS

TOUR_TOUR_ID

MON_DEVICE_ID

TRAVEL_ROUTE
ROUTE_ID

NAME

MILLI_MILES

USER_LOCATION_IND

PRIMARY_DEST_TEXT

TRAVEL_TIME_ENABLED_IND

MIN_TRAVEL_TIME_MINS

MAX_TRAVEL_TIME_MINS

MAX_BAD_LINKS

ALERT_TRAVEL_TIME_MINS

TRAV_TIME_ALERTS_ENABLED_IND

TRAV_TIME_ALERT_OP_CENTER

TRAV_TIME_NOTIFS_ENABLED_IND

TRAV_TIME_NOTIF_RECIPIENT

TOLL_RATE_ENABLED_IND

TOLL_RATE_EXT_SYS_NAME

TOLL_RATE_EXT_START_ID

TOLL_RATE_EXT_END_ID

TOLL_RATE_EXT_DESC

TOLL_RATE_ALERTS_ENABLED_IND

TOLL_RATE_ALERT_OP_CENTER

TOLL_RATE_NOTIFS_ENABLED_IND

TOLL_RATE_NOTIF_RECIPIENT

CHART R10 Detailed Design – Rev 3 2-19 08/14/2012

TRADER_INCARNATION

HIGH

LOW

TRADER_OFFER
ID

TRADER_SERVICE_TYPE_NAME

IOR

TRADER_OFFER_ID_SEQ

trader_offer_id_seq_id

TRADER_OFFER_PROPERTY
TRADER_OFFER_ID

NAME

VAL_TYPE

VAL_STRING

TRADER_SERVICE_TYPE
NAME

INTERFACE_NAME

IS_MASKED

INCARNATION_HIGH

INCARNATION_LOW

TRADER_SERVICE_TYPE_PROPERTY
TRADER_SERVICE_TYPE_NAME

NAME

PROP_KIND

IS_SEQUENCE

PROP_MODE

TRADER_SERVICE_TYPE_SUPER_TYPE
TRADER_SERVICE_TYPE_NAME

SUPER_TYPE_NAME

TRAVEL_ROUTE
ROUTE_ID

NAME

MILLI_MILES

USER_LOCATION_IND

PRIMARY_DEST_TEXT

TRAVEL_TIME_ENABLED_IND

MIN_TRAVEL_TIME_MINS

MAX_TRAVEL_TIME_MINS

MAX_BAD_LINKS

ALERT_TRAVEL_TIME_MINS

TRAV_TIME_ALERTS_ENABLED_IND

TRAV_TIME_ALERT_OP_CENTER

TRAV_TIME_NOTIFS_ENABLED_IND

TRAV_TIME_NOTIF_RECIPIENT

TOLL_RATE_ENABLED_IND

TOLL_RATE_EXT_SYS_NAME

TOLL_RATE_EXT_START_ID

TOLL_RATE_EXT_END_ID

TOLL_RATE_EXT_DESC

TOLL_RATE_ALERTS_ENABLED_IND

TOLL_RATE_ALERT_OP_CENTER

TOLL_RATE_NOTIFS_ENABLED_IND

TOLL_RATE_NOTIF_RECIPIENT

TRAVEL_ROUTE_CONSUMER
TR_ROUTE_ID

SORT_ORDER_NUMBER

CONSUMER_ID

PROXY_CONSUMER_ID

TRAVEL_ROUTE_DEST
TR_ROUTE_ID

SORT_ORDER_NUMBER

ALT_DEST_TEXT

TRAVEL_ROUTE_LINK
TR_ROUTE_ID

SORT_ORDER_NUMBER

RL_LINK_ID

CHART_PERCENT

MIN_ALLOWED_QUALITY

TRAVEL_ROUTE_LOCATION
TR_ROUTE_ID

SORT_ORDER_NUMBER

COUNTY_NAME

COUNTY_FIPS_CODE

COUNTY_CODE

DIRECTION_CODE

USPS_STATE_CODE

STATE_FULL_NAME

STATE_FIPS_CODE

ROUTE_SPEC_TYPE

ROUTE_FREE_FORM_TEXT

ROUTE_TYPE

ROUTE_PREFIX

ROUTE_NUMBER

ROUTE_SUFFIX

ROAD_NAME

DB_CODE

TSS
DEVICE_ID

TSS_MODEL_ID

ORG_ORGANIZATION_ID

DB_CODE

DEVICE_NAME

DEVICE_LOCATION

DROP_ADDRESS

DEFAULT_PHONE_NUMBER

POLL_INTERVAL_SECS

PORT_TYPE

PORT_MANAGER_TIMEOUT

BAUD_RATE

DATA_BITS

FLOW_CONTROL

PARITY

STOP_BITS

ENABLE_DEVICE_LOG

CREATED_TIMESTAMP

UPDATED_TIMESTAMP

CEN_ALERT_CENTER_ID

EXT_ID_SYSTEM_ID

EXT_ID_AGENCY_ID

EXT_ID_TSS_ID

TCP_HOST

TCP_PORT

MAINT_ORGANIZATION_ID

DISPLAY_BEARING

TSS_PROTOCOL_ID

ENABLE_SCHEDULED_BIT

TSS_DEVICE_SEQ

TSS_DEVICE_seq_id

TSS_PHONE_NUMBER
TSS_DEVICE_ID

PORT_MANAGER_NAME

PHONE_NUMBER

SORT_ORDER_NUMBER

DB_CODE

TSS_RAW_DATA
TSS_DEVICE_ID

SYSTEM_TIMESTAMP

ZONE_NUMBER

DIRECTION

SPEED

VOLUME

OCCUPANCY

TSS_STATUS
TSS_DEVICE_ID

DEVICE_STATE_CODE

COMM_STATUS

LAST_CONTACT_TIME

TSS_HARDWARE_STATUS

HARDWARE_STATUS_TIMESTAMP

HARDWARE_FAILURE_TIMESTAMP

TSS_ZONE
TSSZG_TSS_DEVICE_ID

TSSZG_GROUP_NUMBER

ZONE_NUMBER

DB_CODE

TSS_ZONE_GROUP
TSS_DEVICE_ID

GROUP_NUMBER

DIRECTION_CODE

DEFAULT_SPEED

DB_CODE

DESCRIPTION

DISPLAY_TYPE

DISPLAY_ORDER

OVERRIDE_DESCRIPTION

CHART R10 Detailed Design – Rev 3 2-20 08/14/2012

Figure 2-4 CHART R9S ERD

CENTER
CENTER_ID

CENTER_NAME

CREATED_TIMESTAMP

UPDATED_TIMESTAMP

DB_CODE

MG_DEFAULT_MONITOR_GROUP_ID

CENTER_OWNING_ORGANIZATION

MAX_VIDEO_SESSIONS

V1500CDU
OBJECTID

PROCESSOR_NAME

V1500HOST
OBJECTID

CDUOBJECTID

SLOT

PORT

HOSTNUMBER

V1500KEYPAD
OBJECTID

CDUOBJECTID

SLOT

PORT

KEYPADADDRESS

VIDEO_FABRIC
DEVICE_ID

ORG_ORGANIZATION_ID

TRANSMISSION_MEDIUM

DEVICE_NAME

VIDEO_SESSION
SESSION_ID

USER_NAME

CENTER_ID

CENTER_NAME

CREATED_TIMESTAMP

UPDATED_TIMESTAMP

USER_HOST

USER_IP

CLIENT_APP_HOST

CLIENT_INSTANCE_ID

CAMERA_ID

TOUR_ID

SUBJECT_DESC

VIDEO_SWITCH
DEVICE_ID

ORG_ORGANIZATION_ID

FABRIC_ID

MODEL

IN_PORTS

OUT_PORTS

DEVICE_NAME

VIDEO_SWITCH_CONNECTION
CONNECTION_ID

VS_DEVICE_ID

VIDEO_SWITCH_PORT

VIDEO_SWITCH_STATUS
VIDEO_SWITCH_DEVICE_ID

COMM_MODE

OP_STATUS

WEATHER
EVENT_EVENT_ID

WEATHER_CODE

CREATED_TIMESTAMP

DB_CODE

CHART R10 Detailed Design – Rev 3 2-21 08/14/2012

2.4.1.1.2.2 CHART Archive Database Entity Relationship Diagram (ERD)

CHART Archive Database entity relationship diagrams are shown below in the multiple pages of

figures labeled collectively as one Figure. These diagrams represent the archive database design

prior to R10 and the Table Definition Report sections that follow describe the changes that will

be made for R10.

CHART R10 Detailed Design – Rev 3 2-22 08/14/2012

$SSMA_seq_TSS_DEVICE_SEQ

id

ALERT
ALERT_ID

DESCRIPTION

ALERT_TYPE

ALERT_STATE

CREATION_TIME

RESPONSIBLE_USER

RESPONSIBLE_CENTER_ID

RESPONSIBLE_CENTER_NAME

NEXT_ACTION_TIME

LAST_STATE_CHANGE_TIME

PREV_ESCALATION_RESET_TIME

DETAIL_ID1

DETAIL_ID2

DETAIL_TEXT1

OFFLINE_INDICATOR

DB_CODE

ARCHIVED_DATE

DETAIL_TEXT2

DETAIL_TEXT3

ALERT_AMG
AL_ALERT_ID

ALERT_AMG_LIST_TYPE

HIST_RECORD_INDEX

SORT_ORDER_NUM

AMG_TYPE

AMG_ID

AMG_NAME

DB_CODE

ARCHIVED_DATE

ALERT_HISTORY
AL_ALERT_ID

RECORD_INDEX

CHART_TIMESTAMP

ALERT_STATE

ALERT_ACTION

CENTER_ID

USER_NAME

USER_COMMENT

NEXT_ACTION_TIME

DB_CODE

ARCHIVED_DATE
ASSOCIATED_EVENT

EVENT_EVENT_ID_ASSOC_TO

EVENT_EVENT_ID

CREATED_TIMESTAMP

DB_CODE

CENTER
CENTER_ID

CENTER_NAME

CREATED_TIMESTAMP

UPDATED_TIMESTAMP

DB_CODE

MG_DEFAULT_MONITOR_GROUP_ID

CENTER_OWNING_ORGANIZATION

CENTER_HISTORY
CEN_CENTER_ID

PREVIOUS_CENTER_NAME

FIRST_USED_TIMESTAMP

LAST_USED_TIMESTAMP

DELETED_INDICATOR

DB_CODE

CHART_ACTION
EVENT_EVENT_ID

ACTION_EVENT_CODE

CREATED_TIMESTAMP

DB_CODE

DESCRIPTION

CODE_LIST
CODE_TYPE_NAME

CREATED_TIMESTAMP

UPDATED_TIMESTAMP

DB_CODE

CODE_LIST_ITEM
CDL_CODE_TYPE_NAME

TYPE_CODE

TYPE_NAME

ACTIVE_INDICATOR

SORT_ORDER_NUMBER

CREATED_TIMESTAMP

UPDATED_TIMESTAMP

DB_CODE

COMMUNICATIONS_FAILURE_LOG
PORT_MANAGER_NAME

PORT_TYPE

PORT_NAME

FAILURE_CODE

MODEM_RESPONSE_CODE

SYSTEM_TIMESTAMP

LOG_TEXT

DB_CODE

COMMUNICATIONS_LOG
LOG_ENTRY_ID

EVENT_EVENT_ID

DB_CODE

SYSTEM_TIMESTAMP

USER_TIMESTAMP

SOURCE_CODE

AUTHOR

CEN_CENTER_ID

CENTER_NAME

HOST_NAME

UPDATED_TIMESTAMP

LOG_SEQ

SOURCE_DESCRIPTION

LOG_TEXT

MESSAGE_TYPE

DATABASE_LIST
DB_CODE

DATABASE_NAME

LAST_ARCHIVED_DATE

MESSAGE_LEVEL

LAST_ARCHIVED_PURGED_DATE

TSS_ARCHIVED_DATE

DEVICE
DEVICE_ID

DEVICE_CODE

DEVICE_NAME

CREATED_TIMESTAMP

UPDATED_TIMESTAMP

DELETED_TIMESTAMP

DB_CODE

TRAVEL_TIME_QUEUE_LEVEL

TOLL_RATE_QUEUE_LEVEL

OVERRIDE_SCHEDULE_IND

ENABLED_SPECIFIC_TIMES_IND

DICTIONARY_WORD
CD_DICTIONARY_ID

DICTIONARY_WORD

DEVICE_APPLICABILITY

APPROVED_CODE

DB_CODE

DISABLED_VEHICLE_INDICATOR
EVENT_EVENT_ID

DISABLED_VEHICLE_INDICATOR_COD

DB_CODE

CREATED_TIMESTAMP

DMS_RELATED_ROUTE
DMS_DEVICE_ID

TRAVEL_ROUTE_ID

DB_CODE

ARCHIVED_DATE

DMS_TRAV_ROUTE_MSG
DMS_DEVICE_ID

MSG_ID

TEMPLATE_ID

AUTO_ROW_POSITIONING_IND

DB_CODE

ARCHIVED_DATE

DMS_TRAV_ROUTE_MSG_CONFIG_LOG
SYSTEM_TIMESTAMP

DMS_DEVICE_ID

DEVICE_NAME

SCHEDULE_CONFIG_FLAG

DB_CODE

ARCHIVED_DATE

HOURS_BREFORE_ARCHIVED_LIVE

GET_ROWID

DMS_TRAV_ROUTE_MSG_MSGS_LOG
SYSTEM_TIMESTAMP

MSGS_LOG_SEQUENCE

DMS_DEVICE_ID

DMS_TRAV_ROUTE_MSG_ID

DMS_TRAV_ROUTE_MSG_TEMPLATE_ID

DB_CODE

ARCHIVED_DATE

HOURS_BREFORE_ARCHIVED_LIVE

GET_ROWID

DMS_TRAV_ROUTE_MSG_ROUTE
DTRM_MSG_ID

TRAVEL_ROUTE_ID

SORT_ORDER_NUM

DB_CODE

ARCHIVED_DATE

DMS_TRAV_ROUTE_MSG_ROUTES_LOG
SYSTEM_TIMESTAMP

DMS_DEVICE_ID

DMS_TRAV_ROUTE_MSG_ID

TRAV_ROUTE_ID

DB_CODE

ARCHIVED_DATE

HOURS_BREFORE_ARCHIVED_LIVE

GET_ROWID

DMS_TRAV_ROUTE_MSG_STATUS_LOG
SYSTEM_TIMESTAMP

DMS_DEVICE_ID

DEVICE_NAME

COMMUNICATION_MODE

OPERATIONAL_STATUS

SCHEDULE_ENABLED_INDICATOR

ENABLED_DMS_TRAV_ROUTE_MSG_ID

DMS_MESSAGE

DMS_TRAV_ROUTE_MSG_STATE

DMS_TRAV_ROUTE_MSG_REASON

DB_CODE

ARCHIVED_DATE

HOURS_BREFORE_ARCHIVED_LIVE

GET_ROWID

STAT_LOG_SEQUENCE

DMS_TRAV_TIME_SCHEDULE
DMS_DEVICE_ID

START_HOUR

START_MIN

END_HOUR

END_MIN

DB_CODE

ARCHIVED_DATE

EVENT
EVENT_ID

LANE_CONFIG_ID

DB_CODE

EVENT_CODE

EORS_TRACKING_NUMBER

CEN_CENTER_ID

CEN_ORIGINATING_CENTER_ID

PRIMARY_FLAG

LICENSE_PLATE_INFO

VEHICLE_INFO

OFFLINE_IND

MAX_QUEUE_LENGTH

EVENT_STATUS_CODE

SCENE_CLEARED_TIMESTAMP

DELAY_CLEARED_TIMESTAMP

CONFIRMED_TIMESTAMP

FALSE_ALARM_IND

EVENT_CLOSED_DATE

EVENT_OPEN_DATE

SOURCE_CODE

HAZMAT_CODE

INCIDENT_CODE

WEATHER_CLEANUP_INDICATOR

WEATHER_EVACUATION_INDICATOR

PAVEMENT_CONDITION_CODE

UPDATED_TIMESTAMP

OTHER_DESCRIPTION

DESCRIPTION

SOURCE_DESCRIPTION

LANE_STATE_DESCRIPTION

EVENT_STILL_OPEN_REMINDER_TIME

DISPLAY_WEBSITE_ALERT

WEBSITE_ALERT_TEXT

DESCRIPTION_OVERRIDDEN

AUX_DESCRIPTION

EVENT_INIT_USER_NAME

EVENT_INIT_CENTER_ID

EVENT_INIT_SCHEDULE_ID

EVENT_INIT_EXT_SYSTEM

EVENT_INIT_EXT_AGENCY

EVENT_INIT_EXT_EVENT

EVENT_STILL_OPEN_REL_REM_TIME

PENDING_EVENT_CREATION_TIME

PENDING_EVENT_LAST_USED_TIME

EXTERNAL_EVENT_IND

EXTERNAL_INTERESTING_IND

PUBLIC_DESCRIPTION

OWNING_ORGANIZATION

PUBLIC_INCIDENT_CODE

PRIORITY_LIST_ORDER

EST_TIME_TO_CLEAR_MINS

OP_CENTER_POC

ON_SCENE_POC

COMMENTS

REGIONAL_FLAG

WEATHER_INFO_JSON

CHART R10 Detailed Design – Rev 3 2-23 08/14/2012

EVENT
EVENT_ID

LANE_CONFIG_ID

DB_CODE

EVENT_CODE

EORS_TRACKING_NUMBER

CEN_CENTER_ID

CEN_ORIGINATING_CENTER_ID

PRIMARY_FLAG

LICENSE_PLATE_INFO

VEHICLE_INFO

OFFLINE_IND

MAX_QUEUE_LENGTH

EVENT_STATUS_CODE

SCENE_CLEARED_TIMESTAMP

DELAY_CLEARED_TIMESTAMP

CONFIRMED_TIMESTAMP

FALSE_ALARM_IND

EVENT_CLOSED_DATE

EVENT_OPEN_DATE

SOURCE_CODE

HAZMAT_CODE

INCIDENT_CODE

WEATHER_CLEANUP_INDICATOR

WEATHER_EVACUATION_INDICATOR

PAVEMENT_CONDITION_CODE

UPDATED_TIMESTAMP

OTHER_DESCRIPTION

DESCRIPTION

SOURCE_DESCRIPTION

LANE_STATE_DESCRIPTION

EVENT_STILL_OPEN_REMINDER_TIME

DISPLAY_WEBSITE_ALERT

WEBSITE_ALERT_TEXT

DESCRIPTION_OVERRIDDEN

AUX_DESCRIPTION

EVENT_INIT_USER_NAME

EVENT_INIT_CENTER_ID

EVENT_INIT_SCHEDULE_ID

EVENT_INIT_EXT_SYSTEM

EVENT_INIT_EXT_AGENCY

EVENT_INIT_EXT_EVENT

EVENT_STILL_OPEN_REL_REM_TIME

PENDING_EVENT_CREATION_TIME

PENDING_EVENT_LAST_USED_TIME

EXTERNAL_EVENT_IND

EXTERNAL_INTERESTING_IND

PUBLIC_DESCRIPTION

OWNING_ORGANIZATION

PUBLIC_INCIDENT_CODE

PRIORITY_LIST_ORDER

EST_TIME_TO_CLEAR_MINS

OP_CENTER_POC

ON_SCENE_POC

COMMENTS

REGIONAL_FLAG

WEATHER_INFO_JSON

EVENT_EXTERNAL_BACK
EVENT_ID

LANE_CONFIG_ID

DB_CODE

EVENT_CODE

EORS_TRACKING_NUMBER

CEN_CENTER_ID

CEN_ORIGINATING_CENTER_ID

COUNTY_CODE

PRIMARY_FLAG

LICENSE_PLATE_INFO

VEHICLE_INFO

OFFLINE_IND

MAX_QUEUE_LENGTH

EVENT_STATUS_CODE

DIRECTION_CODE

SCENE_CLEARED_TIMESTAMP

DELAY_CLEARED_TIMESTAMP

CONFIRMED_TIMESTAMP

FALSE_ALARM_IND

EVENT_CLOSED_DATE

EVENT_OPEN_DATE

SOURCE_CODE

HAZMAT_CODE

INCIDENT_CODE

WEATHER_CLEANUP_INDICATOR

WEATHER_EVACUATION_INDICATOR

PAVEMENT_CONDITION_CODE

UPDATED_TIMESTAMP

OTHER_DESCRIPTION

DESCRIPTION

SOURCE_DESCRIPTION

LOCATION_TEXT

LANE_STATE_DESCRIPTION

USPS_STATE_CODE

STATE_FIPS_CODE

STATE_FULL_NAME

REGION_NAME

COUNTY_NAME

COUNTY_FIPS_CODE

ROUTE_SPEC_TYPE

ROUTE_FREE_FORM_TEXT

ROUTE_TYPE

ROAD_NAME

ROUTE_PREFIX

ROUTE_NUMBER

ROUTE_SUFFIX

ROADWAY_LOC_ALIAS_PUB_NAME

ROADWAY_LOC_ALIAS_INT_NAME

INT_FEAT_TYPE

INT_FEAT_PROX_TYPE

INT_FEAT_PROX_DIST

INT_ROUTE_SPEC_TYPE

INT_ROUTE_FREE_FORM_TEXT

INT_ROUTE_TYPE

INT_ROAD_NAME

INT_ROUTE_PREFIX

INT_ROUTE_NUMBER

INT_ROUTE_SUFFIX

INT_FEAT_MILEPOST_TYPE

INT_FEAT_MILLI_MILEPOST_DATA

EVENT_STILL_OPEN_REMINDER_TIME

DISPLAY_WEBSITE_ALERT

WEBSITE_ALERT_TEXT

LOCATION_DESC_OVERRIDDEN

DESCRIPTION_OVERRIDDEN

AUX_DESCRIPTION

LATITUDE_UDEG

LONGITUDE_UDEG

GEOLOC_SOURCE_TYPE

GEOLOC_SOURCE_DESC

SHOW_ROUTE_NAME

SHOW_INT_ROUTE_NAME

EVENT_INIT_USER_NAME

EVENT_INIT_CENTER_ID

EVENT_INIT_SCHEDULE_ID

EVENT_INIT_EXT_SYSTEM

EVENT_INIT_EXT_AGENCY

EVENT_INIT_EXT_EVENT

EVENT_STILL_OPEN_REL_REM_TIME

PENDING_EVENT_CREATION_TIME

PENDING_EVENT_LAST_USED_TIME

EXTERNAL_EVENT_IND

EXTERNAL_INTERESTING_IND

PUBLIC_DESCRIPTION

OWNING_ORGANIZATION

PUBLIC_INCIDENT_CODE

EVENT_HISTORY
LOG_ENTRY_ID

EVENT_EVENT_ID

DB_CODE

SYSTEM_TIMESTAMP

USER_TIMESTAMP

SOURCE_CODE

CEN_CENTER_ID

CENTER_NAME

AUTHOR

HOST_NAME

ACTION_CODE

UPDATED_TIMESTAMP

DEVICE_ID

DEVICE_NAME

BEACON_STATE

LOG_SEQ

SOURCE_DESCRIPTION

LOG_TEXT

MESSAGE_TYPE

EVENT_RESOURCE
RESOURCE_ID

EVENT_EVENT_ID

DB_CODE

RT_RESOURCE_CODE

RT_RCT_RESOURCE_CATEGORY_CODE

OBJECT_TYPE_CODE

PARTICIPANT_NAME

NOTIFIED_TIMESTAMP

RESPONDED_TIMESTAMP

DEPARTURE_TIMESTAMP

CREATED_TIMESTAMP

UPDATED_TIMESTAMP

EVENT_VERSION
EVENT_EVENT_ID

VERSION

VERSION_START_DATE

VERSION_END_DATE

ARCHIVED_DATE

DB_CODE

EXTERNAL_EVENT_FILTER
RULE_ID

CHART_RULE

DB_CODE

ARCHIVED_DATE

EXTERNAL_OBJECT_EXCLUSION
EXCLUSION_ID

EXTERNAL_OBJECT_ID

EXTERNAL_OBJECT_TYPE

EXTERNAL_SYSTEM

EXTERNAL_AGENCY

DB_CODE

ARCHIVED_DATE

GA_LOCATION
OBJECT_ID

SERVER_NAME

DEVICE_TYPE

LOCATION_TEXT

LOCATION_DESC_OVERRIDDEN

COUNTY_NAME

COUNTY_FIPS_CODE

COUNTY_CODE

USPS_STATE_CODE

STATE_FULL_NAME

STATE_FIPS_CODE

REGION_NAME

ROUTE_SPEC_TYPE

ROUTE_FREE_FORM_TEXT

ROUTE_TYPE

ROUTE_PREFIX

ROUTE_NUMBER

ROUTE_SUFFIX

INT_FEAT_TYPE

INT_FEAT_PROX_TYPE

INT_FEAT_PROX_DIST

ROAD_NAME

INT_ROUTE_SPEC_TYPE

INT_ROUTE_FREE_FORM_TEXT

INT_ROUTE_TYPE

INT_ROAD_NAME

INT_ROUTE_PREFIX

INT_ROUTE_NUMBER

INT_ROUTE_SUFFIX

INT_FEAT_MILEPOST_TYPE

INT_FEAT_MILLI_MILEPOST_DATA

ROADWAY_LOC_ALIAS_PUB_NAME

ROADWAY_LOC_ALIAS_INT_NAME

LATITUDE_UDEG

LONGITUDE_UDEG

GEOLOC_SOURCE_TYPE

GEOLOC_SOURCE_DESC

SHOW_ROUTE_NAME

SHOW_INT_ROUTE_NAME

DIRECTION_CODE

OBJECT_TYPE

INCIDENT
EVENT_EVENT_ID

INCIDENT_CODE

CREATED_TIMESTAMP

DB_CODE

INCIDENT_VEHICLES_INVOLVED
VEHICLES_INVOLVED_PK

EVENT_EVENT_ID

VEHICLES_INVOLVED_CODE

VEHICLE_SUBCATEGORY_CODE

VEHICLE_QTY

CREATED_TIMESTAMP

DB_CODE

LANE_STATE
LANE_STATE_PK

LANE_CONFIG_ID

EVENT_EVENT_ID

LANE_NUMBER

LANE_DIR_TRAVEL_CODE

LANE_STATE_CODE

LANE_CODE

SYSTEM_TIMESTAMP

USER_TIMESTAMP

LANE_DESCRIPTION

DB_CODE

LANE_REFERENCE_DIRECTION

LANE_ORIENTATION

OLD_LANE_CODE

OLD_LANE_DIR_TRAVEL_CODE

R4_LANE_DIR_TRAVEL_CODE

R4_LANE_CODE

LINK_DATA_IMPORT
IMPORT_ID

SYSTEM_TIMESTAMP

EXT_SYS_NAME

DB_CODE

ARCHIVED_DATE

HOURS_BREFORE_ARCHIVE...

GET_ROWID
LINK_SMOOTHED_DATA

LINK_DATA_IMPORT_ID

EXT_LINK_ID

LINK_TRAVEL_TIME_EFF_TIME

LINK_TRAVEL_TIME_SECS

LINK_TRAVEL_TIME_QUAL

LINK_SPEED_MPH

DB_CODE

ARCHIVED_DATE

HOURS_BREFORE_ARCHIVED_LIVE

GET_ROWID

LINK_TRAVEL_TIME
RL_LINK_ID

LINK_TRAVEL_TIME_EFF_TIME

LINK_TRAVEL_TIME_SECS

LINK_TRAVEL_TIME_QUAL

LINK_TRAVEL_TIME_TREND

DB_CODE

ARCHIVED_DATE

HOURS_BREFORE_ARCHIVED_LIVE

GET_ROWID

NOTIFICATION_RECORD
NOTIF_ID

NOTIF_TYPE

NOTIF_RECORD_COUNT

NOTIF_MANAGER_ID

EVENT_FACTORY_ID

EVENT_ID

AUTHOR

NOTIF_OP_CENTER_ID

NOTIF_INIT_OP_CENTER_NAME

NOTIF_CREATE_DATE

NOTIF_MESSAGE

OFFLINE_IND

NOTIFICATION_REQUEST
NOTIF_ID

RECIPIENT_ID

RECIPIENT_NAME

TARGET_TYPE

NOTIFICATION_STATUS
NOTIF_ID

RECIPIENT_NAME

NOTIF_STATUS_TYPE

NOTIF_STATUS_TEXT

STATUS_CREATE_TIME

OBJECT_LOCATION
OBJECT_ID

LOCATION_TEXT

LOCATION_DESC_OVERRIDDEN

COUNTY_NAME

COUNTY_FIPS_CODE

COUNTY_CODE

USPS_STATE_CODE

STATE_FULL_NAME

STATE_FIPS_CODE

REGION_NAME

ROUTE_SPEC_TYPE

ROUTE_FREE_FORM_TEXT

ROUTE_TYPE

ROUTE_PREFIX

ROUTE_NUMBER

ROUTE_SUFFIX

INT_FEAT_TYPE

INT_FEAT_PROX_TYPE

ROAD_NAME

INT_ROUTE_SPEC_TYPE

INT_ROUTE_FREE_FORM_TEXT

INT_ROUTE_TYPE

INT_ROAD_NAME

INT_ROUTE_PREFIX

INT_ROUTE_NUMBER

INT_ROUTE_SUFFIX

INT_FEAT_MILEPOST_TYPE

INT_FEAT_MILLI_MILEPOST_DATA

ROADWAY_LOC_ALIAS_PUB_NAME

ROADWAY_LOC_ALIAS_INT_NAME

LATITUDE_UDEG

LONGITUDE_UDEG

GEOLOC_SOURCE_TYPE

GEOLOC_SOURCE_DESC

SHOW_ROUTE_NAME

SHOW_INT_ROUTE_NAME

DIRECTION_CODE

OBJECT_TYPE

INT_FEAT_EXIT_NUMBER

INT_FEAT_EXIT_SUFFIX

INT_FEAT_EXIT_ROAD_NAME

SEC_INT_FEAT_TYPE

SEC_INT_ROUTE_SPEC_TYPE

SEC_INT_ROUTE_FREE_FORM_TEXT

SEC_INT_ROUTE_TYPE

SEC_INT_ROAD_NAME

SEC_INT_ROUTE_PREFIX

SEC_INT_ROUTE_NUMBER

SEC_INT_ROUTE_SUFFIX

SEC_INT_FEAT_MILEPOST_TYPE

SEC_INT_FEAT_MILLI_MPOST_DATA

SEC_INT_FEAT_EXIT_NUMBER

SEC_INT_FEAT_EXIT_SUFFIX

SEC_INT_FEAT_EXIT_ROAD_NAME

SHOW_SEC_INT_ROUTE_NAME

OPERATIONS_LOG
SYSTEM_TIMESTAMP

ACTION_CODE

AUTHOR

DEVICE_NAME

CEN_CENTER_ID

HOST_NAME

LOG_TEXT

DB_CODE

DEVICE_NAME2

DEVICE_ID

DEVICE_ID2

PRONUNCIATIONS
CD_DICTIONARY_ID

PRONUNCIATION

DICTIONARY_WORD

APPROVED_CODE

RESOURCE_CATEGORY_TYPE
RESOURCE_CATEGORY_CODE

RESOURCE_CATEGORY_NAME

ACTIVE_INDICATOR

SORT_ORDER_NUMBER

CREATED_TIMESTAMP

UPDATED_TIMESTAMP

DB_CODE

RESOURCE_TYPE
RCT_RESOURCE_CATEGORY_CODE

RESOURCE_CODE

RESOURCE_NAME

ACTIVE_INDICATOR

SORT_ORDER_NUMBER

CREATED_TIMESTAMP

UPDATED_TIMESTAMP

DB_CODE

ROADWAY_LINK
LINK_ID

EXT_SYS_NAME

EXT_LINK_ID

LINK_NAME

USPS_STATE_CODE

STATE_FIPS_CODE

COUNTY_NAME

COUNTY_FIPS_CODE

ROUTE_SPEC_TYPE

ROUTE_FREE_FORM_TEXT

ROUTE_TYPE

ROUTE_PREFIX

ROUTE_NUMBER

ROUTE_SUFFIX

MILLI_MILES

START_LAT_UDEG

START_LONG_UDEG

END_LAT_UDEG

END_LONG_UDEG

ROAD_NAME

DIRECTION_CODE

DB_CODE

ARCHIVED_DATE

CHART R10 Detailed Design – Rev 3 2-24 08/14/2012

ROADWAY_LOCATION_COUNTY
NAME

CHART_MAPPING_CODE

FIPS_CODE

USPS_STATE_CODE

DESCRIPTION

ROADWAY_LOCATION_REGION
NAME

USPS_STATE_CODE

DESCRIPTION

ROADWAY_LOCATION_STATE
NAME

USPS_CODE

FIPS_CODE

DESCRIPTION

ROLE_ASSIGNMENT

UI_USER_NAME

ROUTE_TOLL_RATE
TR_ROUTE_ID

TOLL_RATE_EFF_TIME

TOLL_RATE_EXP_TIME

TOLL_RATE_CENTS

TOLL_RATE_REASON_CODE

TOLL_RATE_INAPPLICABLE_IND

DB_CODE

ARCHIVED_DATE

HOURS_BREFORE_ARCHIVED_LIVE

GET_ROWID

ROUTE_TRAVEL_TIME
TR_ROUTE_ID

ROUTE_TRAVEL_TIME_EFF_TIME

ROUTE_TRAVEL_TIME_SECS

ROUTE_TRAVEL_TIME_TREND

TRAVEL_TIME_INAPPLICABLE_IND

DB_CODE

ARCHIVED_DATE

HOURS_BREFORE_ARCHIVED_LIVE

GET_ROWID

ROUTE_ACT_TRAVEL_TIME_SECS

ROUTE_TRAVEL_TIME_TEXT
TR_ROUTE_ID

ROUTE_TRAVEL_TIME_EFF_TIME

ROUTE_TRAVEL_TIME_CALC

ROUTE_TRAVEL_TIME_REASON_CODE

DB_CODE

ARCHIVED_DATE

HOURS_BREFORE_ARCHIVED_LIVE

GET_ROWID

SYSTEM_PROFILE_HISTORY
CHART_KEY

CHART_VALUE

DB_CODE

SYSTEM_TIMESTAMP

ARCHIVED_DATE

TEMP_OPS_CENTER
CENTER_NAME

TARGET_SERVER

SOURCE_SERVER

CENTER_ID

SOURCE_SERVER_SID

TARGET_SERVER_SID

MOVING_STATUS

TOLL_RAW_DATA
TOLL_DATA_IMPORT_ID

EXT_SYS_START_ID

EXT_SYS_END_ID

EXT_SYS_ROUTE_DESC

TOLL_RATE_EFF_TIME

TOLL_RATE_EXP_TIME

TOLL_RATE_CENTS

DB_CODE

ARCHIVED_DATE

HOURS_BREFORE_ARCHIVED_LIVE

GET_ROWID

TOUR
TOUR_ID

TOUR_CONFIG_ID

TOUR_NAME

DWELL_TIME

CREATED_TIMESTAMP

DELETED_TIMESTAMP

DB_CODE

CATEGORY

TOUR_ENTRY
TOUR_CONFIG_ID

CAMERA_DEVICE_ID

PRESET

SEQ_NUM

CREATED_TIMESTAMP

DELETED_TIMESTAMP

DB_CODE

TOUR_TEMP

TOUR_ID

TOUR_CONFIG_ID

TRAVEL_ROUTE
ROUTE_ID

NAME

MILLI_MILES

USER_LOCATION_IND

PRIMARY_DEST_TEXT

TRAVEL_TIME_ENABLED_IND

MIN_TRAVEL_TIME_MINS

MAX_TRAVEL_TIME_MINS

MAX_BAD_LINKS

ALERT_TRAVEL_TIME_MINS

TRAV_TIME_ALERTS_ENABLED_IND

TRAV_TIME_ALERT_OP_CENTER

TRAV_TIME_NOTIFS_ENABLED_IND

TRAV_TIME_NOTIF_RECIPIENT

TOLL_RATE_ENABLED_IND

TOLL_RATE_EXT_SYS_NAME

TOLL_RATE_EXT_START_ID

TOLL_RATE_EXT_END_ID

TOLL_RATE_EXT_DESC

TOLL_RATE_ALERTS_ENABLED_IND

TOLL_RATE_ALERT_OP_CENTER

TOLL_RATE_NOTIFS_ENABLED_IND

TOLL_RATE_NOTIF_RECIPIENT

DB_CODE

ARCHIVED_DATE

TRAVEL_ROUTE_CONSUMER
TR_ROUTE_ID

SORT_ORDER_NUMBER

CONSUMER_ID

PROXY_CONSUMER_ID

DB_CODE

ARCHIVED_DATE

TRAVEL_ROUTE_DEST
TR_ROUTE_ID

SORT_ORDER_NUMBER

ALT_DEST_TEXT

DB_CODE

ARCHIVED_DATE

TRAVEL_ROUTE_LINK
TR_ROUTE_ID

SORT_ORDER_NUMBER

RL_LINK_ID

CHART_PERCENT

MIN_ALLOWED_QUALITY

DB_CODE

ARCHIVED_DATE

TRAVEL_ROUTE_LOCATION
TR_ROUTE_ID

SORT_ORDER_NUMBER

COUNTY_NAME

COUNTY_FIPS_CODE

COUNTY_CODE

DIRECTION_CODE

USPS_STATE_CODE

STATE_FULL_NAME

STATE_FIPS_CODE

ROUTE_SPEC_TYPE

ROUTE_FREE_FORM_TEXT

ROUTE_TYPE

ROUTE_PREFIX

ROUTE_NUMBER

ROUTE_SUFFIX

ROAD_NAME

DB_CODE

ARCHIVED_DATE

TSS
DEVICE_ID

TSS_MODEL_ID

ORG_ORGANIZATION_ID

DB_CODE

DEVICE_NAME

DEVICE_LOCATION

DROP_ADDRESS

DEFAULT_PHONE_NUMBER

POLL_INTERVAL_SECS

PORT_TYPE

PORT_MANAGER_TIMEOUT

BAUD_RATE

DATA_BITS

FLOW_CONTROL

PARITY

STOP_BITS

ENABLE_DEVICE_LOG

CREATED_TIMESTAMP

UPDATED_TIMESTAMP

CEN_ALERT_CENTER_ID

EXT_ID_SYSTEM_ID

EXT_ID_AGENCY_ID

EXT_ID_TSS_ID

TCP_HOST

TCP_PORT

MAINT_ORGANIZATION_ID

DISPLAY_BEARING

TSS_PROTOCOL_ID

ENABLE_SCHEDULED_BIT

ARCHIVED_DATE

TSS_DEVICE
TSS_PK

DEVICE_ID

DEVICE_NAME

DEVICE_LOCATION

CREATED_TIMESTAMP

UPDATED_TIMESTAMP

DELETED_TIMESTAMP

DB_CODE

TCP_HOST

TCP_PORT

TSS_MODEL_ID

ORG_ORGANIZATION_ID

DROP_ADDRESS

INITIAL_RESPONSE_TIMEOUT

DEFAULT_PHONE_NUMBER

POLL_INTERVAL_SECS

PORT_TYPE

PORT_MANAGER_TIMEOUT

BAUD_RATE

DATA_BITS

FLOW_CONTROL

PARITY

STOP_BITS

ENABLE_DEVICE_LOG

CEN_ALERT_CENTER_ID

EXT_ID_SYSTEM_ID

EXT_ID_AGENCY_ID

EXT_ID_TSS_ID

MAINT_ORGANIZATION_ID

DISPLAY_BEARING

TSS_PHONE_NUMBER
TSS_DEVICE_ID

PORT_MANAGER_NAME

PHONE_NUMBER

SORT_ORDER_NUMBER

DB_CODE

TSS_STATUS
TSS_DEVICE_ID

DEVICE_STATE_CODE

COMM_STATUS

LAST_CONTACT_TIME

TSS_HARDWARE_STATUS

HARDWARE_STATUS_TIMESTAMP

HARDWARE_FAILURE_TIMESTAMP

TSS_ZONE
TSSZG_TSS_DEVICE_ID

TSSZG_GROUP_NUMBER

ZONE_NUMBER

DB_CODE

TSS_ZONE_GROUP
TSS_DEVICE_ID

GROUP_NUMBER

DIRECTION_CODE

DEFAULT_SPEED

DB_CODE

DESCRIPTION

DISPLAY_TYPE

DISPLAY_ORDER

CHART R10 Detailed Design – Rev 3 2-25 08/14/2012

Figure 2-5 CHART R9S Archive Database ERD

EVENT
EVENT_ID

LANE_CONFIG_ID

DB_CODE

EVENT_CODE

EORS_TRACKING_NUMBER

CEN_CENTER_ID

CEN_ORIGINATING_CENTER_ID

PRIMARY_FLAG

LICENSE_PLATE_INFO

VEHICLE_INFO

OFFLINE_IND

MAX_QUEUE_LENGTH

EVENT_STATUS_CODE

SCENE_CLEARED_TIMESTAMP

DELAY_CLEARED_TIMESTAMP

CONFIRMED_TIMESTAMP

FALSE_ALARM_IND

EVENT_CLOSED_DATE

EVENT_OPEN_DATE

SOURCE_CODE

HAZMAT_CODE

INCIDENT_CODE

WEATHER_CLEANUP_INDICATOR

WEATHER_EVACUATION_INDICATOR

PAVEMENT_CONDITION_CODE

UPDATED_TIMESTAMP

OTHER_DESCRIPTION

DESCRIPTION

SOURCE_DESCRIPTION

LANE_STATE_DESCRIPTION

EVENT_STILL_OPEN_REMINDER_TIME

DISPLAY_WEBSITE_ALERT

WEBSITE_ALERT_TEXT

DESCRIPTION_OVERRIDDEN

AUX_DESCRIPTION

EVENT_INIT_USER_NAME

EVENT_INIT_CENTER_ID

EVENT_INIT_SCHEDULE_ID

EVENT_INIT_EXT_SYSTEM

EVENT_INIT_EXT_AGENCY

EVENT_INIT_EXT_EVENT

EVENT_STILL_OPEN_REL_REM_TIME

PENDING_EVENT_CREATION_TIME

PENDING_EVENT_LAST_USED_TIME

EXTERNAL_EVENT_IND

EXTERNAL_INTERESTING_IND

PUBLIC_DESCRIPTION

OWNING_ORGANIZATION

PUBLIC_INCIDENT_CODE

PRIORITY_LIST_ORDER

EST_TIME_TO_CLEAR_MINS

OP_CENTER_POC

ON_SCENE_POC

COMMENTS

REGIONAL_FLAG

WEATHER_INFO_JSON

RESOURCE_CATEGORY_TYPE
RESOURCE_CATEGORY_CODE

RESOURCE_CATEGORY_NAME

ACTIVE_INDICATOR

SORT_ORDER_NUMBER

CREATED_TIMESTAMP

UPDATED_TIMESTAMP

DB_CODE

RESOURCE_TYPE
RCT_RESOURCE_CATEGORY_CODE

RESOURCE_CODE

RESOURCE_NAME

ACTIVE_INDICATOR

SORT_ORDER_NUMBER

CREATED_TIMESTAMP

UPDATED_TIMESTAMP

DB_CODE

WEATHER
EVENT_EVENT_ID

WEATHER_CODE

CREATED_TIMESTAMP

DB_CODE

X_ACTION
EVENT_EVENT_ID

ACTION_EVENT_CODE

CREATED_TIMESTAMP

DB_CODE

DESCRIPTION
X_ASSOCIATED_EVENT

EVENT_EVENT_ID_ASSOC_TO

EVENT_EVENT_ID

CREATED_TIMESTAMP

DB_CODE

X_COMMUNICATIONS_LOG
LOG_ENTRY_ID

EVENT_EVENT_ID

DB_CODE

SYSTEM_TIMESTAMP

USER_TIMESTAMP

SOURCE_CODE

AUTHOR

CEN_CENTER_ID

CENTER_NAME

HOST_NAME

UPDATED_TIMESTAMP

LOG_SEQ

SOURCE_DESCRIPTION

LOG_TEXT

MESSAGE_TYPE

X_DISABLED_VEHICLE_INDICATOR
EVENT_EVENT_ID

DISABLED_VEHICLE_INDICATOR_COD

DB_CODE

CREATED_TIMESTAMP

X_EVENT
EVENT_ID

LANE_CONFIG_ID

DB_CODE

EVENT_CODE

EORS_TRACKING_NUMBER

CEN_CENTER_ID

CEN_ORIGINATING_CENTER_ID

PRIMARY_FLAG

LICENSE_PLATE_INFO

VEHICLE_INFO

OFFLINE_IND

MAX_QUEUE_LENGTH

EVENT_STATUS_CODE

SCENE_CLEARED_TIMESTAMP

DELAY_CLEARED_TIMESTAMP

CONFIRMED_TIMESTAMP

FALSE_ALARM_IND

EVENT_CLOSED_DATE

EVENT_OPEN_DATE

SOURCE_CODE

HAZMAT_CODE

INCIDENT_CODE

WEATHER_CLEANUP_INDICATOR

WEATHER_EVACUATION_INDICATOR

PAVEMENT_CONDITION_CODE

UPDATED_TIMESTAMP

OTHER_DESCRIPTION

DESCRIPTION

SOURCE_DESCRIPTION

LANE_STATE_DESCRIPTION

EVENT_STILL_OPEN_REMINDER_TIME

DISPLAY_WEBSITE_ALERT

WEBSITE_ALERT_TEXT

DESCRIPTION_OVERRIDDEN

AUX_DESCRIPTION

EVENT_INIT_USER_NAME

EVENT_INIT_CENTER_ID

EVENT_INIT_SCHEDULE_ID

EVENT_INIT_EXT_SYSTEM

EVENT_INIT_EXT_AGENCY

EVENT_INIT_EXT_EVENT

EVENT_STILL_OPEN_REL_REM_TIME

PENDING_EVENT_CREATION_TIME

PENDING_EVENT_LAST_USED_TIME

EXTERNAL_EVENT_IND

EXTERNAL_INTERESTING_IND

PUBLIC_DESCRIPTION

OWNING_ORGANIZATION

PUBLIC_INCIDENT_CODE

REGIONAL_FLAG

PRIORITY_LIST_ORDER

EST_TIME_TO_CLEAR_MINS

OP_CENTER_POC

ON_SCENE_POC

COMMENTS

WEATHER_INFO_JSON

X_EVENT_HISTORY
LOG_ENTRY_ID

EVENT_EVENT_ID

DB_CODE

SYSTEM_TIMESTAMP

USER_TIMESTAMP

SOURCE_CODE

CEN_CENTER_ID

CENTER_NAME

AUTHOR

HOST_NAME

ACTION_CODE

UPDATED_TIMESTAMP

DEVICE_ID

DEVICE_NAME

BEACON_STATE

LOG_SEQ

SOURCE_DESCRIPTION

LOG_TEXT

MESSAGE_TYPE

X_EVENT_RESOURCE
RESOURCE_ID

EVENT_EVENT_ID

DB_CODE

RT_RESOURCE_CODE

RT_RCT_RESOURCE_CATEGORY_CODE

OBJECT_TYPE_CODE

PARTICIPANT_NAME

NOTIFIED_TIMESTAMP

RESPONDED_TIMESTAMP

DEPARTURE_TIMESTAMP

CREATED_TIMESTAMP

UPDATED_TIMESTAMP

X_EVENT_VERSION
EVENT_EVENT_ID

VERSION

VERSION_START_DATE

VERSION_END_DATE

ARCHIVED_DATE

DB_CODE

X_INCIDENT
EVENT_EVENT_ID

INCIDENT_CODE

CREATED_TIMESTAMP

DB_CODE

X_INCIDENT_VEHICLES_INVOLVED
VEHICLES_INVOLVED_PK

EVENT_EVENT_ID

VEHICLES_INVOLVED_CODE

VEHICLE_SUBCATEGORY_CODE

VEHICLE_QTY

CREATED_TIMESTAMP

DB_CODE

X_LANE_STATE
LANE_STATE_PK

LANE_CONFIG_ID

EVENT_EVENT_ID

LANE_NUMBER

LANE_DIR_TRAVEL_CODE

LANE_STATE_CODE

LANE_CODE

SYSTEM_TIMESTAMP

USER_TIMESTAMP

LANE_DESCRIPTION

DB_CODE

LANE_REFERENCE_DIRECTION

LANE_ORIENTATION

OLD_LANE_CODE

OLD_LANE_DIR_TRAVEL_CODE

R4_LANE_DIR_TRAVEL_CODE

R4_LANE_CODE

X_OBJECT_LOCATION
OBJECT_ID

LOCATION_TEXT

LOCATION_DESC_OVERRIDDEN

COUNTY_NAME

COUNTY_FIPS_CODE

COUNTY_CODE

USPS_STATE_CODE

STATE_FULL_NAME

STATE_FIPS_CODE

REGION_NAME

ROUTE_SPEC_TYPE

ROUTE_FREE_FORM_TEXT

ROUTE_TYPE

ROUTE_PREFIX

ROUTE_NUMBER

ROUTE_SUFFIX

INT_FEAT_TYPE

INT_FEAT_PROX_TYPE

ROAD_NAME

INT_ROUTE_SPEC_TYPE

INT_ROUTE_FREE_FORM_TEXT

INT_ROUTE_TYPE

INT_ROAD_NAME

INT_ROUTE_PREFIX

INT_ROUTE_NUMBER

INT_ROUTE_SUFFIX

INT_FEAT_MILEPOST_TYPE

INT_FEAT_MILLI_MILEPOST_DATA

ROADWAY_LOC_ALIAS_PUB_NAME

ROADWAY_LOC_ALIAS_INT_NAME

LATITUDE_UDEG

LONGITUDE_UDEG

GEOLOC_SOURCE_TYPE

GEOLOC_SOURCE_DESC

SHOW_ROUTE_NAME

SHOW_INT_ROUTE_NAME

DIRECTION_CODE

OBJECT_TYPE

INT_FEAT_EXIT_NUMBER

INT_FEAT_EXIT_SUFFIX

INT_FEAT_EXIT_ROAD_NAME

SEC_INT_FEAT_TYPE

SEC_INT_ROUTE_SPEC_TYPE

SEC_INT_ROUTE_FREE_FORM_TEXT

SEC_INT_ROUTE_TYPE

SEC_INT_ROAD_NAME

SEC_INT_ROUTE_PREFIX

SEC_INT_ROUTE_NUMBER

SEC_INT_ROUTE_SUFFIX

SEC_INT_FEAT_MILEPOST_TYPE

SEC_INT_FEAT_MILLI_MPOST_DATA

SEC_INT_FEAT_EXIT_NUMBER

SEC_INT_FEAT_EXIT_SUFFIX

SEC_INT_FEAT_EXIT_ROAD_NAME

SHOW_SEC_INT_ROUTE_NAME

X_WEATHER
EVENT_EVENT_ID

WEATHER_CODE

CREATED_TIMESTAMP

DB_CODE

CHART R10 Detailed Design – Rev 3 2-26 08/14/2012

2.4.1.1.2.3 Function to Entity Matrix Report

The Create, Retrieve, Update, Delete (CRUD) matrix cross-references business functions to

entities and shows the use of the entities by those functions. This report will be generated as part

of the CHART O&M Guide.

2.4.1.1.2.4 Table Definition Report –

In tables shown below:

 Deleted columns/constraints marked with a minus sign (“-”)

 Modified columns/constraints marked with an asterisk (“*”)

 New columns/constraints marked with a plus sign (“+”)

2.4.1.1.2.4.1 Tables Modified for the DMS Fonts Feature

2.4.1.1.2.4.1.1 CHART DB

The R10 DMS Show True Font feature requires three new tables, the removal of the FONT table,

and the modification of the DMS table. These tables define the display configuration for all

DMSs in the system including their font usage.

DMS_DISPLAY_CONF Table (New):

Rights: The DMSSERVICE user requires full C/R/U/D rights for this table.

This new table stores everything a DMS or a presentation layer might need to render a graphical

representation of a message on a character matrix, line matrix, or full matrix DMS. Each DMS

references exactly one DMS Display Configuration. SOURCE_TYPE identifies how this

Display Configuration was created; current values are USER and SYSTEM. A Display

Configuration with a VMS_CHARACTER_WIDTH_PIXELS of 0 is a line-matrix sign. A

Display Configuration with both VMS_CHARACTER_WIDTH_PIXELS and

VMS_CHARACTER_HEIGHT_PIXELS equal to 0 is a full matrix sign.

DMS_DISPLAY_CONF Columns:

+DMS_DISPLAY_CONF_ID CHAR(32) NOT NULL

+DMS_DISPLAY_CONF_NAME VARCHAR(120) NOT NULL

+SOURCE_TYPE NUMERIC(1) NOT NULL

+VMS_SIGN_HEIGHT_PIXELS NUMERIC(5) NOT NULL

+VMS_SIGN_WIDTH_PIXELS NUMERIC(5) NOT NULL

+VMS_CHARACTER_HEIGHT_PIXELS NUMERIC(5) NOT NULL

+VMS_CHARACTER_WIDTH_PIXELS NUMERIC(5) NOT NULL

+DEFAULT_JUSTIFICATION_LINE NUMERIC(3) NOT NULL

+DEFAULT_JUSTIFICATION_PAGE NUMERIC(1) NOT NULL

+DEFAULT_PAGE_ON_TIME_TENTHS NUMERIC(3) NOT NULL

+DEFAULT_PAGE_OFF_TIME_TENTHS NUMERIC(3) NOT NULL

+HAS_BEACONS NUMERIC(1) NOT NULL

+MAX_ROWS_PER_PAGE_ALLOWED NUMERICS(1) NOT NULL

+MAX_CHARACTERS_PER_ROW_ALLOWED NUMERICS(3) NOT NULL

CHART R10 Detailed Design – Rev 3 2-27 08/14/2012

+MAX_PAGES_ALLOWED NUMERICS(1) NOT NULL

PRIMARY KEY: DMS_DISPLAY_CONF_ID

DMS_DISPLAY_CONF_FONT Table (New):

Rights: The DMSSERVICE user requires full C/R/U/D rights for this table.

This table holds all fonts associated with DMS display configurations. The font number

represents a specific intention for each font within the indicated display configuration. For

example, a font number of 0 is expected to identify the default font. For R10 there will only be

one font per display configuration however that is expected to grow as other purposes are

identified (e.g. DEFAULT, NARROW, WIDE, BOLD, MONO-SPACED).

DEFAULT_CHAR_SPACING_PIXELS and DEFAULT_LINE_SPACING_PIXELS are

defined by the original font. CHAR_SPACING_PIXELS and LINE_SPACING_PIXELS are

initially assigned to the font’s default values when a font is imported however they can be

overridden by the user. The primary key on this table is (DDC_DISPLAY_CONF_ID,

FONT_NUMBER) to allow multiple fonts to be defined for a given display configuration in the

future.

DMS_DISPLAY_CONF_FONT Columns:

+DDC_DISPLAY_CONF_ID CHAR(32) NOT NULL

+FONT_NUMBER NUMERIC(1) NOT NULL

+CHAR_SPACING_PIXELS NUMERIC(5) NOT NULL

+LINE_SPACING_PIXELS NUMERIC(5) NOT NULL

+NAME VARCHAR(50) NOT NULL

+HEIGHT_PIXELS NUMERIC(5) NOT NULL

+DEFAULT_CHAR_SPACING_PIXELS NUMERIC(5) NOT NULL

+DEFAULT_LINE_SPACING_PIXELS NUMERIC(5) NOT NULL

PRIMARY KEY: DDC_DISPLAY_CONF_ID, FONT_NUMBER

DDCF_FONT_CHAR table (New):

Rights: The DMSSERVICE user requires full C/R/U/D rights for this table.

This table replaces the pre-R10 FONT table and stores the character details for the indicated font.

To visually build a given CHARACTER, convert the hex digits in BITMAP into a binary string

then divide it into HEIGHT_PIXELS chunks of bits each WIDTH_PIXELS bits wide. The first

chunk is the top of the character; the last chunk is the bottom of the character.

HEIGHT_PIXELS is found in the DMS_DISPLAY_CONF_FONT table and is the same for all

characters in a font. It is possible this table contains the same font multiple times however the

primary key (DDC_DISPLAY_CONF_ID, FONT_NUMBER, CHARACTER) precludes

confusion.

DDCF_FONT_CHAR Columns:

+DDC_DISPLAY_CONF_ID CHAR(32) NOT NULL

CHART R10 Detailed Design – Rev 3 2-28 08/14/2012

+FONT_NUMBER NUMERIC(1) NOT NULL

+CHARACTER CHAR(1) NOT NULL

+WIDTH_PIXELS NUMERIC(2) NOT NULL

+BITMAP VARCHAR(4000) NOT NULL

PRIMARY KEY: DDC_DISPLAY_CONF_ID,FONT_NUMBER, CHARACTER

DMS Table (Changed):

Rights: Existing table. Rights remain the same.

For R10 display configuration fields are being moved from the DMS table into the

DMS_DISPLAY_CONF table to make it easier for the administrator to manage common DMS

configurations. The following fields will be removed from the DMS table:

Removed DMS Columns:

-DEFAULT_JUSTIFICATION_LINE NUMERIC(3) NOT NULL

-DEFAULT_PAGE_OFF_TIME NUMERIC(3) NOT NULL

-DEFAULT_PAGE_ON_TIME NUMERIC(3) NOT NULL

-VMS_CHARACTER_HEIGHT_PIXELS NUMERIC(3) NOT NULL

-VMS_CHARACTER_WIDTH_PIXELS NUMERIC(3) NOT NULL

-DEFAULT_FONT_NUMBER NUMERIC(2) NOT NULL

-DEFAULT_LINE_SPACING NUMERIC(2) NOT NULL

-DEFAULT_INTERCHARACTER_SPACING NUMERIC(3) NOT NULL

-DEFAULT_PAGE_JUSTIFICATION NUMERIC(1) NOT NULL

The following column is added to the DMS table associating a DMS with its display

configuration. A null DDC_DMS_DISPLAY_CONF_ID identifier (as opposed to a NULL

value) indicates that no display information is available so the consumer must make a best-effort

to render the message; possibly using information in the message itself (new line, new page,

etc.).

+DDC_DMS_DISPLAY_CONF_ID CHAR(32) NOT NULL

The following columns in the DMS table are altered to allow for null. Only external DMSs will

populate these fields as hints to how to render messages. Their values will be null for CHART

DMSs.

*VMS_MAX_PAGES NUMERIC(3) NULL

* VMS_SIGN_HEIGHT_PIXELS NUMERIC(5) NULL

*VMS_SIGN_WIDTH_PIXELS NUMERIC(5) NULL

DMS_FONT Table (Removed):

This existing table is removed in R10.

FONT Table (Removed):

CHART R10 Detailed Design – Rev 3 2-29 08/14/2012

This existing table is removed in R10.

CODE_LIST Table New Values:

CODE_TYPE_NAME

FONT_NUMBER

SOURCE_TYPE

CODE_LIST_ITEM Table New Values:

CDL_CODE_TYPE_NAME TYPE_CODE TYPE_NAME ACTIVE_INDICATOR

FONT_NUMBER 1 DEFAULT 1

SOURCE_TYPE 0 USER 1

SOURCE_TYPE 1 SYSTEM 1

2.4.1.1.2.4.2 Tables Modified for the Areas of Responsibility Feature

2.4.1.1.2.4.2.1 CHART DB

OBJECT_AOR Table (New):

Rights: This table will need full C/R/U/D rights for the USERMGTSERVICE user and

VIDEOSERVICE user.

This table is new for R10 and stores the associations between areas of responsibility and existing

CHART objects. The OBJECT_ID and AOR_ID columns form the primary key for this table.

Entries are displayed by object ID then by area of responsibility ID.

OBJECT_AOR Columns:

+OBJECT_ID CHAR(32) NOT NULL

+OBJECT_TYPE INT NOT NULL

+AOR_ID CHAR(32) NOT NULL

CODE_LIST Table New Values:

CODE_TYPE_NAME

AOR_OBJECT_TYPE

CODE_LIST_ITEM Table New Values:

CDL_CODE_TYPE_NAME TYPE_

CODE

TYPE_NAME ACTIVE_

INDICATOR

AOR_OBJECT_TYPE 0 MONITOR 1

AOR_OBJECT_TYPE 1 OPERATIONS_CENTER 1

CHART R10 Detailed Design – Rev 3 2-30 08/14/2012

2.4.1.1.2.4.3 Tables Modified for the Video Enhancements Feature

2.4.1.1.2.4.3.1 CHART DB

MONITOR Table (Changed):

Rights: Existing table. Rights remain the same.

This table stores the main data describing each Monitor in the system. It is being modified for

R10 to include a column storing a flag that indicates if the monitor supports AutoMode

processing and also a column to store the dwell time (in seconds) used specifically for Auto

Mode.

MONITOR Columns:

DEVICE_ID CHAR(32) NOT NULL

ORG_ORGANIZATION_ID CHAR (32) NOT NULL

DEVICE_NAME VARCHAR(50) NOT NULL

PUBLIC_FLAG NUMERIC(1,0) NOT NULL

CONNECTION_ID CHAR (32) NOT NULL

CONNECTION_TYPE NUMERIC (2,0) NOT NULL

CREATED_TIMESTAMP DATETIME2(0)

UPDATED_TIMESTAMP DATETIME2(0)

DB_CODE VARCHAR(1)

MAINT_ORGANIZATION_ID CHAR(32)

+AUTO_MODE_ENABLED NUMERIC(1,0) NOT NULL

+AUTO_MODE_DWELL_TIME NUMERIC(5,0) NOT NULL

MONITOR_AUTO_MODE_TOUR_ENTRY Table (New):

Rights: This table will need full C/R/U/D rights for the VIDEOSERVICE user.

This table is new for R10 and stores the current state of a monitor’s Auto Mode tour list entries.

The MONITOR_DEVICE_ID, OWNER_ID and SEQ_NUM columns form the primary key for

this table. Entries are display by owner then by the sequence number of the entry.

MONITOR_AUTO_MODE_TOUR_ENTRY Columns:

+MONITOR_DEVICE_ID CHAR(32) NOT NULL

+OWNER_ID CHAR(32) NOT NULL

+SEQ_NUM NUMERIC(3,0) NOT NULL

+OWNER_TYPE NUMERIC(2,0) NOT NULL

+CAMERA_ID CHAR(32) NOT NULL

+PRESET_NUMBER NUMERIC(3,0) NOT NULL

+TEMP_PRESET_ID CHAR(32) NOT NULL

+ENTRY_TIMESTAMP DATETIME2(0) NOT NULL

CHART R10 Detailed Design – Rev 3 2-31 08/14/2012

CAMERA_TEMPPRESET Table (New):

Rights: This table will need full C/R/U/D rights for the VIDEOSERVICE user.

This table is new for R10 and stores the camera temp preset entries. The TEMP_PRESET_ID

column is the primary key for this table

CAMERA_TEMPPRESET Columns

+TEMP_PRESET_ID CHAR(32) NOT NULL

+CAMERA_DEVICE_ID CHAR(32) NOT NULL

+OWNER_ID CHAR(32) NOT NULL

 +OWNER_TYPE NUMERIC(2,0) NULL

+PRESET_NUM NUMERIC(3,0) NULL

+DESCRIPTION VARCHAR(24) NULL

+FOCUS NUMERIC(5,0) NULL

+ZOOM NUMERIC(5,0) NULL

+PAN NUMERIC(5,0) NULL

+TILT NUMERIC(5,0) NULL

CODE_LIST Table New Values:

CODE_TYPE_NAME

AM_TOUR_ENTRY_OWNER_TYPE

TEMP_PRESET_OWNER_TYPE

CODE_LIST_ITEM Table New Values:

CDL_CODE_TYPE_NAME TYPE_

CODE

TYPE_NAME ACTIVE_

INDICATOR

AM_TOUR_ENTRY_OWNER_TYPE 0 ENTRY_OWNER_TRAFFIC_EVENT 1

TEMP_PRESET_OWNER_TYPE 0 TEMP_PRESET_OWNER_TRAFFIC_EVT 1

2.4.1.1.2.4.4 Tables Modified for the Decision Support for Cameras Feature

2.4.1.1.2.4.4.1 CHART DB

EVENT Table (Changed):

Rights: Existing table. Rights remain the same.

This table stores the main data describing each Event in the system. It is being modified for R10

to include a column for storing the ID of the video tour response plan item.

EVENT Columns Added:

+VIDEO_TOUR_RPI_ID CHAR(32) NULL

CHART R10 Detailed Design – Rev 3 2-32 08/14/2012

RESPONSE_VIDTOUR_MON Table (New):

Rights: This table will need full C/R/U/D rights for the TRAFFICEVENTSERVICE user.

This table is new for R10 and stores the current list of monitors that a traffic event will target for

its response plan video tour. The EVENT_VIDEO_TOUR_RPI_ID, MONITOR_DEVICE_ID,

and ACTIVE columns form the primary key for this table. Entries are displayed by event video

tour response plan item ID, then by monitor ID, then by Active.

RESPONSE_VIDTOUR_MON Columns:

+EVENT_VIDEO_TOUR_RPI_ID CHAR(32) NOT NULL

+MONITOR_DEVICE_ID CHAR(32) NOT NULL

+ACTIVE NUMERIC(1) NOT NULL

The EVENT_VIDEO_TOUR_RPI_ID column is a foreign key that references

EVENT.VIDEO_TOUR_RPI_ID.

RESPONSE_VIDTOUR_ENTRY Table (New):

Rights: This table will need full C/R/U/D rights for the TRAFFICEVENTSERVICE user.

This table is new for R10 and stores the current set of response plan tour entries (camera and

optional preset) for an event. The EVENT_VIDEO_TOUR_RPI_ID, CAMERA_DEVICE_ID,

PRESET_ID, TEMP_PRESET_ID, and ACTIVE columns form the primary key for this table.

Entries are displayed by event video tour response plan item ID, then by camera ID, then by

camera preset ID, then by camera temporary preset ID, then by camera order, then by Active.

RESPONSE_VIDTOUR_ENTRY Columns:

+EVENT_VIDEO_TOUR_RPI_ID CHAR(32) NOT NULL

+CAMERA_DEVICE_ID CHAR(32) NOT NULL

+CAMERA_ORDER NUMBER(5) NOT NULL

+PRESET_ID NUMBER(2) NOT NULL

+TEMP_PRESET_ID CHAR(32) NOT NULL

+ACTIVE NUMERIC(1) NOT NULL

The EVENT_VIDEO_TOUR_RPI_ID column is a foreign key that references

EVENT.VIDEO_TOUR_RPI_ID.

EVENT_CAMERA_USAGE_LOG Table (New):

Rights: This table will need full C/R rights for the TRAFFICEVENTSERVICE user.

This table is new for R10 and stores the list of cameras that have been used in response to a

traffic event. The EVENT_EVENT_ID, CAMERA_DEVICE_ID, and DATE_TIME columns

form the primary key for this table. Entries are displayed by event ID, then by date_time, then by

camera ID.

EVENT_CAMERA_USAGE_LOG Columns:

+EVENT_EVENT_ID CHAR(32) NOT NULL

CHART R10 Detailed Design – Rev 3 2-33 08/14/2012

+CAMERA_DEVICE_ID CHAR(32) NOT NULL

+DATE_TIME TIMESTAMP NOT NULL

The EVENT_EVENT_ID column is a foreign key that references EVENT.EVENT_ID.

2.4.1.1.2.4.5 Tables Modified for the Integrated Notification Feature

2.4.1.1.2.4.5.1 CHART DB

The R10 Integrated Notification feature will require 3 new tables being added and 4 existing

tables being modified in the CHART database. The new tables will support defining notification

contacts and groups in the CHART system along with mapping notifications to groups. The

existing tables will change their data type to match the new unique identifiers.

DMS Table (changed):

Rights: Rights remain the same.

This existing table stores the main data describing each DMS in the system. It is being modified

for R10 to change the data type for notification group id from an integer to char(32).

DMS Columns:

*COMMFAIL_NOTIF_GROUP_ID CHAR(32) NULL

* HWFAIL_NOTIF_GROUP_ID CHAR(32) NULL

DEVICE_ALERT_NOTIFICATION Table (Changed):

Rights: Rights remain the same.

This existing table stores the data describing centers to alert and notification groups to send

email to when a device (HAR or SHAZAM) is in failure condition. It is being modified for R10

to change the data type for notification group id from an integer to char(32).

DEVICE_ALERT_NOTIFICATION Columns:

*COMMFAIL_NOTIF_GROUP_ID CHAR(32) NULL

* HWFAIL_NOTIF_GROUP_ID CHAR(32) NULL

NOTIFICATION_REQUEST Table (Changed):

Rights: Rights remain the same.

This existing table stores the data describing the notification request that was sent to the

specified target. It is being modified for R10 to change the data type for Recipient id from an

integer to char(32) and to remove the Recipient_Name column. The name will be retrieved from

either the NOTIFICATION_GROUP or NOTIFICATION_CONTACT based on the target type.

NOTIFICATION_REQUEST Columns:

- RECIPIENT_NAME VARCHAR(50) NOT NULL

CHART R10 Detailed Design – Rev 3 2-34 08/14/2012

NOTIFICATION_STATUS Table (Changed):

Rights: Rights remain the same.

This existing table stores the data describing the notification status that was sent to the specified

target. It is being modified for R10 to add the Recipient id and to remove the Recipient_Name

column. The name will be retrieved by associating NOTIF_ID and RECIPIENT_ID with the

NOTIFICATION_REQUEST columns and then further cross-referencing in

NOTIFICATION_GROUP or NOTIFICATION_CONTACT tables based on the target type.

NOTIFICATION_STATUS Columns:

+ RECIPIENT_ID CHAR(32) NOT NULL

- RECIPIENT_NAME CHAR(50) NOT NULL

NOTIFICATION_GROUP Table (New):

Rights: This table will need full C/R/U/D rights for the NOTIFICATIONSERVICE user.

This new table stores the data describing each Notification Group in the system. It stores the

unique ID for each group (primary key) and a descriptive name.

NOTIFICATION_GROUP Columns:

+NOTIFICATION_GROUP_ID CHAR(32) NOT NULL

+NOTIFICATION_GROUP_NAME NVARCHAR(50) NOT NULL

PRIMARY KEY: NOTIFICATION_GROUP_ID

NOTIFICATION_CONTACT Table (New):

Rights: This table will need full C/R/U/D rights for the NOTIFICATIONSERVICE user.

This new table stores the data describing each Notification Contact in the system. It stores the

unique ID for each contact (primary key), a descriptive name, type of contact [Individual or

Agency], email address and last time the contact was updated.

NOTIFICATION_CONTACT Columns:

+NOTIFICATION_CONTACT_ID CHAR(32) NOT NULL

+NOTIFICATION_CONTACT_INDIVIDUAL_FIRST_NAME

 NVARCHAR(50) NULL

+NOTIFICATION_CONTACT_INDIVIDUAL_LAST_NAME

NVARCHAR(50) NULL

+NOTIFICATION_CONTACT_AGENCY_NAME

NVARCHAR(50) NULL

+NOTIFICATION_CONTACT_TYPE_CODE NUMERIC(1, 0) NULL

+NOTIFICATION_CONTACT_EMAIL NVARCHAR(128) NULL

+NOTIFICATION_CONTACT_LAST_UPDATED

DATE NULL

PRIMARY KEY: NOTIFICATION_CONTACT_ID

CHART R10 Detailed Design – Rev 3 2-35 08/14/2012

NOTIFICATION_GROUP_CONTACT Table (New):

Rights: This table will need full C/R/U/D rights for the NOTIFICATIONSERVICE user.

This new table stores notification contacts associated with a notification group.

NOTIFICATION_GROUP_CONTACT_ENTRY Columns:

+NG_NOTIFICATION_GROUP_ID char(32) NOT NULL

+NC_NOTIFICATION_CONTACT_ID char(32) NOT NULL

PRIMARY KEY: NG_NOTIFICATION_GROUP_ID, NC_NOTIFICATION_CONTACT_ID

CODE_LIST Table New Values:

CODE_TYPE_NAME

Notification Contact Type

CODE_LIST_ITEM Table New Values:

CDL_CODE_TYPE_NAME TYPE_

CODE

TYPE_NAME ACTIVE_

INDICATOR

Notification Contact Type Individual 0 Notification Contact Type 1

Notification Contact Type Agency 1 Notification Contact Type 1

2.4.1.1.2.5 PL/SQL Module Definition and Database Trigger Reports

There are no new PL/SQL modules for CHART R10.

2.4.1.1.2.6 Database Size Estimate - provides size estimate of current design

CHART R10 does not significantly impact the size of the CHART database, as the data being

added is related to configuration rather than data that is being collected on an ongoing basis.

2.4.1.1.2.7 Data Distribution

There are no changes to data distribution for R10.

2.4.1.1.2.8 Database Replication

Database replication is not used in R10. If it were to be desired to run multiple instances of the

DMS Service, the DMS_DISPLAY_CONFIG and related tables would need to be replicated. It

is required that each DMS service have access to all DMS Display Configurations defined in the

system as a display configuration is required for a DMS to be functional.

2.4.1.1.2.9 Database Failover Strategy

The database failover strategy is defined as part of Work Order 27. There are no changes to the

database failover strategy for R10.

2.4.1.1.2.10 Reports

No reports will be added or updated for R10. Since R5, the CHART reporting function has been

transferred to University of Maryland.

CHART R10 Detailed Design – Rev 3 2-36 08/14/2012

2.4.1.2 CHART Flat Files

The following describes the use of flat files in CHART.

2.4.1.2.1 Service Registration Files

There are no new Java services and therefore no new service registration files for CHART R10.

2.4.1.2.2 Service Property Files

Except as noted, there are no new service property files for CHART R10.

2.4.1.2.3 GUI Property Files

There are only minor updates to the GUI properties file in its WEB-INF directory for CHART

R10.

2.4.1.2.4 Arbitration Queue Storage Files

The Arbitration Queue Storage Files were retired as of release R9S.

2.4.1.2.5 Device Logs

There are no changes to Device Log Files for R10.

2.4.1.2.6 Service Process Logs

All CHART services write to a process log, used to provide a historical record of activity

undertaken by the services. These logs are occasionally referenced by software engineering

personnel to diagnose a problem or reconstruct a sequence of events leading to a particular

anomalous situation. These logs are automatically deleted by the system after a set period of

time defined by the service’s properties file, so they do not accumulate infinitely. These files are

stored in the individual service directories and are named by the service name and date, plus a

“.txt” extension. These logs are typically read only by software engineering personnel. Except

where noted, there are no changes for service process logs for R10 features.

 The Notification Service will add a new log file starting in R10 that will contain only

log messages related to the sending of e-mails / communications with the mail server.

All other messages will remain in the existing notification service process log.

2.4.1.2.7 Service Error Logs

All CHART services write to an error log, used to provide detail on certain errors encountered by

the services. Most messages, including most errors, are captured by the CHART software and

written to the process logs, but certain messages (typically produced by the Java Virtual Machine

itself, by COTS, or DLLs) cannot be captured by CHART Software and instead are captured in

these "catch-all" logs. Errors stored in these logs are typically problems resulting from a bad

installation; once the system is up and running, errors rarely appear in these error logs.

Debugging information from the JacORB COTS, which is not usually indicative of errors, can

routinely be found in these error logs, as well. These log files can be reviewed by software

engineering personnel to diagnose an installation problem or other type of problem. These logs

are automatically deleted by the system after a set period of time defined by the service's

properties file, so they do not accumulate infinitely. These files are stored in the individual

service directories and are named by the service name and date, plus an ".err" extension. These

CHART R10 Detailed Design – Rev 3 2-37 08/14/2012

logs are typically read only by software engineering personnel. Except where noted, there are no

changes for service error logs for R10 features.

2.4.1.2.8 GUI Process Logs

Like the CHART background services, the CHART GUI service also writes to a process log file,

used to provide a historical record of activity undertaken by the process. These GUI process logs

are occasionally referenced by software engineering personnel to diagnose a problem or

reconstruct a sequence of events leading to a particular anomalous situation. These logs are

automatically deleted by the system after a set period of time defined by the GUI service’s

properties file, so they do not accumulate infinitely. These files are stored in the

chartlite/LogFiles/ directory under the WebApps/ directory in the Apache Tomcat

installation area. They are named by the service name (“chartlite”) and date, plus a “.txt”

extension. These logs are typically read only by software engineering personnel. Additional log

files written by the Apache Tomcat system itself are stored in the log/ directory in the Apache

Tomcat installation area.

 R10 GUI changes do not change the way the GUI process logs operate.

2.4.1.2.9 FMS Port Configuration Files

The CHART Communications Services read a Port Configuration file, typically named

PortConfig.xml, upon startup, which indicates which ports are to be used by the service and

how they are to be initialized. A Port Configuration Utility is provided which allows for

addition, removal of ports and editing of initialization parameters. As indicated by the extension,

these files are in XML format. This means these files are hand-editable, although the Port

Configuration Utility allows for safer, more controlled editing. The Port Configuration files are

typically modified only by software engineers or telecommunications engineers.

 There are no changes to this section for the any of the R10 features.

2.4.1.2.10 Watchdog Configuration Files

There are no changes to the Watchdog configuration files for any of the R10 features.

CHART R10 Detailed Design – Rev 3 2-38 08/14/2012

2.4.2 Database Design

Changes made to the CHART database design for Release 10 features are described below.

2.4.2.1 DMS Fonts

2.4.2.1.1 CHART DB

The R10 DMS Fonts feature will require new tables to be added to the CHART database, as

described above.

2.4.2.2 Areas of Responsibility

2.4.2.2.1 CHART DB

The R10 Areas of Responsibility feature will require 1 new table to be added to the CHART

database and updates to the code list, as described above.

2.4.2.3 Video Enhancements

2.4.2.3.1 CHART DB

The R10 Video Enhancements will require 2 new tables to be added to the CHART database and

one existing table to be modified, as described above.

2.4.2.4 Decision Support for Cameras

2.4.2.4.1 CHART DB

The R10 Decision Support for Cameras feature will require 2 new tables to be added to the

CHART database and one existing table to be modified, as described above.

2.4.2.5 Integrated Notification

2.4.2.5.1 CHART DB

The R10 Integrated Notification feature will require 3 new tables to be added to the CHART

database and four existing tables to be modified, as described above.

2.4.2.6 Archiving - Changes

The CHART Archive database stores data from the CHART operational system as part of a

permanent archive. The CHART Archive database design is a copy of the CHART operational

system for those tables containing system, alert, traveler information messages and their

underlying data, and event log information. In addition, the CHART Archive database stores

detector data. In R10, the archive will be changed to include the list of cameras that have been

CHART R10 Detailed Design – Rev 3 2-39 08/14/2012

utilized by a traffic event response video tour (via execution). This data is stored in the new

EVENT_CAMERA_USAGE table in the CHART database.

CHART R10 Detailed Design – Rev 3 3-1 08/14/2012

3 Key Design Concepts

3.1 DMS Fonts

Prior to R10, CHART DMS configurations allowed the administrator to specify a sign type

(character matrix, line matrix, or full matrix), however within CHART all signs were treated as

character matrix. Furthermore, the DMS configuration allowed the administrator to choose one

of two fixed width fonts (in practice only one of these fonts was ever used) and the font used by

CHART did not necessarily match the actual font used by the DMS. Also, regardless of the sign

type, CHART required sign sizes to be specified as the number of character rows and columns.

These limitations of the CHART software led to several issues:

 The images of DMS messages shown in CHART did not accurately depict how the

message actually appeared on the DMS.

 The requirement for DMS sizes to be specified in rows and columns did not work for

line or full matrix signs; estimates had to be done by determining the number of the

widest character that can be displayed, therefore losing the ability to utilize some

portion of the display width.

 The algorithm used in CHART to determine if a message fits on a sign was not

accurate, partly due to the sign sizes needing to be rows/cols as discussed above, but

also because the sign may be using a variable width font.

R10 includes changes to more accurately model the properties of DMSs, including the sign type,

actual size relevant to the sign type, and the actual font being used. These changes allow DMS

message images that appear throughout the system to more accurately depict how the message

appears on the actual DMS and for the system to more accurately determine if a message will fit

on a DMS.

To support this new functionality display related data including the sign type, sign size, and other

display related data is removed from the DMS Configuration and is moved into a new structure,

a DMS Display Configuration. In addition to existing display related fields, font is added to the

DMS Display Configuration. By splitting this display related data out of the DMS configuration,

this data can be shared by multiple DMSs. This has the following benefits:

 Easier configuration. When adding DMSs of a standard type / size from a single

manufacturer, an administrator can define the size, font, and other settings one time in

CHART and then reference those settings for each DMS rather than having to define

them separately for each DMS.

 Easier font standardization. If DMSs share a display configuration, they will utilize

the same font. This makes it easier to standardize fonts to provide consistency for the

traveling public.

 Shorter pick lists. In CHART DMS message editors that allow editing messages for

multiple DMSs at once, such as for a message library or to set the message on DMSs

used in a traffic event (response plan items), the editors previously allowed the user to

click a sign size to see how the message would appear on each unique sign size. The

editors would also check fit based solely on character width and columns and show

the user when the message they are entering became too large for a sign size. With

CHART R10 Detailed Design – Rev 3 3-2 08/14/2012

the addition of fonts and support for line and full matrix signs, there are many

variables that affect the DMS message image and the fit checking algorithm. A

message that fits on a 3x8 character matrix sign may not necessarily fit on a 3x8 full

matrix sign that uses a large font. By sharing display configurations, the system can

show the user how the message will appear for each display configuration in the

system instead of having to show how it will look on every single DMS.

Part of the R10 enhancements that will occur beneath the covers, unbeknownst to users, is that

CHART will actively manage the fonts stored within NTCIP DMSs. CHART will upload the

font specified in the display configuration used by a DMS into the controller of NTCIP DMSs to

ensure that the font definition used by CHART in its message images and its fit checking

algorithm will exactly match the font used by the actual DMS. CHART will periodically check

that the font CHART thinks is loaded in the DMS is loaded, and if not CHART will load the font

automatically. CHART will also ensure the correct font is loaded whenever a DMS is placed

online or into maintenance mode within CHART. With this active font management CHART

will be highly accurate with regard to message images and message fit on NTCIP DMSs.

R10 will not provide active font management for non-NTCIP DMSs. For non-NTCIP signs,

CHART will only be as accurate as the font specified in the display configuration used by those

DMSs. This means if the actual font used by a non-NTCIP sign is available and specified in the

display configuration used by the non-NTCIP DMS, CHART will be very accurate with regard

to its message images and fit check algorithm. Otherwise, the accuracy for the non-NTCIP signs

will match what existed prior to R10.

This design assumes that at some point in the future the system will be required to support the

use of more than 1 font for a single DMS. This design supports this future expansion through the

use of a font table in the display configuration and by defining logical fonts. For CHART R10,

there will only be 1 font in the font table, and it will logicaly be known as the default font. A

specific slot will be assigned for the default font, and that slot number will be used on all NTCIP

DMSs to store the one font that the display configuration allows in CHART R10. In a future

release, we could allow more fonts in the DMS display configuration and assign them a logical

meaning such as “fixed width template font”, “small font”, “medium font”, “large font”.

Likewise specific slot numbers would be assigned to these logical fonts. By using logical fonts

and standardized font slots for those logical fonts, DMS messages that target multiple DMSs

(such as library messages) can utilize the logical fonts and the system can more easily ensure the

proper font is used. For example, if the CHART IDL specifies that slot 5 is always used for the

“large font”, the MULTI that defines a message can include a tag such as <fn5> and the proper

font will be used for message as defined in each DMS display configuration. If desired, a DMS

display configuration could use the same font for all defined logical fonts, in which case a single

font would be used for all messages.

3.2 Areas of Responsibility

Areas of Responsibility is a new feature for R10. An area of responsibility represents a

geographic area on the map that defines an area for which a certain CHART entity is responsible

(e.g. an operations center or a monitor).

CHART R10 Detailed Design – Rev 3 3-3 08/14/2012

 Server-side rendering. Areas of responsibility will be displayed on the map using

server-side rendering. Server-side rendering was chosen due to the potential size of

the data required to display an area of responsibility and the expected number of areas

of responsibility. Area of responsibility data is expected to seldom change, but it can

become very large if a boundary is complex.

 Web Service. Areas of responsibility will be managed by a web service. The data will

be stored directly in the Mapping GIS database. This will allow other applications

(outside of CHART) to define and use areas of responsibility.

 AOR Manager. An AOR Manager class will be created in the

CHART2.webservices.util package. This class will be a Singleton and can be used by

any CHART application code (GUI and server). The class will maintain an updated

cache of areas of responsibility. The class will use a synch API to keep the cache up-

to-date. The AOR Manager can be configured with or without a cache. In non-

caching mode, the AOR Manager can be used to determine if an area of responsibility

still exists in the system.

 Generic AOR Associations. The association of areas of responsibility with other

CHART objects will be generic. For R10, areas of responsibility can only be

associated with Monitors and Operations Centers. A generic form will be used to

associate areas of responsibility with CHART objects, and a generic database table

will store the associations of areas of responsibility to CHART objects.

3.3 Video Enhancements

Following are the key design decisions related to the video enhancements for R10:

 Monitor Auto Mode Tour Entries and Camera Temporary Presets can only be created via

Traffic Event Response plan for R10. They are designed as generic features so that they

could be expanded for other uses in the future.

 Auto Mode Tour display processing will be done in a similar manner to standard video

tour display processing for consistency.

 Clean up of Auto Mode Tour Entries and Temporary Presets

o Done by owning Traffic event when needed.

o System will periodically remove un-needed Auto Mode Tour Entries and

Temporary Presets that were not successfully removed by owner.

o User with Configure Monitor or Configure Camera functional right can remove

them if needed using the GUI.

3.4 Decision Support for Cameras

Prior to R10, Decision Support supported response plan items for DMS only. In R10, Decision

Support has been expanded to include support for a video tour response plan item.

 Traffic Event Service. Each traffic event will support a single video tour response

plan item. The Traffic Event Service maintains a local cache of areas of responsibility

that is updated periodically (at a configurable rate) by pulling from the server. The

Traffic Event service will make use of the AORManager utility classes from the AOR

CHART R10 Detailed Design – Rev 3 3-4 08/14/2012

design. The Traffic Event Service already maintains a cache of Monitors. In R10, this

cache will be extended to include the areas of responsibility that are associated with

each monitor.

 Traffic Event Factory. The Traffic Event Factory has a periodic task that does the

following for each traffic event: a) find the areas of responsibility that contain the

traffic event, b) find the Monitors configured for those areas of responsibility, and c)

update the response plan video tour to target those monitors. The Traffic Event

Factory also has a periodic task that renews the set of tour entries for each monitor.

The last executed set of cameras is sent to each of the last executed monitors. If a

monitor does not get a renewal for a configured number of hours, it will remove the

tour entry that is outdated.

3.5 Integrated Notification

Prior to R10, CHART utilized a third party product named Attention! CC . This product was

used to manage notification contacts, contact groups, and for sending e-mail notifications to

pagers. CHART R10 now includes that functionality and the third party tool is no longer used.

Administrators can manage contacts and contact groups from within the System Profile in the

CHART GUI. The CHART Notification Service now sends e-mails directly rather than relying

on the Attention! CC service.

A notification contact is either an individual or an agency. Notification contacts are composed of

a name, email address, and timestamp which indicates when the contact was added or updated.

The key design difference between an agency and individual is that an individual has a first and

last name, while an agency has a single name. Notification contacts can be a member of 0 or

more contact groups.

Notification groups provide a means for grouping notification contacts. Groups can contain 0 or

more notification contacts. Notification contacts and contact groups are stored directly in the

CHART database. Minor IDL changes are required to allow the display of a contact’s e-mail

address within CHART to allow contacts to be agencies rather than individuals, and support

CRUD functionality of notification objects.

The notification service will use the JavaMail API for sending e-mail via SMTP. The

notification service will support primary and backup email server configurations. The server

configurations will consist of an ip address, port, name, password, and SMTP_AUTH

configuration.

CHART will import existing notification data from the Attention! CC service to reduce the

impact during the transition. In addition, CHART will update notification recipient mappings

where notifications are currently configured.

The email notifications sent out will now include an informative subject in the notification, based

on the notification type. The calling services will need to change to include it. The

modules/classes that will be affected are: ExternalSystemConnectionImpl,

CHART R10 Detailed Design – Rev 3 3-5 08/14/2012

DeviceAlertAndNotificationHelper, TrafficEventRuleFilter, and the WatchdogModule. In

addition, the subject line will contain a configurable prefix.

 Device notifications will include the device type, name, and device status in the subject

line

o <Device Type> <DeviceName> <Status Type>

 External event import notifications will include “External Event Imported” in the subject

line.

 External connection notifications will include the connection name and the status type

o <External System> - <Status Type>

 Watchdog notifications will include the service name and an indicator the service was

restarted.

o <Service Name> @ <Site> <Info>

A separate log file will be created by the notification service regarding the sending of

notifications. This log file will contain communications information between the mail server and

the notification service.

Prior to R10 the event history log didn’t contain full details about notifications sent. In R10, the

event history log will include the contents of the notification and not just the recipients.

3.6 Error Processing

In general, CHART traps conditions at both the GUI and at the server. User errors that are

trapped by the GUI are reported immediately back to the user. The GUI will also report

communications problems with the server back to the user. The server may also trap user errors

and those messages will be written to a server log file and returned back to the GUI for display to

the user. Additionally, server errors due to network errors or internal server problems will be

written to log files and returned back to the GUI.

3.7 Packaging

3.7.1 CHART

This software design is broken into packages of related classes. The table below shows each

package that is new or changed to support the Release 10 features.

Package Name Package Description
CHART2.DecisionSupportSvcUtil This package is changed in R10 to make DMS message

suggestions take DMS Display Configurations into

consideration. It is also changed for new decision

support camera configuration options.

CHART2.DMSControl This package contains classes generated from IDL

related to DMS. This package is changed for R10 to

support DMS Display Configurations.

CHART2.DMSControlModule This package is changed in R10 to support DMS

Display Configurations.

CHART R10 Detailed Design – Rev 3 3-6 08/14/2012

Package Name Package Description
CHART2.CameraControlModule This package is change for R10 to support Camera

Temporary Presets and Reject Move to Preset feature.

CHART2.DMSProtocols This package is changed for R10 to support font

management in NTCIP signs.

CHART2.DMSUtility.display This package is new for R10. It contains classes that aid

in handling DMS display configurations.

CHART2.DMSUtility.font This package is new for R10. It contains classes that

assist with use of fonts for DMSs.

CHART2.DMSUtility.multi This package is new for R10 and contains classes useful

in dealing with the NTCIP MULTI related functionality.

CHART2.DMSUtility.multi.formatter This package is new for R10 and contains classes that

are common to formatting MULTI.

CHART2.DMSUtility.multi.formatter.SHAMultiF

ormatter

This package is new for R10 however it contains some

existing classes that were previously contained in the

parent package. Changes are made to the automated

message formatter to utilize a display configuration

when formatting a message rather than just considering

rows and columns.

CHART2.MonitorControlModule This package is change for R10 to support Auto Mode

Monitors.

CHART2.NTCIPDMSComplianceTester This package is changed for R10 to add new tests for

uploading and downloading fonts.

CHART2.MonitorControl This package is changed for R10 to support associating

areas of responsibility with video monitors.

CHART2.ResourceManagement This package is changed for R10 to support associating

areas of responsibility with operations centers.

CHART2.TrafficEventManagement This package is changed to add support for traffic event

response video tours.

CHART2.TrafficEventModule This package is changed to add support for traffic event

response video tours.

CHART2.Utility.ObjectCache.video This package is changed to add AOR information to

cameras and monitors for Decision Support.

CHART2.webservices.util.aor This package is new for R10. It contains the AOR

Manager class that implements an area of responsibility

cache. It also contains other utility classes that are used

to manage areas of responsibility.

CHART2.webservices.dataexporter.dmsexportmo

dule

This package is updated for R10 to handle DMS Display

Configurations.

CHART2.webservices.dataexportlistenermodule.d

ms

This package is updated for R10 to change the way it

retrieves data from a DMS for inclusion in the export.

The format of the exported data is unchanged.

CHART2.xsd.mapgisservice This package is new for R10. It contains classes for

managing areas of responsibility.

chartlite.data This package is changed for R10 to support associating

areas of responsibility with operations centers. This

packages is also changed to add new decision support

configuration values to the system profile.

chartlite.data.decisionsupport This package is changed for R10 to support changes for

Decision Support.

chartlite.data.dms This package is changed for R10 to support changes for

DMS Display Configurations.

CHART R10 Detailed Design – Rev 3 3-7 08/14/2012

Package Name Package Description
chartlite.data.trafficevents This package is changed for R10 to support preview of a

DMS response plan item using a different display

configuration. This package is also modified to add

response plan video toures to traffic events.

chartlite.data.video This package is changed for R10 to support the display

of Auto Mode related monitor settings and temp preset

related camera settings and also to allow the manual

removal of AutoModeTourEntries from monitors and

temp presets from cameras. It is also changed to to

support associating areas of responsibility with video

monitors. This package is also changed to support the

new video tour response plan item for decision support.

chartlite.servlet This package is changed to support the new AOR map

layers on the home page map.

chartlite.servlet.aor This package is new for R10. It contains classes for

managing areas of responsibility.

chartlite.servlet.aor.dynlist This package is new for R10. It contains classes for

displaying areas of responsibility as a list.

chartlite.servlet.dms This package is changed for R10 to support DMS

display configurations.

chartlite.servlet.dms.dynlist This package is changed for R10 to support DMS

display configurations.

chartlite.servlet.templates This package is changed for R10 to support DMS

display configurations.

chartlite.servlet.trafficevents This package is changed for R10 to support response

plan video tours.

chartlite.servlet.usermgmt This package is changed for R10 to support associating

areas of responsibility with operations centers. It is also

changed for decision support settings.

chartlite.servlet.video This package is changed for R10 to support Auto Mode

monitors and camera temp presets.

chartlite.servlet.video.sink This package is changed for R10 to support associating

areas of responsibility with video monitors.

chartlite.truedisplay This package is changed for R10 to support DMS

display configurations.

CHART R10 Detailed Design – Rev 3 3-8 08/14/2012

3.8 Assumptions and Constraints

3.8.1 DMS Fonts

1. Active font management will only be done for NTCIP DMS. The system will not

attempt to upload/download fonts for non-NTCIP DMS. The DMS message images and

fit algorithm for non-NTCIP DMS may not accurately depect the properties of the actual

DMS. (The worst case is they will operate as they do prior to R10).

2. DMS Display Configuration data must be available in its entirety on every node that

contains a DMS service. This data must be replicated to all nodes if multiple instances

of the DMS service are used. (Use of one node is planned for R10).

3. There will be no changes to the DMS data export format and therefore no changes

required to the export listener or downstream consumers of DMS data. Changes made

to the DMS configuration to split out data into DMS Display Configurations will be

handled by the data exporter and it will extract the data and place it into the existing

XML elements. For line and full matrix signs it will utilze their minimum character

rows and minimum character columns calculations for the sign size, and will not export

fonts.

3.8.2 Areas of Responsibility

1. The implementation of areas of responsibility must be scalable. The number of areas of

responsibility in the system will likely be beyond 100 based on input from the JAD.

3.8.3 Video Enhancements

1. No monitor related data or camera preset related data is currently exported from

CHART so there will be no impact to the DataExporter or any listener (internal or

external).

3.8.4 Decision Support for Cameras

1. It is assumed that some minor delay is acceptable after an area of responsibility is

modified or deleted. The configurable delay is on the order of magnitude of 15 minutes

by default. A monitor that is no longer in an area of responsibility will still be targeted

until the traffic event service synchs up. A monitor that is now in an area of

responsibility but was not previously will not be targeted until the traffic event service

synchs up.

2. The system cannot suggest camera devices that do not have locations defined.

3.8.5 Integrated Notification

1. The system requires access to at least 1 mail server and that mail server must be

configured to allow the server that hosts the CHART notification service to relay e-

mails.

2. The system will not be able to confirm the delivery of e-mails and/or pages sent via e-

mail. After the CHART Notification Service contacts a mail server and the mail is

accepted for delivery CHART will consider the notification successful. Administrators

CHART R10 Detailed Design – Rev 3 3-9 08/14/2012

will need to have access to the log files of the mail server to be able to trouble shoot

non-delivery issues.

3. Attention! CC will be available during deployment for importing existing recipients

and distribution lists.

CHART R10 Detailed Design – Rev 3 4-1 08/14/2012

4 Human Machine Interface

4.1 DMS Font Feature

This section describes the features of R10 related to the DMS Font Feature.

4.1.1 DMS Display Configuration Management

DMS Display Configurations define the display related settings of a DMS. They are defined

separately from a DMS so that the display configurations can be shared by multiple DMSs. The

system allows an administrator to view, add, edit, and delete DMS Display Configurations. The

display configurations are accessed in the system profile in the DMS System Settings section,

shown below:

After clicking the view/edit button, all DMS Display Configurations that exist in the system are

shown in a list (see below).

The list allows sorting by clicking on a column header, and filtering by using the select box

beneath the column header. Columns can be hidden or unhidden using the Set Column link near

the top of the page. The following columns are available:

Column Name Description Sortable Filterable

CHART R10 Detailed Design – Rev 3 4-2 08/14/2012

Name The name of the display configuration, assigned

when it was created or edited.

YES NO

Sign Type The type of sign; character matrix, line matrix, or full

matrix.

YES YES

Sample Message An image showing what a sample message would

look like on a DMS that uses this display

configuration.

NO NO

DMSs Using The number of DMSs that are configured to use this

display configuration. If there are any DMSs using

the display configuration a message will indicate the

number of DMSs that are not offline (if any) and a

link is provided to view the DMSs configured to use

the display configuration.

YES YES

Rows The number of rows of characters that will fit on a

DMS that is configured to use this display

configuration. If a maximum number of rows is set

for the Display Configuration and the number of

actual rows that could be used exceeds the limit, the

limit will also be shown such as “4 (limited to 3)”

YES YES

Columns The number of columns of characters that will fit on

a DMS that is configured to use this display

configuration. If the sign type is line matrix or

character matrix and a variable width font is used,

the number of character columns depends on the

characters being displayed. For this reason, this

column can show a range, such as “20-30” where the

low number is the minimum number of characters it

can display (if the message was comprised of the

widest character) and the upper number is the

maximum number of characters it can display (if the

message is comprised of the thinnest character).

Also, if the display configuration has a limitation on

the number of characters allowed in a message, the

limit will also be shown such as “20-30 (limited to

21)”

YES YES

Max Pages The maximum number of pages allowed to be

displayed on a DMS that uses this display

configuration.

YES YES

Geometry Desc A description of the sign type and size. For example,

“full matrix, 23 x 105 px”. Note that the sort on this

column will sort first by sign type, then by size.

YES YES

CHART R10 Detailed Design – Rev 3 4-3 08/14/2012

Beacons An indicator that specifies if a DMS using this

display configuration has beacons or not.

YES YES

Font The name of the font included in the display

configuration.

YES YES

Sign Width The width if the sign, in pixels. YES YES

Sign Height The height of the sign, in pixels. YES YES

Character Width The character width for character matrix signs. This

will be N/A for line and full matrix signs.

YES YES

Character Height The character height for character and full matrix

signs. This will be N/A for full matrix signs.

YES YES

Actions This column contains links for actions that can be

performed on a display configuration. A link to

allow a display configuration to be edited will appear

if no DMSs are configured to be using the display

configuration or if all such DMSs are offline. A link

to allow a display configuration to be removed will

exist if the display configuration is not currently

configured to be used by any DMSs.

NO NO

4.1.1.1 Add DMS Display Configuration

A new DMS Display Configuration can be added by clicking the “New DMS Display

Configuration” link at the bottom of the DMS Display Configuration list as shown below.

After clicking the “New DMS Display Configuration” link, a new window will pop up to allow

the configuration to be specified:

CHART R10 Detailed Design – Rev 3 4-4 08/14/2012

The form layout changes slightly based on the Sign Type selection. When Character Matrix is

selected, the form appears as above. The Font/Character size must be entered and the sign height

and width are both entered as a number of characters. When Line Matrix is selected, the

character height must be entered and the sign height is entered as number of characters. The sign

width is entered as number of pixels. Also an additional field appears in the Default Font section

to allow the inter-character spacing to be set for the default font to be set. An example is shown

below:

CHART R10 Detailed Design – Rev 3 4-5 08/14/2012

When Full Matrix is selected, Font/Characer size doesn’t aply and both sign width and sign

height are entered as a number of pixels. The Intercharacter spacing field also applies to full

matrix signs and an additional field appears to allow the line spacing to be set.

The font for a DMS Display Configuration can be specified in one of three ways. The user may

copy the font from an existing DMS Display Configuration, they may load a font from a file on

their computer, or they may download the font from an NTCIP DMS device. The form will

change based on the user’s selection. When Copy From Existing DMS Display Configuration is

selected, a select list appears to allow the user to choose an existing DMS Display Configuration,

as shown below.

CHART R10 Detailed Design – Rev 3 4-6 08/14/2012

When Load From File is selected, the form changes to provide a file name field and browse

button to allow the user to select a file from their computer. Note that the file must be of the

proper format for it to load properly. CHART currently supports the Daktronics font file format.

When Download From New NTCIP DMS is selected, fields appear to allow the user to specify

communication parameters that will be used by CHART to connect to the DMS device and

download the font:

After a font has been loaded via one of the three methods, the Font section of the form will

change to show a sample of the font:

CHART R10 Detailed Design – Rev 3 4-7 08/14/2012

If the user clicks the Change link, the choices to load a font reappear in addition to a button that

can be used to cancel the Change action.

After the user selects a font and the sign size has been specified (and also line and intercharacter

spacing if applicable), a sample message appears at the top of the form under the form heading:

Following is a list of all of the fields that can be specified on this form:

Field Description

Name The name of the display configuration. This will usually be descriptive and

follow a naming convention that includes an indication of the sign type,

size, and font.

Sign Type Character, Line, or Full Matrix.

Character Height Applies only to Character or Line Matrix; the height of a character (or

character row) in pixels.

Character Width Applies only to Character Matrix; the width of a single character in pixels.

Sign Height Number of characters for Character or Line Matrix, number of pixels for

Full Matrix.

Sign Width Number of characters for Character Matrix, number of pixels for Line and

Full matrix.

Line Spacing Applies only to Full Matrix; the number of pixels to be inserted between

rows of a message.

Intercharacter

Spacing

Applies only to Line and Full Matrix; the number of pixels to be inserted

between characters.

CHART R10 Detailed Design – Rev 3 4-8 08/14/2012

Font The font that has been specified or a collection of fields to allow the font to

be loaded (see above).

Rows Per Page

Limit

A limitation that will be applied to messages to limit the number of rows

that may appear in a message, regardless of whether a larger message

would fit based on the sign size. This is to allow guidelines specified by

MUTCD to be enforced.

Characters Per

Row Limit

A limitation that will be applied to messages to limit the number of

characters that can appear in any row of a message, regardless of whether a

larger message would fit based on the sign size. This is to allow guidelines

specified by MUTCD to be enforced.

Pages Limit A limitation on the number of pages that may be used for a message. Note

if messages for traffic events are combined, this limitation applies to the

combined message.

Has Beacons A flag to indicate if the sign has beacons on it.

Default Page

Justification

A setting that specifies how a message page will be aligned when there is

extra vertical space on a sign (Top, Middle, or Bottom). Note that CHART

uses empty lines to fill message rows that aren’t used, so this setting will

usually only make a difference when using a full matrix sign whose pixel

height is larger than the number of rows in the message times the character

height plus the line spacing. For example if a full matrix sign is 31 pixels

high, is using a font that is 7 characters high, and has line spacing set to 3,

a 3 line message will be 27 pixels high, leaving 4 extra pixel rows. If the

page justification is set to top, the sign will put the message at the top and

leave the extra pixels rows beneath the message. For center page

justification the sign would put two blank pixel rows above the message

and two below it. For bottom page justification, the sign would put the

message at the bottom of the sign with the 4 blank pixel rows above the

message.

Default Line

Justification

The default line justification, left, center, or right. This specifies how each

row of a message will be aligned if not specified within the message. In

CHART the DMS message editors always include the line justification as

part of the message, so this setting will not have an effect when a CHART

message is sent to a sign and it is included as more of a safeguard.

Default Page On

Time

The default number of seconds a message page will be displayed before

switching to the next page. This value is used if not specified in the

message. Users can specify this in the manual DMS editors.

Default Page Off

Time

The default number of seconds the sign will remain blank after it stops

displaying one message page and before displaying the next message page.

This value is used if not specified in the message. Users can specify this in

the manual DMS editors.

CHART R10 Detailed Design – Rev 3 4-9 08/14/2012

After specifying all of the configuration values, the user must click the Submit button. The new

DMS Display Configuration will be added to the list of existing DMS Display Configurations

and will be available for selecting when configuring a DMS.

4.1.1.2 Edit DMS Display Configuration

If a DMS Display Configuration is not currently used by any DMS, or if all DMSs that are

configured to use the display configuration are offline, an Edit link will appear for the DMS

Display Configuration in the Action column.

After clicking the edit link, the same form used to add a new DMS Display Configuration is

shown, pre-poplated with the data from the display configuration being edited. The user can

make changes and click the Submit button to save their changes. See above for details.

4.1.1.3 Remove DMS Display Configuration

If a DMS Display Configuration is not currently used by any DMS it can be removed from the

system. A Remove link will appear for the DMS Display Configuration in the Action column.

After clicking the Remove link, the system will prompt the user to confirm their action and the

system will remove the DMS Display Configuration.

4.1.1.4 Viewing DMSs Using a DMS Display Configuration

If there are any DMSs using a DMS Display Configuration, a view link will appear for that

display configuration in the DMS Display Configuration list.

After clicking the view link, the system will show the DMS List, filtered to display only the

DMSs currently configured to use the DMS Display Configuration whose view link was clicked.

4.1.2 DMS Configuration

Screens related to configuring a DMS are changed in CHART R10 as a result of the introduction

of DMS Display Configurations. On the DMS list, the column that used to show sign size now

shows the name of the DMS Display Configuration configured for use by each DMS. This

column is sortable and filterable. The sort is based on sign type first, followed by sign size.

CHART R10 Detailed Design – Rev 3 4-10 08/14/2012

Like other columns, the Display Configuration column can be hidden or shown as desired:

4.1.2.1 Add DMS

The Add DMS form is changed in CHART R10 to remove display related fields that are now

included as part of a DMS Display Configuration and instead allow the user to select a

previously defined existing DMS Display Configuration (see section 4.1.14.1.1 above).

CHART R10 Detailed Design – Rev 3 4-11 08/14/2012

When a display configuration is selected, the form changes to show the details for that display

configuration to keep the user from having to navigate to the display configuration page to view

that information.

The user can select other display configurations in the list and view the information until they

find the appropriate display configuration for the DMS they are adding to the system. If the user

cannot find an appropriate display configuration, they will need to add a new one to the system.

An Add link is provided for convenience and will navigate the user to the Add DMS Display

Configuration form.

Another subtle change to the Add DMS form for CHART R10 pertains to the NTCIP DMS

Model. When the model is changed to NTCIP, fields the only apply to the NTCIP DMS appear.

CHART R10 Detailed Design – Rev 3 4-12 08/14/2012

These fields include NTCIP Community and NTCIP HDLC Framing required. For CHART R10

the NTCIP Font field has been removed. The font is now set in the display configuration and the

system ensures it is loaded into the proper slot on the NTCIP DMS device.

4.1.2.2 DMS Details Page

The DMS Details page is changed for CHART R10 to move the display related fields into their

own section, apart from the basic settings section where they used to reside.

4.1.2.3 Change DMS Display Configuration

The display configuration fields shown are from the selected display configuration. If the DMS

is offline, a link to change the selected display configuration will appear. Clicking this link

causes a form to be shown that allows the user to select a different display configuration.

CHART R10 Detailed Design – Rev 3 4-13 08/14/2012

If the user changes the selection, the information pertaining to the selected display configuration

is shown below the select list. The user can click the cancel button to close the window without

selecting a new display configuration, or they can select a new display configuration and click

Submit. After the user submits, a warning page will be shown that shows all DMS messages that

could be affected by the change. The following items could be affected:

 The HAR Notification Message (if any)

 Travel Time / Toll Messages (if any)

 Plan Items that include this DMS (if any)

 Traffic Event Response Plan Items that include this DMS (if any)

If any of these items exist a warning page will be shown that includes an image that shows how

each message will appear with the newly selected display configuration. The user will have the

option to cancel the operation at that point, or to continue, in which case the DMS will be

changed to use the newly selected DMS Display Configuration. An option also exists to allow

the user to refresh the warnings. This allows the user to keep the warning window open while

making changes to other objects (such as the HAR notification message) in the working window

and then use the Refresh Warning button to update the warning message. An example warning

message is shown below:

CHART R10 Detailed Design – Rev 3 4-14 08/14/2012

4.1.2.4 Edit Basic Settings

The Edit Basic Settings page is changed for CHART R10 to remove fields that are now included

as part of the DMS Display Configuration.

The following fields have been removed:

CHART R10 Detailed Design – Rev 3 4-15 08/14/2012

 Has Beacons

 Sign Type

 Display Size (Height and Width, in characters)

 Max Pages

 Character Size (Height and Width, in pixels)

 Font number (was only present for NTCIP model)

 Line Spacing (was only present for NTCIP model)

 Intercharacter Spacing (was only present for NTCIP model)

 Default Page Justification (was only present for NTCIP model)

 Default Line Justification

 Default Page On Time

 Default Page Off Time

4.1.2.5 True Display Images

Throughout the CHART GUI graphics are used to depict how a message looks / will look when

displayed on a DMS. In CHART R10, these images are enhanced to more closely reflect how

the image will appear on the actual DMS. The images will utilize the font as specified in the

DMS’s display configuration. Other display related data will also be used to make the image

more closely match the actual sign, such as the intercharacter and line spacing for full matrix

signs. Gray areas will be used to indicate areas that do not include actual pixels that could be

used to display a message. This includes a margin around the message area that exists for

aesthetics and also areas between characters and/or rows for character and line matrix signs.

Following are examples of the true display images for a character matrix, line matrix, and full

matrix sign.

Character Matrix: Line Matrix:

Full Matrix:

4.1.2.6 Message Fit Checking

Throughout the CHART system there are various editors used to specify DMS messages. Each

is cable of displaying a warning when the message being specified exceeds the size of the DMS.

In CHART R10 this “fit check”, which used to be based solely on the number of characters on a

CHART R10 Detailed Design – Rev 3 4-16 08/14/2012

line in the message and the number of rows in a message, is enhanced to utilize the settings in the

DMS Display Configuration. For line and full matrix signs the determination as to whether or

not a line is too wide will take into consideration the width of each character the user has typed

(to acccomodate variable width fonts), intercharacter spacing, and the width of the sign in pixels.

For full matrix signs, the sign height in pixels, the line spacing, and the font height will be used

to determine the number of rows of text that will fit. CHART R10 will also utilize the Max

Characters Per Row and Max Rows Per Page settings specified in the DMS Display

Configuration to determine if a message is too large for a sign, regardless of whether the

message would otherwise fit on the sign.

This fit checking is not only used in DMS message editors; it is also used within the system at

the point where the message is actually sent to the DMS to ensure truncated messages do not get

sent to a DMS.

4.1.2.7 Edit HAR Notification Message

The DMS Message Editor used to set the message that will be displayed if the DMS is used as a

HAR Notifier does not have any changes to its fields for CHART R10, however its operation is

changed in a couple of ways.

The true display image on this form is enhanced as detailed in section 4.1.2.5 True Display

Images, and the algorithm that checks if a row of text is too long and subsequently causes an

error message to be displayed is enhanced as described in section 4.1.2.6 Message Fit Checking.

CHART R10 Detailed Design – Rev 3 4-17 08/14/2012

4.1.2.8 Add / Edit Travel Time / Toll Message

The form used to add or edit a travel time or toll message does not have any changes to the fields

that appear on the form, however the operation of this form is changed as the result of changes

for a DMS to use a DMS Display Configuration.

Prior to CHART R10, this form would determine the message templates that can be used on the

DMS by matching the row / column size of the template with the row / column size of the DMS.

In CHART R10 the sign width is not specified in character columns for line and full matrix

signs. The sign height is not specified in character rows for full matrix signs. For this reason,

CHART R10 changes the way it determines if a template can be used for a DMS based on the

sign type specified in the DMS Display Configuration.

 If the DMS is character matrix, the same rules used prior to CHART R10 will be used;

the rows / columns specified in the template must exactly match the rows / columns

specified in the sign size.

 For line matrix signs, the rows specified in the template must exactly match the rows

specified for the DMS. The columns specified in the template must be less than or equal

to the minimum number of characters the DMS can display on one line. This is

determined based on the widest character in the font used by the DMS as specified in the

display configuration.

 For full matrix signs, the rows specified in the template must be less than or equal to the

minimum number of rows the DMS is capable of displaying. This is determined using

CHART R10 Detailed Design – Rev 3 4-18 08/14/2012

the font height and line spacing. As is true of line matrix signs, the columns specified in

the template must be less than or equal to the minimum number of characters the DMS

can display on one line. This is determined based on the widest character in the font used

by the DMS as specified in the display configuration.

In addition to changes in determining the templates that are available, this form includes changes

to enhance the DMS message graphic as described in section 4.1.2.5 True Display Images. After

a tempate and data sources are selected, the message fit algorithm used to determine if the actual

message will fit on the DMS is also enhanced as described in section 4.1.2.6 Message Fit

Checking.

4.1.3 DMS Message Libraries

CHART R10 includes a minor change to the message library details page, which is accessed by

clicking on a library name after clicking the Libraries link on the home page.

In the Stored Messages section of the page, under DMS Stored Messages, the column that used

to be named “Min Columns” is now named “Min Characters”. This subtle change is to reflect

the fact that not all DMSs are defined in terms of columns. Each DMS must instead be capable

of displaying the number of characters shown.

The editors used to add and edit DMS stored messages are also changed. Prior to CHART R10,

these editors showed a list of sign sizes (in characters) and allowed the user to see how the

message would look on each different sized sign that exists in the system. The editors would

also turn sign sizes red (and make them unselectable) if the message that is specified will not fit

on that sized sign. If the message being specified became too large for the currently selected

sign size, error messages would be used to indicate the message is too wide, requires too many

rows, or too many pages. In CHART R10 with the support for line and full matrix signs in

CHART R10 Detailed Design – Rev 3 4-19 08/14/2012

addition to the ability to use different fonts, the message editors are changed to show DMS

Display Configurations instead of character based sign sizes and to use the DMS Display

Configurations when checking messge fit and when showing the message graphic.

As was the case when character based sign sizes were used, as the user types the graphic updates

to show how the message appears using the currently selected DMS Display Configuration. As

the system determines the message does not fit a specific DMS Display Configuration, that

display configuration is changed to become red and is no longer selectable. The currently

selected DMS Display Configuration has an asterisk and is blue if the message currently fits (and

turns red when the message no longer fits). If the message doesn’t fit the selected DMS Display

Configuration, an error message appears to state if the message is too wide, uses too many rows,

or too many pages.

CHART R10 Detailed Design – Rev 3 4-20 08/14/2012

The automatic editor contains similar changes to the manual editor shown above, but additionaly

has changes to the formatting algorithm used to automatically format a message. This algorithm

is changed to utilize the properties of the DMS Display Configuration when determining how to

format the message.

4.1.4 DMS Plan Items

CHART R10 includes a minor change related to DMS Plan Items. The Add/Edit DMS Plan Item

page is accessed via the Plans link on the home page and then by clicking the name of a plan,

and finally by clicking on the Add DMS Plan Item(s) link (or Edit for an existing plan item).

CHART R10 Detailed Design – Rev 3 4-21 08/14/2012

After clicking the Add DMS Plan Item(s) link (or an Edit link) the following page appears,

allowing the user to select one or more DMSs that are the target of plan item and to select one

library message.

CHART R10 Detailed Design – Rev 3 4-22 08/14/2012

For CHART R10, the column that used to be named Minimum Columns has been changed to

“Minimum Characters” to reflect the fact that line matrix and full matrix signs do not have a

specific number of character columns. Signs need to be able to display at a minimum this

number of characters across to be able to display the message without truncation. Note that no

other changes are made to this form, the system will continue to allow the user to select a stored

message that is too large for some (or all) of the DMSs selected in the plan. The graphic images

displayed after a plan item is added or edited can be used to determine when this is the case.

4.1.5 DMS Message Templates

DMS Message Templates are accessed via the system profile within the DMS Settings section:

CHART R10 Detailed Design – Rev 3 4-23 08/14/2012

This page is substantially unchanged in CHART R10. Template sizes will continue to be

specified as a number of character rows and columns because templates allow data to be

formatted into columns to cause data to align properly. The only subtle change on this page is

that the message graphics that appear on this page will always be created by using a DMS

Display Configuration for a character matrix sign of the same size as the template, using the

same default fixed width font (7x5) that was used in CHART prior to CHART R10. When a

template is used for a specific DMS, it will be formatted using the display configuration for that

specific DMS.

The form used to add/edit a DMS Message Template is also unchanged for CHART R10 on the

surface.

CHART R10 Detailed Design – Rev 3 4-24 08/14/2012

The message graphic and also the message fit check will be based on a DMS Display

Configuration for a character matrix sign that matches the size of the template and will use a

default fixed-width 7x5 font. Despite the changes under the covers of this form for CHART

R10, the user should notice no differences in the functionality.

4.1.6 DMS Decision Support Templates

The DMS Decision Support Templates list is accessed via the system profile in the Decision

Support Settings section, shown below.

CHART R10 Detailed Design – Rev 3 4-25 08/14/2012

The Example Message shown on this page will be changed for CHART R10 to utilize a default

DMS Display Configuration for a character matrix sign that is large enough to display the

example message. A default fixed width 7x5 font will be used. Users should not notice these

changes; the page will appear as it did prior to CHART R10.

Changes to the Decision Support Template message editor will be more noticable. In CHART

R10 this editor is being changed to show a list of DMS Display Configurations that exist in the

system to allow the user to see how their template will look on each.

CHART R10 Detailed Design – Rev 3 4-26 08/14/2012

A list of DMS Display Configurations is added to the top right portion of the screen. The user

can select a display configuration to see the sample template message using any of the

configurations. If the sample template message does not fit on a DMS Display Configuration

that is listed, it will be colored red and will not be selectable. The currently selected display

configuration will have an asterisk and is colored blue unless the sample message will not fit, in

which case it is colored red. The graphic image will use the properties specified in the display

configuration, including the font.

CHART R10 Detailed Design – Rev 3 4-27 08/14/2012

Prior to the changes for CHART R10, selecting the Maximum Sign Width would cause the

message graphic to change its size. This is no longer the case; the message graphic will only

change when the user selects a new display configuration from the list in the upper right.

As the user specifies the message, the display configurations where the sample message will no

longer fit will change to be colored red and if the sample template message gets to a point where

the message will not fit on the currently selected display configuration, an error message will be

shown to indicate the message is too wide.

All other fields and aspects of this page remain unchanged for CHART R10.

4.1.7 DMS Traffic Event Response Plan Items

CHART R10 changes the editors used for setting the messages on DMSs that are included in the

response plan of a traffic event. Several different flavors of the DMS editor can be used when

setting a DMS message for a traffic event. The system currently supports an auto-editor and

manual editor, and each of those changes slightly depending on whether or not the message is

being set for a single DMS or for multiple DMSs. Each flavor of the editor is discussed below.

4.1.7.1 Manual Editor, Single DMS

CHART R10 includes minimal changes to the editor used to set a DMS message for a single

DMS.

CHART R10 Detailed Design – Rev 3 4-28 08/14/2012

The changes to this editor for CHART R10 are mostly under the covers. The graphic image that

shows the message as it is typed is changed to use properties in the DMS Display Configuration

to create the image, including the font. So while this image currently exists prior to CHART

R10, it will be more accurate in CHART R10. The same is true for the algorithm that determines

if the message typed by the user will fit on the sign. In CHART R10 the properties of the DMS

Display Configuration will be used to more accurately determine if the message will fit. See

section 4.1.2.5 True Display Images and section 4.1.2.6 Message Fit Checking for more details.

4.1.7.2 Auto Editor, Single DMS

The changes to the auto editor for a single DMS are similar to the changes for the manual editor.

The one additional change that doesn’t apply to the manual editor is that the algorithm used to

automatically format the message is changed in CHART R10 to utilize the DMS Display

Configuration properties, including the font, when determining how to format the message.

Again this is a behind the scenes change that users will not likely notice.

4.1.7.3 Manual Editor, Multiple DMSs

The manual editor used to set the message on multiple DMSs is changed in CHART R10 in a

manner similar to the library message editor.

CHART R10 Detailed Design – Rev 3 4-29 08/14/2012

In CHART R10, the list at the upper right of the screen is changed to show the DMS Display

Configurations for the selected DMSs. The user can view how the message will look using any

of the DMS Display Configurations listed. As the user types the system will color a display

configuration red if the message will not fit that configuration. If the message becomes too large

for the currently selected display configuration an error message will be shown. The algorithm

used to determine if the message will fit is changed in CHART R10 to take the properties of the

display configuration into consideration, including the font. See section 4.1.2.5 True Display

Images and section 4.1.2.6 Message Fit Checking for more details.

4.1.7.4 Auto Editor, Multiple DMSs

The auto editor for multiple DMSs contains changes similar to the changes for the manual editor.

CHART R10 Detailed Design – Rev 3 4-30 08/14/2012

The additional change to this version of the editor that is not required of the manual editor is that

the algorithm used to automatically format the message is changed to utilize the properties of the

DMS Display Configuration when determining the message format.

4.1.7.5 Selecting Multiple DMSs

CHART R10 includes a change to the form used to select multiple DMSs when setting a

message for a traffic event that applies to multiple DMSs. This form is accessed from beneath

the list of DMS response plan items.

When the Multiple link is clicked, the system shows a form that allows the user to select the

DMSs whose messages will be edited. CHART R10 enhances this form by adding a column to

show the DMS Display Configuration of each DMS and to allow the user to filter based on that

column. Links are also added to allow the user to select or deselect all of the visible DMSs

(without affecting the selection of the DMSs that are not currently shown due to the filter). The

user can filter and select multiple times to build a selection of DMSs with several different

display configurations.

CHART R10 Detailed Design – Rev 3 4-31 08/14/2012

This feature allows the users to more easily set the message on groups of signs. For example

they could filter the list to include only DMSs with a specific display configuration, select those

DMSs, then set the message. They would then display this form again, filter it to display DMSs

with a different display configuration, select the DMSs, and set the message for those signs.

4.1.8 Other Affected Pages

The following pages are not changed directly in R10, however they are capable of display DMS

True Display images (the same exact image that is shown on the DMS Details Page) and should

be regression tested to ensure the DMS graphic appears correctly.

 Operations Center Report: This report appears when the user first logs in and DMS

graphics can be shown for traffic events using DMSs and for DMSs that are in

maintenance mode.

 View Open Events: This page shows open events and if devices are not hidden will

contain DMS graphics for DMSs used by each traffic event.

 View Folder Details: The page that shows the content of a folder includes a DMS

graphic message for each DMS included in the folder.

 Search Results: If you use the site search and the results include DMSs, a graphic

appears for each DMS to show its current message.

CHART R10 Detailed Design – Rev 3 4-32 08/14/2012

4.2 Video Enhancements

This section describes the human-machine interface for the video enhancements needed to

support decision support features for R10. The two main video enhancements used to support

R10 decision support are Auto Mode monitors and Temporary Presets for Cameras.

Auto Mode monitors are monitors that have been configured to be Auto Mode enabled. When a

monitor is in Auto Mode, it will display a list of cameras and optional presets (Auto Mode Tour

List) in a loop similar to a vide tour. For R10, a monitor’s Auto Mode Tour List entries are

added / removed as part of a traffic event response plan (see R10 Decision Support HMI).

Temporary Presets for cameras are presets that are needed for a short amount of time for a

specific purpose. For R10, temporary presets can be created for a camera as part of a traffic

event response plan (see R10 Decision Support HMI). These presets exist specifically for the

use of the traffic event that created them and can be used in an Auto Mode Tour List entry for an

Auto Mode Monitor. When a temporary preset is no longer needed as part of the response plan,

it will be removed from the camera.

CHART R10 Detailed Design – Rev 3 4-33 08/14/2012

4.2.1 Auto Mode Monitors

This section describes the Auto Mode monitor feature. Auto Mode is a new mode available for

all monitors. Users with the Configure Monitor functional right or the Maintain Monitor Auto

Mode functional right will be able to enable / disable Auto Mode for a monitor (see figures 1 &

2). When a monitor is in Auto Mode it will display the contents of its Auto Mode Tour List.

Note that the list is dynamic and may be empty at any given time. Each entry in the Auto Mode

Tour List will specify a camera, an optional preset (persistent or temporary) and the owner of the

entry. For R10, these entries are owned by traffic events and are used to manage traffic event

response. This list will be displayed on the monitor in a loop similar to a video tour with a

specified dwell time between each image. Entries are added / removed from the Auto Mode

Tour List as part of traffic event’s response plan. Multiple traffic events can use an Auto Mode

monitor. Entries will be grouped by owner (traffic event) and will respect the ordering each

owner specifies when adding entries. The R10 Decision Support HMI describes the use of Auto

Mode monitors in detail.

If an Auto Mode monitor has Auto Mode Tour List entries and has begun displaying them, the

monitor cannot be used for displaying camera/tours or as part of a camera control session.

If an Auto Mode monitor currently has no Auto Mode Tour List entries and is currently being

used to display a camera/tour when Auto Mode Tour List entries are added by a traffic event, the

monitor will start displaying its Auto Mode Tour List. The previous image is replaced. If a

video tour was running, it is stopped. Note: when the last Auto Mode Tour List entry is removed

from the monitor, the system will restore the camera/tour that was being displayed before the

Auto Mode Tour List entries started.

If an Auto Mode monitor currently has no Auto Mode Tour List entries and is currently being

used as part of a camera control session and it is the sole monitor in the controlling user’s local

monitor group being used to display the camera when Auto Mode Tour List entries are added,

the monitor will delay the start of displaying its Auto Mode Tour List until the control session

ends.

CHART R10 Detailed Design – Rev 3 4-34 08/14/2012

Figure 4-1 Enable / Disable Auto Mode link available on Monitor Details page

An “Enable / Disable Auto Mode” link will be available on the Monitors detail page for users

with the Configure Monitor functional right or the Maintain Monitor Auto Mode functional right.

This link will toggle the Auto Mode enabled flag for the monitor (see figure 1).

CHART R10 Detailed Design – Rev 3 4-35 08/14/2012

Figure 4-2 Auto Mode Settings on Configure Monitor Page

A user with the Configure Monitor functional right will be able to toggle the Auto Mode flag for

a monitor using the Configure Monitor page (see figure 2). In addition to configuring the Auto

Mode flag, a user with Configure Monitor functional right will be able to specify the Auto Mode

Dwell Time. This is the time that an image from a monitor’s Auto Mode Tour List will be

displayed before moving to the next image, similar to a dwell time specified for a video tour.

When an Auto Mode monitor has Auto Mode Tour List entries they are listed on the Monitor

Details page in the order they will display on the monitor (see figure 3). Each entry contains a

link to the specified camera, an optional preset (persistent or temporary), and the entry’s owner

(traffic event description).

CHART R10 Detailed Design – Rev 3 4-36 08/14/2012

Figure 4-3 Auto Mode Tour List displayed on Monitor Details page

If a user has the Configure Monitor functional right, a “remove” link will be available for each

entry. This link is not meant to be the normal way an Auto Mode Tour List entry is removed

from a monitor. The owner of each entry (traffic event) will explicitly attempt to remove Auto

Mode Tour List entries when they are no longer needed, i.e., they are no longer required as part

of the traffic events response plan. In the event that a removal fails the system will periodically

validate each entry with its owner. If they are no longer valid, the system will remove the entry.

The “remove” link can be used as a third way of manually removing Auto Mode Tour List

entries if needed. This should be rarely (if ever) used.

Auto Mode Monitors are identified on the Monitor List page by a new sortable/filterable column

specifying whether Auto Mode is enabled (see figure 4).

Figure 4-4 Auto Mode Tour List displayed on Monitor Details page

CHART R10 Detailed Design – Rev 3 4-37 08/14/2012

4.2.2 Camera Temporary Presets

This section describes the Camera Temporary Presets feature for R10. A Temporary Preset is

similar to a “persistent” preset in that it stores a position that a camera can be moved to when

requested. Temporary presets differ from persistent presets in that they exist for the use of a

specific owner for a short time. For R10 temporary presets are owned by traffic events and are

used as part of traffic event response plan video tour response plan items. See R10 Decision

Support HMI for details on how temporary presets are created and used. Temporary presets

exist for the use of the owner and are removed from a camera when they are no longer needed.

If a camera currently has temporary presets they are listed on the camera details page (see figure

5). Each temporary preset has a temporary preset number, a title, the temporary preset’s owner

(traffic event description) and an indicator if it is the active preset.

Figure 4-5 Temporary Presets displayed on Camera Details page

If a user has the Configure Camera functional right, a “remove” link will be available for each

temporary preset. This link is not meant to be the normal way a temporary preset is removed

from a camera. The owner of each temporary preset (traffic event) will explicitly attempt to

remove its temporary presets when they are no longer needed, i.e., they are no longer required as

part of the traffic events response plan. In the event that a removal fails the system will

periodically validate each temporary preset with its owner. If they are no longer valid, the

system will remove the temporary preset. The “remove” link can be used as a third way of

manually removing temporary presets if needed. This should be rarely (if ever) used.

4.2.3 Reject Move to Preset Request

Video Enhancements for R10 include the Reject a Move to Preset feature which addresses an

existing problem by preventing excessive use of camera PTZ units. For example, a video tour

has been started on multiple monitors at different times. Camera / preset changes in the tours are

out of synch causing a high volume of camera movements. This problem has existed in the

system since video tours were added and will be increased with Auto Mode monitors and

Temporary presets.

To address this problem a system wide minimum dwell time will be configured and applied

when a camera receives a move to preset request in the context of a tour (video tour or Auto

Mode monitor). A camera will reject a move to preset request if it has been in its current

CHART R10 Detailed Design – Rev 3 4-38 08/14/2012

position for less than the minimum dwell time. When a move to preset request is received by a

camera in the context of a camera control session, the request will not be rejected.

The minimum dwell time setting is configured by an administrator in the system profile

properties under Video Related Settings (see figure 6).

Figure 4-6 System Profile Settings page for Camera Related Settings.

4.3 Areas of Responsibilty Feature

The purpose of this section is to describe the human-machine interface for the areas of

responsibility features that are being added to the CHART system for R10. In this release the

focus of areas of responsibility is on creating, editing, and removing areas of responsibility, as

well as assigning areas of responsibility to monitors and operations centers. An area of

responsibility can be created by drawing polygons directly on the map. On the monitor and

operations center list pages, the names of associated areas of responsibility will be displayed.

The traffic event details page will also display the names of applicable areas of responsibility

based on the location of the traffic event. The home page map will now display areas of

responsibility that have been assigned to an operations center in separate area of responsibility

specific layers.

4.3.1 Creating, Editing, and Removing an Area of Responsibility

This section describes the features of creating, editing, and removing areas of responsibility that

are available to a user for R10. The areas of responsibility can be accessed via the System Profile

page (see Figure 4-7 below).

Figure 4-7. Accessing the Areas of Responsibility from the System Settings Page.

CHART R10 Detailed Design – Rev 3 4-39 08/14/2012

4.3.1.1 Viewing Areas of Responsibility

The list of areas of responsibility currently in the system can be viewed on the areas of

responsibility list page (see Figure 4-8 below). The table on this page can be sorted by the name

of the areas or responsibility. This page has links at the top and bottom to add a new area of

responsibility. For each area of responsibility in the list, there is link to edit the area of

responsibility and a link to remove the area of responsibility from the system.

Figure 4-8. The Area of Responsibility List Page with Links for Adding, Editing, and

Removing an Area of Responsibility.

4.3.1.2 Creating an Area of Responsibility

The Add Area of Responsibility page (see Figure 4-9 below) can be viewed by clicking on the Add

Area of Responsibility link at either the top or bottom of the area of responsibility list page. In

order to add a new area or responsibility, you must enter a name and color and draw at least one

polygon on the map. Existing areas of responsibility can be viewed by clicking on an entry in the

Display Other AORs list box. Instructions for drawing a polygon on the map are included below

the map.

CHART R10 Detailed Design – Rev 3 4-40 08/14/2012

Figure 4-9. The Add Area of Responsibility Form.

4.3.1.2.1 Entering a Name and Color

The name of the area of responsibility cannot be more than 50 characters long. The color is

selected using the color chooser (see Figure 4-10 below). By clicking in the color text box, the

color chooser will open and the color can be selected by simply clicking on the desired color.

The specified color will be used when polygon(s) for this area of responsibility are displayed on

the map.

Figure 4-10. Entering a Name and Selecting a Color Using the Color Chooser.

4.3.1.2.2 Drawing a Polygon on the Map

On the Add Area of Responsibility page, clicking on the Draw Polygon radio button will put the

map in drawing mode. Using the mouse, a polygon can be drawn directly on the map (see Figure

4-11 below). The polygon is started by first clicking on the map to create the first vertex. Each

mouse click on the map after that will add another vertex at the position of the mouse click. An

CHART R10 Detailed Design – Rev 3 4-41 08/14/2012

edge will be automatically drawn between each vertex. The polygon is completed by double-

clicking on the map to create the last vertex.

Figure 4-11. Drawing a Polygon on the Area of Responsibility Map.

Once the polygon in completed, it will appear on the map in the selected color (see Figure 4-12

below). At this point, the area of responsibility can be saved by clicking on the Save button at the

bottom of the page.

Vertex

Vertex

Edge

CHART R10 Detailed Design – Rev 3 4-42 08/14/2012

Figure 4-12. A Completed Polygon on the Area of Responsibility Map.

Once the area of responsibility has been saved, it will appear in the list on the areas of

responsibility list page (see Figure 4-13 below) with its name and color.

Figure 4-13. The Area of Responsibility List Page with the Newly Added Area of

Responsibility.

CHART R10 Detailed Design – Rev 3 4-43 08/14/2012

4.3.1.3 Editing an Area of Responsibility

An existing area of responsibility can be edited by clicking on the Edit link on the area of

responsibility list page. The Edit Area of Responsibility page will be displayed with the name,

color, and polygon(s). The name can be edited by changing the text in the text box. The color can

be edited by selecting a new color using the color chooser. Polygons can be added, edited, or

deleted directly on the map.

4.3.1.3.1 Adding a New Polygon

On the Add Area of Responsibility page, clicking on the Draw Polygon radio button will put the

map in drawing mode. Using the mouse, additional polygons can be drawn directly on the map

using the process described in section 4.3.1.2.2 (see Figure 4-14 below).

Figure 4-14. Adding Additional Polygons on the Area of Responsibility Map.

4.3.1.3.2 Modifying an Existing Polygon

On the Add Area of Responsibility page, clicking on the Modify Polygon radio button (see

Figure 4-15 below) will put the map in modify mode. Any of the existing polygons on the map

may be reshaped, resized, or moved. In order to modify a polygon, you must click on the

polygon to activate the modifying session. Once you are done modifying, clicking the polygon

(or the map outside of the polygon) will end the modifying session.

CHART R10 Detailed Design – Rev 3 4-44 08/14/2012

Figure 4-15. The Polygon Menu with the Modify Polygon Action Selected.

4.3.1.3.2.1 Changing the Shape of a Polygon

A polygon can be reshaped by clicking on the Reshape radio button and then selecting the

polygon by clicking on it. When a polygon is selected, a small circle will appear at each of the

vertices and at the midpoint of each edge (see Figure 4-16 below). Each of these circles is a

handle that can be dragged by the mouse to edit the shape of the polygon. The circles at the

midpoint of each edge are virtual vertices and will create a new vertex if they are moved. Circles

that appear at the vertices of the polygon can be deleted by hovering the mouse over the circle

and pressing the delete button.

Figure 4-16. Reshaping a Polygon on the Area of Responsibility Map.

4.3.1.3.2.2 Changing the Size of a Polygon

A polygon can be resized by clicking on the Resize radio button and then selecting the polygon

by clicking on it. When a polygon is selected, a small circle will appear near one end of the

polygon (see Figure 4-17 below). This circle is a handle that can be dragged by the mouse to

Vertex

Virtual Vertex

Vertex

CHART R10 Detailed Design – Rev 3 4-45 08/14/2012

resize the polygon. Moving the circle closer to the polygon will cause the polygon to get smaller

and moving the circle further away from the polygon will cause the polygon to get larger.

Figure 4-17. Resizing a Polygon on the Area of Responsibility Map.

4.3.1.3.2.3 Moving a Polygon

A polygon can be moved by clicking on the Move radio button and then selecting the polygon by

clicking on it. When a polygon is selected, a small circle will appear near the center of the

polygon (see Figure 4-18 below). This circle is a handle that can be dragged by the mouse to

move the polygon. Moving the circle will cause the polygon to move in the same direction as the

circle.

CHART R10 Detailed Design – Rev 3 4-46 08/14/2012

Figure 4-18. Moving a Polygon on the Area of Responsibility Map.

4.3.1.3.3 Removing a Polygon

A polygon can be removed by clicking on the Select Polygon radio button and then selecting the

polygon by clicking on it. When a polygon is selected, the Delete button will become enabled

(see Figure 4-19 below). Clicking on the Delete button will remove the polygon from the map.

Figure 4-19. The Polygon Menu with the Select Polygon Action Selected and the Delete

Button Enabled.

4.3.1.4 Viewing Other Areas of Responsibility on the Area of Responsibility Map

When either creating or editing an area of responsibility, the existing areas of responsibility can

be viewed on the area of responsibility map. The list of other areas of responsibility can viewed

in the Display Other AORs list box. Clicking on the name of one or more of the areas of

responsibility will make that area of responsibility visible on the map (see Figure 4-20 below).

Clicking on the Select All link will make all other areas of responsibility visible on the map.

Clicking on the Unselect All link will hide all other areas of responsibility on the map.

CHART R10 Detailed Design – Rev 3 4-47 08/14/2012

Figure 4-20. Viewing Other Areas of Responsibility on the Area of Responsibility Map.

4.3.1.5 Removing an Area of Responsibility

An area of responsibility can be removed from the system by clicking on the Remove link on the

areas of responsibility list page (see Figure 4-8 above). If the area of responsibility is not

associated with any other objects in the system (i.e. Operations Centers or Monitors), a simple

confirmation dialog will be displayed (see Figure 4-21 below). Clicking on the OK button will

remove the area of responsibility from the system.

Figure 4-21. Removal Confirmation Dialog for Unassociated Area of Responsibility.

If the area of responsibility is associated with other objects in the system (i.e. Operations Centers

or Monitors), a list of those associated objects will be displayed on a confirmation page (see

Figure 4-22 below). Clicking on the Yes button will remove the area of responsibility from the

system.

District 5

District 2

CHART R10 Detailed Design – Rev 3 4-48 08/14/2012

Figure 4-22. Removal Confirmation Dialog for Associated Area of Responsibility.

4.3.2 Associating Areas of Responsibility

This section describes the features of associating areas of responsibility that are available to a

user for R10. Each area of responsibility can be associated with one or more operations centers

and one or more monitors. In other words, each operations center and each monitor can have

multiple associated areas of responsibility.

4.3.2.1 Viewing Associated Areas of Responsibility

At the bottom of the monitor details page, there is a section for areas of responsibility (see Figure

4-23 below). Associated areas of responsibility are listed in a table. If no areas of responsibility

have been associated with the monitor, the table contains a message indicating that. This section

contains a View Areas of Responsibility link that displays the Area of Responsibility

Associations form.

Figure 4-23. The Areas of Responsibility Section of the Monitor Details Page.

At the bottom of the operations center details page, there is a section for areas of responsibility

(see Figure 4-24 below) similar to the one on the monitor details page.

Figure 4-24. The Areas of Responsibility Section of the Operations Center Details Page.

4.3.2.2 The Area of Responsibility Association Form

Clicking on the View Areas of Responsibility link (on either the monitor detail page or the

operations center detail page) will open the Area of Responsibility Associations form (see Figure

CHART R10 Detailed Design – Rev 3 4-49 08/14/2012

4-25 below). This form can be used to associate one or more areas of responsibility with either a

monitor or an operations center. Any areas of responsibility that are not associated will be listed

in the Unassociated list box near the top of the page. Any areas of responsibility that are

associated will be listed in the Associated list box near the bottom of the page.

Figure 4-25. The Area of Responsibility Associations Form.

Clicking on the name of an area of responsibility (in either the Unassociated or Associated list

boxes) will cause that area of responsibility to be displayed on the map. The following steps are

required to associate an area or responsibility. First, click on the name of the area of

responsibility in the Unassociated list. The area of responsibility will be displayed on the map to

allow a visual confirmation by the user (see Figure 4-26 below).

CHART R10 Detailed Design – Rev 3 4-50 08/14/2012

Figure 4-26. The Area of Responsibility Associations Form with an Unassociated Area of

Responsibility Selected.

Next, click on the down arrow button (the button on the left) to move the area of responsibility to

the Associated list box. The area of responsibility will now be listed in the Associated list box

and will be displayed on the map (see Figure 4-27 below). The association has not been

completed until the form is submitted. Lastly, click on the OK button to submit the form and

complete the association.

CHART R10 Detailed Design – Rev 3 4-51 08/14/2012

Figure 4-27. The Area of Responsibility Associations Form with One Associated Area of

Responsibility.

Once an area of responsibility has been associated, it will appear in the areas of responsibility

section at the bottom of the monitor or operations center detail page (see Figure 4-28 below).

Figure 4-28. The Areas of Responsibility Section with One Associated Area of

Responsibility.

4.3.2.3 Removing Area of Responsibility Associations

The association for an area of responsibility can be removed in 2 ways. The first method is by

using the Disassociate link in the area of responsibility section at the bottom of the monitor or

operations center detail page (see Figure 4-29 below).

CHART R10 Detailed Design – Rev 3 4-52 08/14/2012

Figure 4-29. The Disassociate Link in the Areas of Responsibility Section.

Clicking on the Disassociate link will display a disassociate confirmation dialog (see Figure 4-30

below). Clicking on the OK button will remove the association.

Figure 4-30. The Disassociate Areas of Responsibility Confirmation Dialog.

The second method is to edit the list of associated areas of responsibility on the Area or

Responsibility Associations form. First, click on the name of the area of responsibility in the

Associated list. The area of responsibility will be displayed on the map to allow a visual

confirmation by the user (see Figure 4-31 below).

Figure 4-31. The Area of Responsibility Associations Form with an Associated Area of

Responsibility Selected.

Next, click on the up arrow button (the button on the right) to move the area of responsibility to

the Unassociated list box. The area of responsibility will now be listed in the Unassociated list

box and will not be displayed on the map (see Figure 4-32 below). The removal of the

association has not been completed until the form is submitted. Lastly, click on the OK button to

submit the form and remove the association.

CHART R10 Detailed Design – Rev 3 4-53 08/14/2012

Figure 4-32. The Area of Responsibility Associations Form with Associated Areas of

Responsibility.

4.3.3 Viewing Areas of Responsibility on the Home Page Map

This section describes the features of viewing areas of responsibility on the home page map that

are available to a user for R10. Areas of Responsibility are visible on the home page map in 2

layers that are grouped under the AORs heading (see Figure 4-33 below). The Home AORs layer

contains the areas of responsibility that are associated with the logged in user’s operations center.

The Other AORs layer contains all other areas of responsibility that are associated with an

operations center.

Figure 4-33. The Home Page Map Layer Switcher Showing the Areas of Responsibility

Layers.

The Home AORs layer is visible on the home page map by default (see Figure 4-34 below).

Areas of Responsibility Layers

CHART R10 Detailed Design – Rev 3 4-54 08/14/2012

Figure 4-34. The Home Page Map with the Home AORs Layer Visible.

The Other AORs layer can be made visible by clicking on the Other AORs checkbox (see Figure

4-35 below).

Figure 4-35. The Home Page Map with All Area of Responsibility Layers Visible.

CHART R10 Detailed Design – Rev 3 4-55 08/14/2012

4.3.4 Applicable Areas of Responsibility on the Traffic Event Details Page

When a traffic event is created, the list of applicable areas of responsibility will be displayed on

the traffic event details page in the Location Information section (see Figure 4-36 below).

Figure 4-36. Applicable Areas of Responsibility on the Traffic Event Details Page.

4.4 Decision Support Feature

The purpose of this section is to describe the human-machine interface for the decision support

features that are being added to the CHART system for R10. In this release the focus of decision

support is on helping the operator to determine the best camera devices to use in response to a

traffic event and to allow the user to create a traffic event response video tour that allows them to

view the cameras, in succession, on monitors that have been assigned an area of responsibility

that includes the location of the traffic event. To that end, the system can be pre-configured with

monitors that are assigned Areas of Responsibility that define the geographic areas that they

should show traffic event response images from. When the decision support subsystem suggests

cameras, the user can add them to the response plan. Doing so will add them to a single response

plan video tour that will always target the monitors that have an AOR assigned that includes the

location of the traffic event. Execution of this response plan item will add the configured

cameras to each targeted monitor. Revoking execution of the response plan, or closing the traffic

event, will remove the cameras from the monitors they have been added to.

CHART R10 Detailed Design – Rev 3 4-56 08/14/2012

4.4.1 Response Plan Video Tour Response Plan Item

This section describes the features of Decision Support that are available to a user for R10. Many

of these features can be seen in the Response Plan section of the Traffic Event Details page (see

Figure 4-37 below).

Figure 4-37. Traffic Event Response Plan Showing Video Tour Response Plan Item.

This response plan item is always shown at the top of the response plan of every traffic event that

supports response plans. The response plan item targets all monitors that have been assigned an

area of responsibility that contains the location of the traffic event. By default the view only

shows the monitor count. To see the complete list of monitors the user can click the “View

Monitors” link (not shown in image). If the user wants to hide the list of targeted monitors they

may click the “Hide Monitors” link shown in the image.

4.4.1.1.1 Camera Control and Temporary Preset Creation

The proposed action column contains the list of cameras, each with an optional preset, that will

be displayed on the target monitors when this response plan item is executed. The user can

utilize the “Edit Tour” link to alter the ordering of this list, remove cameras from the list and

perform other alterations to the list of cameras. Additionally, the user can opt to display the

camera on the desktop, or request control of the camera. Requesting control of the camera from

within the response tour results in a camera control session that will allow the user to create a

new temporary preset that will be used by this response plan video tour (see Figure 4-38, Figure

4-39, and Figure 4-40 below).

CHART R10 Detailed Design – Rev 3 4-57 08/14/2012

Figure 4-38. Camera Control Session Created from a Response Plan Video Tour Item.

When the user presses the “Create Temp Preset” button, the camera creates a new preset position

for whatever it is currently displaying and associates it with the traffic event response video tour.

Figure 4-39 below shows the feedback informing them that the temporary preset was created.

Figure 4-40 below shows the updated traffic event response video tour with the entry using the

newly created temporary preset.

CHART R10 Detailed Design – Rev 3 4-58 08/14/2012

Figure 4-39. Camera Control Session Showing that a Temporary Preset Has Been Created

for the Response Tour Entry.

Figure 4-40. Traffic Event Response Video Tour Entry Using the Newly Created

Temporary Preset.

CHART R10 Detailed Design – Rev 3 4-59 08/14/2012

4.4.1.2 Executing the Response Plan Video Tour

When the response plan video tour has one or more cameras, and one or more target monitors the

“Execute” link will be available. Executing the response plan tour item will result in the cameras

from the tour being added to the each target monitor’s auto mode tour list. These are the

cameras the monitor will display, in tour fashion, when it is in auto mode. If the monitor already

has cameras from a prior execution of this response plan video tour item, they will be replaced

with the current camera/preset list. Figure 4-41 below shows the response plan item display after

the item is executed. The user is shown some textual status letting them know that the cameras

have been added to the monitors, and the revoke execution link becomes available.

Figure 4-41. Traffic Event Response Video Tour Entry Using the Newly Created

Temporary Preset.

4.4.1.3 Revoking Execution of the Response Plan Video Tour

When the user clicks on the “revoke execution” link, the system will remove all cameras for this

traffic event from any auto mode monitor that it had previously added them to (when initially

executed).

4.4.2 Adding Cameras to the Response Plan Video Tour

A user can add cameras to the response plan video tour by searching for cameras, selecting

cameras from a list, or requesting suggestions from the decision support subsystem. Figure 4-42

below shows the panel that allows the user to add cameras.

Figure 4-42. Response Details Panel Showing Options for Adding Cameras to the Response

Plan Video Tour.

4.4.2.1 Adding Cameras by Selecting from a List

When the user presses the “Select Cameras” button they are shown a list of cameras ordered by

distance from the traffic event location (see Figure 4-43 below). All distances are shown using

straight line miles. Cameras that have no location are shown at the bottom of the list. Selecting

any cameras in the list will add them to the response plan video tour.

CHART R10 Detailed Design – Rev 3 4-60 08/14/2012

Figure 4-43. Select List of Cameras to Add, Ordered by Distance from Traffic Event.

4.4.2.2 Adding Cameras by Searching

Alternatively the user may enter search text and press the “Search” button. The search can be

limited to only cameras, or can include DMS, HAR, camera devices and pre-defined plans. See

Figure 4-44 below to see the results of a search. Again cameras can be selected from the search

results page and added to the response plan video tour.

CHART R10 Detailed Design – Rev 3 4-61 08/14/2012

Figure 4-44. Adding Cameras to the Response Plan Video Tour by Searching.

4.4.2.3 Adding Suggested Cameras

The user may also request the suggested cameras for the traffic event response tour by clicking

the “Suggest” button. The suggested cameras are shown on the “Cameras” tab of the suggestions

form (see Figure 4-45 below).

When cameras are suggested they are ordered by more than just their distance from the traffic

event. The system also takes into account whether the camera is on the same route and same

direction as the traffic event. This information is provided in the Proximity column. Devices

that are close enough to the traffic event to be within the configured “immediate” distance

category are ordered by distance from the traffic event. Devices that are outside the immediate

distance category are ordered such that upstream (same route, same direction, upstream) cameras

are suggested with a higher score (above) cameras that are within the same distance category but

have a proximity other than upstream.

The user may select one or more camera and add them to the response plan video tour by

clicking the “Add Selected to Response Tour” button. The user can also remove the selected

suggestions. Doing so will remove them from the suggestions form. If the user checks the

“Permanently” check box, the camera will be removed and will not be suggested again for the

life of this traffic event, or until the user takes action to undo the removal.

CHART R10 Detailed Design – Rev 3 4-62 08/14/2012

Figure 4-45. Adding Suggested Cameras to the Response Plan Video Tour.

4.4.3 Viewing/Editing the Response Plan Video Tour

When viewing the traffic event response plan, the user can click the “Display on Desktop” link

(see Figure 4-46 below) to display the cameras as a desktop video tour. When this is done, the

desktop tour will only show the cameras that are eligible for desktop display and will not utilize

any configured presets.

Figure 4-46. Viewing and Editing the Response Plan Video Tour.

The user can also choose to edit the response plan video tour by clicking the “Edit Tour” link

(see Figure 4-46 above). Doing so will result in the user seeing the response tour details page

shown in Figure 4-47 below.

CHART R10 Detailed Design – Rev 3 4-63 08/14/2012

Figure 4-47. Editing the Response Plan Video Tour.

From the response tour details page the user can click links to get to the camera details page,

display the camera on the desktop, or request control of the camera. Camera control sessions

created from this page will also allow the creation of temporary presets for the tour entry as was

discussed in section 2.1.1 above.

Additionally the user can change the order of the tour entries using the “Move Up” and “Move

Down” links. Moving a tour entry up will move it to the position prior to the entry that is

currently above it. Moving down will move the entry to the entry that is currently below it. The

user may also use the “Remove” link to remove an entry from the tour. They may also use the

“Duplicate” link to add a new entry to the end of the tour that uses the same camera. It is

expected that this might be useful when the same camera can be used to view the scene of an

incident and view the upstream delaysWhen this is done the newly added entry will not use any

preset by default. The user can then select a preset for the tour entry as described below.

The user can also select a different preset for the each response tour entry that uses a camera that

supports presets. Figure 4-48 below shows that the user can select no preset, choose to create a

temporary preset (“Create Preset Now” menu item), or can select a preset that is already defined

for the camera.

CHART R10 Detailed Design – Rev 3 4-64 08/14/2012

Figure 4-48. Changing the Preset for a Tour Entry.

4.4.4 Configuring Decision Support Video Settings

An administrator may configure the distances that the system will utilize when finding cameras

to suggest. As was done in R9 for DMS devices, the distances are split into three distinct

categories: immediate, near and far. The administrator can configure the max distance that a

camera can be away from the traffic event location to be considered in each category. The

administrator can also configure the % of lanes that must be closed for the system to suggest

cameras in the category. Using Figure 4-49 below as an example the system would suggest

cameras within 3 miles if the traffic event has < 10% of available travel lanes closed. If between

10% and 25% of the lanes are closed the system will suggest cameras up to 5 miles away. If the

traffic event has over 25% of the available lanes closed the system will suggest cameras up to 8

miles away from the event location.

CHART R10 Detailed Design – Rev 3 4-65 08/14/2012

Figure 4-49. Configuring Camera Distance Settings.

4.5 Integrated Notification Feature

This section describes the features of R10 related to the Integration Notification Feature.

4.5.1 Configuring Notification Functional Rights

This section describes the new functional rights added to provide granular control of notification

configuration. (See Figure 4-50 below)

CHART R10 Detailed Design – Rev 3 4-66 08/14/2012

Figure 4-50. Newly added notification related functional rights

The following table describes the functions of the new functional rights.

Right Name Control

Configure a Notification Contact’s Email This right allows the holder to configure the

email address of a notification contact.

Configure Notification Contacts This right allows the holder to perform all

configuration operations on notification

contacts.

Configure Notification Group and Contact

Associations

This right allows the holder to configure the

association between contacts and groups

Configure Notification Groups This right allows the holder to perform all

configuration operations on notification groups

View Notification Recipients This right allows the holder to view

notification contacts and groups.

4.5.2 Viewing, Creating, Editing, and Removing a Notification Contact

This section describes the features of creating, editing, and removing notification contacts that

are available to an operator for R10. The notification contacts can be accessed via the System

Profile page (see Figure 4-51 below).

CHART R10 Detailed Design – Rev 3 4-67 08/14/2012

Figure 4-51. Accessing the Notification Contacts from the System Settings Page.

4.5.3 Viewing Notification Contacts

In R10, the list of notification contacts can be viewed on the notification contacts list page (see

Figure 4-52 below). The list allows sorting by clicking on a column header, and filtering by

using the select box beneath the column header, or the search contacts box. The following

columns are available.

The list of contacts can be filtered by a text string that matches the contact name or email

address. Rows that don’t match the search criteria are not displayed. The name, email, groups,

and last updated columns are shown by default. This page has links at the top and bottom to add

a new notification contact. For each notification contact in the list, there is link to edit the

notification contact and a link to remove the notification contact from the system. An operator

can view the list of notification contacts if they have the right to view notification contacts.

Figure 4-52. The Notification Contacts List Page with Links for Adding, Editing, and

Removing a Notification Contact.

CHART R10 Detailed Design – Rev 3 4-68 08/14/2012

Column

Name

Description Sortable Filterable

Last Name The last name of the contact. YES YES

First Name The first name of the contact. YES YES

Agency The agency name. YES YES

Email

Address

The email address of the contact. YES YES

Notification

Groups

The notification groups this contact is a

member of

YES YES

Last Updated The time the contact was last updated or added. YES NO

Action This column contains links for actions that can

be performed on a notification contact. Links

for editing and removing contacts exist.

NO NO

4.5.4 Creating a Notification Contact

The Add Notification Contact form can be viewed by clicking on the Add Notification Contact

link at either the top or bottom of the notification contacts list page. (see Figure 4-53 below) In

order to add a new notification contact you must specify an email address. Groups can be

optionally specified. An operator with the right to configure notification contacts can add

notification contacts.

CHART R10 Detailed Design – Rev 3 4-69 08/14/2012

Figure 4-53. The Add Notification Contact Form.

4.5.5 Choosing Notification Groups

When adding a notification contact, groups which this contact is a member of can be specified.

Items can be moved between the Available and Selected lists using the buttons between the lists.

(See Figure 4-54 below)

CHART R10 Detailed Design – Rev 3 4-70 08/14/2012

Figure 4-54. Choosing notification groups for a notification contact

Once the notification contact has been added, it will appear in the list of notification contacts.

4.5.6 Editing a Notification Contact

An existing notification contact can be edited by clicking on the Edit link on the notification

contact list page. The Edit Notification Contact page will be displayed with the agency name,

first and last name, email address, and selected notification groups. (See Figure 4-55 below) The

date/time the contact was last modified is shown. The name can be edited by changing the text in

the text box if the operator has the right to manage notification contacts. The email address can

be edited by changing the text in the text box if the operator has the right to configure a

notification contact’s email address. The notification groups can be edited if the operator has the

right to configure notification contact and group associations.

CHART R10 Detailed Design – Rev 3 4-71 08/14/2012

Figure 4-55. The form for editing a notification contact.

4.5.7 Removing a Notification Contact

A notification contact can be removed by clicking on the remove link in the list of notification

contacts. A confirmation will be shown. When the OK button is selected, the contact is

removed. (See Figure 4-56 and Figure 4-57 below)

CHART R10 Detailed Design – Rev 3 4-72 08/14/2012

Figure 4-56. The list of notification contacts with the remove link highlighted

Figure 4-57. Removal confirmation dialog for a notification contact

4.5.8 Viewing,Creating, Editing, and Removing a Notification Group

This section describes the features of creating, editing, and removing notification contact groups

that are available to an operator for R10. The notification contact groups can be accessed via the

System Profile page (see Figure 4-58 below).

CHART R10 Detailed Design – Rev 3 4-73 08/14/2012

Figure 4-58. Accessing the notification groups from the system settings page

4.5.9 Viewing Notification Groups

The list of notification groups currently in the system can be viewed on the notification groups

list page (see Figure 4-59 below).

An operator can view the list of notification groups if they have the right to view notification

groups.

Figure 4-59. Viewing the list of notification groups

The following columns are available.

Column Name Description Sortable Filterable

Group Name The name of the

notification group,

assigned when it was

YES NO

CHART R10 Detailed Design – Rev 3 4-74 08/14/2012

created or edited.

Group Members The members that are

contained in this

group.

NO NO

Actions This column contains

links for actions that

can be performed on a

notification group.

Links for editing and

removing groups

should exist.

NO NO

4.5.10 Creating a Notification Group

The Add Notification Group form (see Figure 4-60 below) can be viewed by clicking on the Add

Notification Group link at either the top or bottom of the notification groups list page. In order to

add a new notification group, you must specify a name. Contacts can be optionally added. The

list of contacts is filterable by a text term. An operator with the right to configure notification

groups can add notification groups.

CHART R10 Detailed Design – Rev 3 4-75 08/14/2012

Figure 4-60. Viewing the add notification group form

4.5.11 Choosing Notification Contacts

When adding a notification group, contacts can be specified. Items can be moved between the

Available and Selected lists using the buttons between the lists. The list of available contacts can

also be filtered using a text term entered in the quick find box. (See Figure 4-61 below)

CHART R10 Detailed Design – Rev 3 4-76 08/14/2012

Figure 4-61. Selecting contacts for a notification group

4.5.12 Editing a Notification Group

An existing notification group can be edited by clicking on the Edit link on the notification group

list page. The Edit Notification Group page will be displayed with the group name, and selected

notification contacts. The name can be edited by changing the text in the text box if the operator

has the right to manage notification groups. The group contacts can be edited if the operator has

the right to configure notification group and contact associations. (See Figure 4-62 Below)

CHART R10 Detailed Design – Rev 3 4-77 08/14/2012

Figure 4-62. The edit notification group form

4.5.13 Removing a Notification Group

A notification group can be removed by clicking on the remove link in the list of notification

groups. A confirmation will be shown. When the OK button is selected, the group is removed.

(See Figure 4-63 and Figure 4-64 below)

CHART R10 Detailed Design – Rev 3 4-78 08/14/2012

Figure 4-63. The Notification Groups list with the Remove link

Figure 4-64. The group removal confirmation

4.6 Miscellaneous Changes from PRs

This section describes the miscellaneous screen changes for R10, mostly due to PRs.

4.6.1 " Listen" Links For HAR Messages (LevA689)

"Listen" links are being added to the Response Plan section of the Traffic Event Details page and

the Library Details page, to allow users to listen to audio without bringing up the Java applet for

editing audio. (See Figure 4-65 and Figure 4-66 below)

CHART R10 Detailed Design – Rev 3 4-79 08/14/2012

Figure 4-65 "Listen" link on the Traffic Event Details page

Figure 4-66 "Listen" link on the Library Details page

Figure 4-67 "Listen" link on the Plan Details page

4.6.2 Watchdog Low Memory Monitoring (LevA974)

The Watchdog Service is being enhanced to monitor other services to detect a low memory

condition. Such a condition is now classified generically as a "Warning", and support is being

added to the Watchdog Service to tell it how to react when warning conditions are detected. The

new configuration settings for Warnings is reflected on the CHART Service Monitoring Details

page (See Figure 4-68 and Figure 4-69 below). The Watchdog can auto restart the service, and the

Auto Restart on Warning flag and timeout configuration settings are shown. Service Alerts can

be sent for Warning conditions, and those settings are shown. Notifications can also be sent for

Warning conditions, and those settings are shown as well. Note that multiple notification groups

can now be specified for auto restarts, warnings, and failures, as shown in the screenshot below.

(The ability to specify multiple notification groups is included here but is part of LevA1014)

CHART R10 Detailed Design – Rev 3 4-80 08/14/2012

Figure 4-68 CHART Service Monitoring Details page – Warning Settings (part 1)

CHART R10 Detailed Design – Rev 3 4-81 08/14/2012

Figure 4-69 CHART Service Monitoring Details page – Warning Settings (part 2)

The CHART Service Details page shows the status for the monitored service, and is being updated to show the

Warning status details (See Figure 4-70 below). The Status shows "Warning" when a low memory condition is

detected. The number of auto restarts due to warnings is now shown. The total number of queries that returned a

warning state, and the percentage of queries returning a warning are also shown. The last time an auto restart was

attempted as a result of a warning is shown, as are the times of the last nofication and alert creation attempts. Lastly

the status details text indicates the threshold and current memory level, if the service is in a warning state.

CHART R10 Detailed Design – Rev 3 4-82 08/14/2012

Figure 4-70 CHART Service Details with warning status

4.6.3 Incident / Planned Closure Events: Lat/Long No Longer Required After GIS

Error (LevA1012)

The Event Details page is being changed to no longer require a latitude/longitude to be specified

before closing an Incident or Planned Closure event, if there was a recent error querying the GIS

or Mapping GIS services. (See Figure 4-70 below). The Close button is displayed and a message

is displayed indicating that Lat/Long is not required.

CHART R10 Detailed Design – Rev 3 4-83 08/14/2012

Figure 4-70 Event Details page, with Lat/Long not required to close event

4.6.4 Notification Recipients Listed in Event History Log (LevA1079)

The traffic event history log entries for notifications sent from the context of a traffic event are

being changed to include the notification recipients to which the operator attempted to send

notifications. (See Figure 4-71 below)

Figure 4-71 Event history log entries showing notification recipients

4.6.5 Notification Details: Individuals Listed in Table (LevA1101)

The Notification Details page is changing to show the status for individuals, whether the

individual was specified as an individual or as part of a group when sending the notification.

CHART R10 Detailed Design – Rev 3 4-84 08/14/2012

The agency is also listed. Not that multiple groups are now supported (as part of LevA1014).

(See Figure 4-72 below)

Figure 4-72 Notification Details showing individuals in table

4.6.6 Lane Status Editing on Event Details Page (LevA1130)

The Event Details page is changing to allow operators to change lane status without opening the

Edit Road Configuration popup window. (See Figure 4-73 below) (Selecting the initial lane

configuration and/or adding or removing lanes must still be done via the Edit Road

Configuration popup window, however). The operator will be able to click on lanes to select

them, and then click one of the buttons below to alter the state of the selected lanes. The most

frequently used buttons will be Open, Closed, and Unknown to mark the status of the lanes. If

all lanes are open, the All Open button can be clicked (without selecting lanes). To record

traffic flow other than the default, the arrow buttons can be used to specify the traffic flow

direction. The Edit Time Changed button allows the operator to specify when the lane state was

changed.

CHART R10 Detailed Design – Rev 3 4-85 08/14/2012

Figure 4-73 Lane state editing on Event Details page

4.6.7 Notification: Support Sending to Multiple Groups (LevA1014)

The system is being upgraded to support the ability to send notification to multiple notification

groups everywhere a single group was used prior to R10, including: device failure notifications

(for DMS, HAR, and SHAZAM), external event notifications, external connection failure

notifications, travel routes (travel time and/or toll rate notifications), and Watchdog notifications.

For example, DMS configuration will allow multiple notification groups for failures. (See Figure

4-74 and Figure 4-75). The DMS Details page shows the multiple groups, and the DMS Alert And

Notification Settings page allows multiple groups to be assigned.

Other places in the system are similar to DMS, except the Watchdog, which uses groups

specified in its configuration files. (For watchdog screens, see Watchdog Low Memory Monitoring

(LevA974) above).

Figure 4-74 DMS Details page – Failure notification groups

CHART R10 Detailed Design – Rev 3 4-86 08/14/2012

Figure 4-75 DMS Alert And Notification Settings

4.6.8 Add Incident Type: Weather Closure, Utility (LevA1134)

A new Incident Type is being added: Weather Closure, Utility. The Incident Type also becomes

part of the traffic event name, as it does for the previously existing incident types. (See Figure 4-76

below)

Figure 4-76 Incident Type: Weather Closure, Utility

4.6.9 Add Action Event Action Types: Signal Involved In Crash, Signal Twisted

(LevA1135)

Two new Action types are being added: Signal Involved in Crash and Signal Twisted. The new

actions also become part of the traffic event name, as they do for the previously existing action

types. (See Figure 4-77 below)

CHART R10 Detailed Design – Rev 3 5-87 08/14/2012

Figure 4-77 Action Types: Signal Involved In Crash, Signal Twisted

5 Deprecated Functionalities

R10 retires the use of the Attention!CC product for notifications. E-Mail notification has been

built into the CHART Notification Service and new features have been added for contact and

contact group management, replacing the functionality that was formerly provided by the

Attention!CC tool.

CHART R10 Detailed Design – Rev 3 6-1 08/14/2012

6 Acronyms/Glossary

Area of Responsiblity A geographic area that can be assigned to an operations center or monitor in

order to define a boundary for information that the entity is responsible

for/most interested in.

AOR Area of Resonsibility

DMS Display Configuration Configuration information that pertains to properties of the display

characteristics of a DMS, such as its sign type, size, and font.

GIS Geographic Information System (GIS) is any system that captures, stores,

analyzes, manages, and presents data that are linked to location

Home Page Map The map component shown on the home page of the CHART user interface.

Integrated Map The mapping components that are part of the CHART user interface.

Intranet Map The CHART Mapping application that is not integrated into the CHART

user interface.

Location Alias A pre-defined location (lat/lon) that has been stored with some name

attributes to allow operators to utilize the location repeatedly.

Maintenance Portal A customized version of the CHART GUI tailored to device maintenance

personnel.

Nearby Devices Map Map shown on the details page for a traffic event that shows only the target

traffic event and the devices that are near it.

NTCIP National Transportation Communications for ITS Protocol. A family of

standards designed to achieve interoperability and interchangeability

between computers and electronic traffic control equipment from different

manufacturers.

Object Location Map Map component that is used in conjunction with the object location form

when setting the location of a traffic event or device.

Open Layers Open source JavaScript mapping API utilized by the integrated map

components in the CHART GUI.

REST Representational State Transfer - a web services architecture style used in

CHART that leverages web technologies such as http and XML

RWIS Roadway Weather Information System

Standard GUI The CHART GUI when not accessed via the maintenance portal.

TSS Transportation Sensor System

WMS A Web Map Service (WMS) is a standard protocol for serving georeferenced

map images over the Internet that are generated by a map server using data

from a GIS database.

CHART R10 Detailed Design – Rev 3 7-1 08/14/2012

7 Mapping To Requirements

The following table shows how the requirements in the CHART R10 Requirements document map to design elements contained in

this design.

Tag Requirement Feature Use Cases Other Design Elements

SR1 ADMINISTER SYSTEMS AND

EQUIPMENT

 N/A N/A

SR1.1 ADMINISTER CHART

ORGANIZATIONS, LOCATIONS,

AND USERS..

 N/A N/A

SR1.1.1 MAINTAIN CHART

ORGANIZATIONS AND

GEOGRAPHIC AREAS OF

RESPONSIBILITY. The system shall

allow the user to separately specify

organizations, types of locations, and

geographic areas of responsibility, and

to associate them to each other.

 N/A N/A

SR1.1.1.2 MAINTAIN GEOGRAPHIC AREAS

OF RESPONSIBILITY

 N/A N/A

SR1.1.1.2.1 DELETED The system shall allow the

system administrator to add, modify, and

delete the types of areas of

responsibility. Suggestions/examples to

be validated: “geo- or map-driven” (used

for regions, jurisdictions, etc.) "state-

wide/none", "non-Maryland".

AOR N/A N/A

SR1.1.1.2.2 The system shall allow a user to create a

name for each area of responsibility.

AOR AddAOR EditAOR

RemoveAOR

AORUtilClasses CD AORReqHdlr:addAOR SD

SR1.1.1.2.5 The system shall allow a user with the

configure system functional right to add,

modify, and delete areas of

responsibility.

AOR AddAOR EditAOR

RemoveAOR

AORUtilClasses CD AORServletClasses CD

AORReqHdlr:addAOR SD

AORReqHDlr:getAddAORForm SD

AORReqHdlr:viewRemoveAORPage SD

AORReqHdlr:removeAOR SD

SR1.1.1.2.5.1 The system shall prompt the user for

confirmation before removing an area of

responsibility from the system.

AOR RemoveAOR AORReqHdlr:viewRemoveAORPage SD

CHART R10 Detailed Design – Rev 3 7-2 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR1.1.1.2.5.2 The system shall display a list of

referenced objects to the user before

removing an area of responsibility from

the system, if the area of responsibility is

referenced in the system.

AOR RemoveAOR AORReqHdlr:viewRemoveAORPage SD

SR1.1.1.2.6 The system shall allow a user to specify

a color for each area of responsibility

that will be used when displaying the

area of responsibility on the map.

AOR AddAOR EditAOR AORReqHdlr:addAOR SD

SR1.1.1.2.7 The system shall allow a user to define

one or more polygons for each area of

responsibility.

AOR AddAOR EditAOR AORReqHdlr:addAOR SD

SR1.1.1.2.7.1 The system shall allow a user to add,

modify, and delete polygons directly on

the map.

AOR AddAOR EditAOR Use Case Only

SR1.1.1.2.7.1.1 DELETED A geographical area shall

include a name.

AOR N/A N/A

SR1.1.1.2.7.1.2 A polygon shall be specified as an array

of vertices in geographical

(latitude/longitude) coordinates.

AOR AddAOR EditAOR Use Case Only

SR1.1.1.2.7.1.2.

5

DELETED The system shall allow a

user to define a polygon by specifying

the geographical (latitude/longitude)

coordinates as freeform text.

AOR N/A N/A

SR1.1.1.2.7.1.2.

5.1

DELETED The system shall allow a

user to add a point to the polygon by

specifying geographical coordinates as

freeform text.

AOR N/A N/A

SR1.1.1.2.7.1.2.

5.2

DELETED The system shall allow a

user to modify the coordinates of a point

in the polygon as freeform text.

AOR N/A N/A

SR1.1.1.2.7.1.2.

5.3

DELETED The system shall allow a

user to remove a point from the

polygon.

AOR N/A N/A

SR1.1.1.2.7.1.2.

6

DELETED The system shall allow a

user to define the polygon by importing

a file in Keyhole Markup Language

(KML) format.

AOR N/A N/A

CHART R10 Detailed Design – Rev 3 7-3 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR1.1.1.2.7.1.3 The system shall allow a user to add a

polygon directly on the map.

AOR AddAOR EditAOR Use Case Only

SR1.1.1.2.7.1.3.

1

The system shall allow a user to add a

point to the polygon on the map.

AOR AddAOR EditAOR Use Case Only

SR1.1.1.2.7.1.3.

2

The system shall allow a user to resize

the polygon on the map.

AOR AddAOR EditAOR Use Case Only

SR1.1.1.2.7.1.3.

3

The system shall allow a user to move

the polygon on the map.

AOR AddAOR EditAOR Use Case Only

SR1.1.1.2.7.1.3.

4

The system shall allow a user to remove

a point from the polygon on the map.

AOR AddAOR EditAOR Use Case Only

SR1.1.1.2.7.1.4 The system shall allow a user to modify

a polygon directly on the map, following

the same rules as when adding a polygon

(see 1.1.1.2.7.1.3).

AOR AddAOR EditAOR Use Case Only

SR1.1.1.2.7.1.5 The system shall allow a user to delete a

polygon from the map.

AOR AddAOR EditAOR Use Case Only

SR1.1.1.4 Maintain Centers N/A N/A

SR1.1.1.4.3 A Center shall have zero or more

defined geographical areas of

responsibility.

AOR AssociateAORWithOp

Center

ResourceManagement IDL ResourseClasses CD

SR1.1.1.4.3.1 The system shall allow a user with the

configure system functional right to

assign one or more areas of

responsibility to the Center.

AOR AssociateAORWithOp

Center

ResourceManagement IDL ResourseClasses CD

AORServletClasses CD

SR1.1.1.4.3.2 The system shall allow a user with the

configure system functional right to

remove associated areas of responsibility

from the Center.

AOR AssociateAORWithOp

Center

ResourceManagement IDL ResourseClasses CD

AORServletClasses CD

SR1.1.1.5 DELETED - THESE ARE COVERED

UNDER 1.6 Maintain Organization

Roles and Contacts <deleted> *.

Notificati

on

N/A N/A

SR1.1.1.5.1 DELETED - The system shall allow the

system administrator to define role types

(relative to events for which they would

be notified or asked to respond, not

necessarily business title).

Suggestion/example to be validated:

“MEMA State Commander”.

Notificati

on

N/A N/A

CHART R10 Detailed Design – Rev 3 7-4 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR1.1.1.5.2 DELETED - The system shall allow the

system administrator to view point of

contact information including default

notification method. This includes e-

mail, phone number, fax number. *

Notificati

on

N/A N/A

SR1.1.1.5.3 DELETED - The system shall allow

users to maintain contact information for

notification recipients. *

Notificati

on

N/A N/A

SR1.1.1.5.3.1 DELETED - The system shall allow

users to maintain contact groups. *

Notificati

on

N/A N/A

SR1.1.1.5.3.1.1 DELETED - The contact group shall

include a list of contacts.

Notificati

on

N/A N/A

SR1.1.1.5.3.1.2 DELETED - 1.1.1.5.3.1.2 The contact

group shall include, for each contact, an

indication of which types of notification

should be sent to that contact (fax, page,

email, voice, instant message). (R3B3)

Notificati

on

N/A N/A

SR1.1.1.5.3.2 DELETED - The system shall obtain the

contact information for all available

contacts. *

Notificati

on

N/A N/A

SR1.1.1.5.4 DELETED - The system shall allow the

system administrator to enter the

corresponding escalation point of

contact information for each point of

contact into the Notification Tool.

Suggestion/example to be validated e-

mail, phone number, fax number; and

indicate default notification method. *

Notificati

on

N/A N/A

SR1.1.1.5.5 DELETED - The system shall allow the

system administrator to assign an

individual contact to one or more contact

groups via the Notification Tool. *

Notificati

on

N/A N/A

CHART R10 Detailed Design – Rev 3 7-5 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR1.2 MAINTAIN DICTIONARIES AND

MESSAGE LIBRARIES. The system

shall allow the system administrator to

manage the dictionaries of acceptable

and unacceptable words and phrases,

create (and maintain) message libraries

of prepared messages, and create (and

maintain) templates of typical DMS and

HAR messages. Suggestion/example to

be validated: "Congestion at XXX, Exit

YYY".

 N/A N/A (Heading)

SR1.2.2 CREATE MESSAGE LIBRARIES N/A N/A (Heading)

SR1.2.2.6 The system shall allow each message

library to have one or more messages.

 N/A N/A (Unchanged for R10)

SR1.2.2.6.1 DELETED (Was: The navigator shall

provide a DMS message library group in

the tree view for each DMS message

library.)

DMS N/A N/A (DELETED)

SR1.2.2.6.2 DELETED (Was: Clicking on the DMS

Message Library group shall cause all

DMS library messages stored in the

selected library to be displayed in the list

view.)

DMS N/A N/A (DELETED)

SR1.2.3 CREATE MESSAGE LIBRARY

ENTRY

 N/A N/A (Heading)

SR1.2.3.2 CREATE DMS MESSAGE LIBRARY

ENTRY

 N/A N/A (Heading)

SR1.2.3.2.9 The system shall enforce the message

format rules

DMS Add DMS Stored

Message

N/A (Unchanged for R10)

SR1.2.3.2.9.5 The DMS message editor shall show the

operator an updating view of the

message text formatted for one of the

DMS Display Configurations listed (one

that fits the message), with the option to

view the message using other DMS

Display Configurations. [MODIFIED

IN R10]

DMS Add DMS Stored

Message

chartlite.servlet.dms:getDMSEditorImage SD

CHART R10 Detailed Design – Rev 3 7-6 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR1.2.3.2.9.6 The DMS message editor shall inform

the operator if the entered message text

would be truncated when formatted to fit

any of the DMS Display Configurations

listed. [MODIFIED IN R10].

DMS Add DMS Stored

Message

chartlite.servlet.dms:getDMSEditorImage SD

SR1.2.3.2.9.8 The system shall format message text for

display on a DMS when using the Auto

DMS Message Editor. [MODIFIED IN

R10]

DMS Add DMS Stored

Message

chartlite.servlet.dms:getDMSEditorImage SD

SR1.2.3.2.9.9 The system shall employ rules for

formatting route type and route number

information when using the Auto DMS

Message Editor. [MODIFIED IN R10]

DMS Add DMS Stored

Message

N/A (Unchanged for R10)

SR1.2.3.2.9.10 Each DMS shall use only one font for

displaying DMS messages, as specified

in the DMS's Display Configuration.

[MODIFIED IN R10]

DMS Add DMS Stored

Message

chartlite.servlet.dms:getDMSEditorImage SD

SR1.2.3.2.10 The system shall prevent the user from

entering text that results in a message

that will not fit the Display

Configuration specified for the DMS.

[MODIFIED IN R10]

DMS Add DMS Stored

Message

chartlite.servlet.dms:getDMSEditorImage SD

SR1.2.3.2.10.3 The system shall display the length for a

DMS library message, in characters.

[MODIFIED IN R10]

DMS View Message Library

Details

Prototype only (shows changed column name)

Existing min columns calculation will work.

SR1.2.3.2.16 View DMS Stored Message View Message Library

Details

N/A (Heading)

SR1.2.3.2.16.7 The system shall show the minimum

number of characters a DMS must be

able to display on a single line to be able

to display the message. [MODIFIED IN

R10]

DMS View Message Library

Details

Prototype only (shows changed column name)

Existing min columns calculation will work.

SR1.2.4 CREATE DMS/HAR MESSAGE

TEMPLATE

 N/A N/A (Heading)

CHART R10 Detailed Design – Rev 3 7-7 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR1.2.4.1 DELETED - covered by 6.1.2.3 and

others. (Was: The system shall allow

the user to create standard templates for

DMS messages (similar to the HAR

templates that are currently available).)

DMS N/A N/A (DELETED)

SR1.2.4.2 DELETED - covered by 6.1.2.3 and

others. (Was: The system shall allow

the user to create a standard message

template format for each type of DMS

(e.g., for number of lines).)

DMS N/A N/A (DELETED)

SR1.4 MANAGE CHART CONTROL N/A N/A

SR1.4.2 PERFORM SHIFT HAND-OFF

(INCOMING) AND VIEW

OPERATIONS CENTER HOME

PAGE

 N/A N/A

SR1.4.2.3 The system shall allow the user (once

the initial login and shift hand off are

complete), to view the Operations

Center home page.

 N/A N/A

SR1.4.2.3.6 The home page shall contain an area

used to view open events for the user’s

areas of responsibility.

AOR N/A N/A

SR1.4.2.4 The system shall display (by default) all

the open events for the user's areas of

responsibility, by event type on the

Operations Center home page.

AOR N/A N/A

SR1.4.2.12 View Home Page N/A N/A

SR1.4.2.12.2 View Home Page Map N/A N/A

SR1.4.2.12.2.15 The system shall allow a user to click on

the home page map and display a list of

the applicable areas of responsibility

based on the location of the click.

AOR ViewAORs

ViewAORsAtLocation

AORUtilClasses CD

SR1.4.2.12.2.16 The system shall allow the user to view

any layer(s) containing areas of

responsibility in the home page map

view.

AOR ViewAORs

ViewAORsOnHomePa

geMap

Use Case Only

CHART R10 Detailed Design – Rev 3 7-8 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR1.4.2.12.2.16

.1

The Home AORs layer should contain

areas of responsibility that are associated

with the logged in user's operations

center.

AOR ViewAORs

ViewAORsOnHomePa

geMap

ResourceManagement IDL ResourseClasses CD

AORServletClasses CD MiscDataClasses CD

chartlite.servlet.usermgmt_classes CD

SR1.4.2.12.2.16

.2

The Other AORs layer should contain

the remaining areas of responsibility that

are associated with an operations center.

AOR ViewAORs

ViewAORsOnHomePa

geMap

ResourceManagement IDL ResourseClasses CD

AORServletClasses CD MiscDataClasses CD

chartlite.servlet.usermgmt_classes CD

SR1.5 INSTALL AND MAINTAIN

DEVICES

 N/A N/A

SR1.5.2 PUT EQUIPMENT/ DEVICES ON-

LINE

 N/A N/A (Heading)

SR1.5.2.1 The system shall allow the user with

appropriate rights to select (or modify)

the equipment device parameters.

 N/A (General) N/A (General)

SR1.5.2.1.4 The system shall support configuration

parameters for DMS devices.

DMS N/A N/A (General)

SR1.5.2.1.4.21 Configure DMS DMS Configure DMS N/A (Heading)

SR1.5.2.1.4.21.

9

The system shall allow the user to edit

the display configuration for a DMS

only if the DMS is offline.

DMS Configure DMS DMSReqHdlr:changeDMSDisplayConfig SD

DMSReqHdlr:viewChangeDMSDisplayConfigForm

SD

SR1.5.2.1.4.21.

10

The system shall warn the user if the

user attempts to change the display

configuration for a DMS and that will

cause the HAR Notification Message,

any traveler information messages, or

any plan items specified for the DMS to

no longer fit the DMS.

DMS Configure DMS DMSReqHdlr:createDispConfigChangeWarningFor

NotifierMessage SD

DMSReqHdlr:createDispConfigChangeWarningFor

PlanItems SD

DMSReqHdlr:createDispConfigChangeWarningFor

RPIs SD

DMSReqHdlr:createDispConfigChangeWarningFor

TravInfoMessages SD

SR1.5.2.1.4.23 Specify DMS Configuration DMS N/A N/A (Heading)

SR1.5.2.1.4.23.

2

DELETED - moved to 1.5.2.1.4.24.5.2

and modified. (Was: The system shall

allow the user to specify the sign type

(char, line, full, or other).)

DMS N/A N/A (DELETED)

SR1.5.2.1.4.23.

6

DELETED - moved to 1.5.2.1.4.24.5.3

and modified. (Was: The system shall

support parameters for DMS sign

height/width in characters.)

DMS N/A N/A (DELETED)

CHART R10 Detailed Design – Rev 3 7-9 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.2.1.4.23.

7

DELETED (Was: The system shall

support parameters for DMS character

height/width in pixels (0-255).)

DMS N/A N/A (DELETED)

SR1.5.2.1.4.23.

8

DELETED - moved to 1.5.2.1.4.24.5.8

and modified. (Was: The system shall

allow the user to specify whether or not

the DMS supports beacons.)

DMS N/A N/A (DELETED)

SR1.5.2.1.4.23.

9

DELETED - moved to 1.5.2.1.4.24.5.10

and modified. (Was: The system shall

allow the user to specify the default line

justification of the DMS (left, right, or

center).)

DMS N/A N/A (DELETED)

SR1.5.2.1.4.23.

10

DELETED - moved to

1.5.2.1.4.24.5.7.1. (Was: The system

shall restrict the DMS maximum pages

to 3.)

DMS N/A N/A (DELETED)

SR1.5.2.1.4.23.

10.1

DELETED (Was: The system shall

restrict the number of usable DMS pages

to a maximum of 3.)

DMS N/A N/A (DELETED)

SR1.5.2.1.4.23.

11

DELETED - moved to1.5.2.1.4.24.5.11

and modified. (Was: The system shall

allow the user to specify the default page

on time for the DMS, in seconds.)

DMS N/A N/A (DELETED)

SR1.5.2.1.4.23.

12

DELETED - moved to 1.5.2.1.4.24.5.12

and modified. (Was: The system shall

allow the user to specify the default page

off time for the DMS, in seconds.)

DMS N/A N/A (DELETED)

SR1.5.2.1.4.23.

30

DELETED - (Was: The system shall

support setting the font slot number to be

used by the CHART System for NTCIP

DMS.)

DMS Configure NTCIP DMS N/A (DELETED)

SR1.5.2.1.4.23.

31

DELETED - moved to 1.5.2.1.4.24.5.4

and modified. (Was: The system shall

support setting default line spacing for

NTCIP DMS.)

DMS N/A N/A (DELETED)

CHART R10 Detailed Design – Rev 3 7-10 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.2.1.4.23.

36

DELETED - moved to 1.5.2.1.4.24.5.5

and modified. (Was: The system shall

allow a suitably privileged user to set the

inter-character spacing of an NTCIP

DMS.)

DMS N/A N/A (DELETED)

SR1.5.2.1.4.23.

37

DELETED - moved to 1.5.2.1.4.24.5.9

and modified. (Was: The system shall

allow a suitably privileged user to set the

default page justification of a NTCIP

DMS to top, middle or bottom.)

DMS N/A N/A (DELETED)

SR1.5.2.1.4.23.

41

The system shall require the user to

specify the Display Configuration for a

DMS. (See 1.5.2.1.4.24 Manage DMS

Display Configurations)

DMS Configure DMS DMSReqHdlr:viewAddDMSForm SD

DMSReqHdlr:addDMS SD

SR1.5.2.1.4.24 Manage DMS Display Configurations DMS N/A N/A (Heading)

SR1.5.2.1.4.24.

1

Add DMS Display Configuration DMS Add DMS Display

Configuration

N/A (Heading)

SR1.5.2.1.4.24.

1.1

The system shall allow a user with the

manage dms display configurations right

to add a new DMS Display

Configuration to the system.

DMS Add DMS Display

Configuration

DMSDisplayConfigReqHdlr :

getAddEditDMSDisplayConfigForm SD,

DMSDisplayConfigReqHdlr :

submitDMSDisplayConfigForm SD

SR1.5.2.1.4.24.

1.2

The system shall allow the user to

specify the properties for the new DMS

Display Configuration as specified in

requirement 1.5.2.1.4.24.5 Specify DMS

Display Configuration Properties.

DMS Add DMS Display

Configuration

DMSDisplayConfigReqHdlr :

parseDMSDisplayConfig SD,

DMSDisplayConfigReqHdlr :

submitDMSDisplayConfigForm SD

SR1.5.2.1.4.24.

2

Edit DMS Display Configuration DMS Edit DMS Display

Configuration

N/A (Heading)

SR1.5.2.1.4.24.

2.1

The system shall allow a user with the

manage dms display configurations right

to edit an existing display configuration.

DMS Edit DMS Display

Configuration

DMSDisplayConfigReqHdlr :

getAddEditDMSDisplayConfigForm SD,

DMSDisplayConfigReqHdlr :

submitDMSDisplayConfigForm SD

SR1.5.2.1.4.24.

2.2

The system shall allow a DMS Display

Configuration to be edited only if there

are no DMSs using the display

configuration or all DMSs set to use the

display configuration are known to be

offline.

DMS Edit DMS Display

Configuration

DMSDisplayConfigReqHdlr :

getAddEditDMSDisplayConfigForm SD

CHART R10 Detailed Design – Rev 3 7-11 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.2.1.4.24.

2.3

When editing an existing DMS Display

Configuration the system shall pre-

populate the form with the existing

properties of the display configuration.

DMS Edit DMS Display

Configuration

DMSDisplayConfigReqHdlr :

getAddEditDMSDisplayConfigForm SD

SR1.5.2.1.4.24.

2.4

The system shall allow the user to

change any of the properties as specified

in requirement 1.5.2.1.4.24.5 Specify

DMS Display Configuration Properties.

DMS Edit DMS Display

Configuration

DMSDisplayConfigReqHdlr :

parseDMSDisplayConfig SD,

DMSDisplayConfigReqHdlr :

submitDMSDisplayConfigForm SD

SR1.5.2.1.4.24.

3

Remove DMS Display Configuration DMS Remove DMS Display

Configuration

N/A (Heading)

SR1.5.2.1.4.24.

3.1

The system shall allow a user with the

manage dms display configurations right

to remove a DMS Display Configuration

only if there are no DMSs using the

configuration.

DMS Remove DMS Display

Configuration

DMSDisplayConfigReqHdlr :

removeDMSDisplayConfig SD

SR1.5.2.1.4.24.

3.2

The system shall prompt the user for

confirmation before deleting a DMS

Display Configuration.

DMS Remove DMS Display

Configuration

None

SR1.5.2.1.4.24.

4

View DMS Display Configuration List DMS View DMS Display

Configurations

chartlite.servet.dms.dynlist_classes CD,

DMSDisplayConfigReqHdlr :

filterDMSDisplayConfigList SD,

DMSDisplayConfigReqHdlr :

getDMSDisplayConfigList SD,

DMSDisplayConfigReqHdlr :

setDMSDisplayConfigListColumnVisibility SD,

DMSDisplayConfigListSupporter : createColumns

SD, DMSDisplayConfigListSupporter :

sortDMSDisplayConfigList SD,

DynListReqHdlrDelegate : setColumnVisibility SD,

DynListReqHdlrDelegate : initColumnVisibility SD,

Prototype

SR1.5.2.1.4.24.

4.1

The system shall allow a user with the

manage dms display configurations right

to view a list of DMS Display

Configurations defined in the system.

DMS View DMS Display

Configurations

DMSDisplayConfigReqHdlr :

getDMSDisplayConfigList SD

CHART R10 Detailed Design – Rev 3 7-12 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.2.1.4.24.

4.2

The system shall support the following

columns: Name, Sign Type, Sample

Message, Number of DMSs Using the

configuration, Character Rows,

Character Columns, Max Pages,

Geometry Description, Beacon indicator,

Font, Sign Width pixels, Sign Height

pixels, Character Width pixels,

Character Height pixels.

DMS View DMS Display

Configurations

chartlite.servet.dms.dynlist_classes CD,

DMSDisplayConfigListSupporter : createColumns

SD

SR1.5.2.1.4.24.

4.3

The system shall allow the DMS Display

Configuration list to be sorted by the

following columns: Name, Sign Type,

Number of DMSs Using the

configuration, Character Rows,

Character Columns, Max Pages,

Geometry Description, Beacon indicator,

Font, Sign Width pixels, Sign Height

pixels, Character Width pixels,

Character Height pixels.

DMS View DMS Display

Configurations

DMSDisplayConfigListSupporter : createColumns

SD, DMSDisplayConfigListSupporter :

sortDMSDisplayConfigList SD

SR1.5.2.1.4.24.

4.3.1

The sort on geometry description shall

be based on sign type with a

secondary sort on sign size. (The sign

type ascending order is

character matrix, line matrix, full

matrix).

DMS View DMS Display

Configurations

Prototype only

SR1.5.2.1.4.24.

4.4

The system shall allow the DMS Display

Configuration list to be filtered by the

following columns: Sign Type, Number

of DMSs Using the configuration,

Character Rows, Character Columns,

Max Pages, Geometry Description,

Beacon indicator, Font, Sign Width

pixels, Sign Height pixels, Character

Width pixels, Character Height pixels.

DMS View DMS Display

Configurations

DMSDisplayConfigListSupporter : createColumns

SD, DMSDisplayConfigReqHdlr :

filterDMSDisplayConfigList SD

SR1.5.2.1.4.24.

4.5

The system shall allow the user to

choose which columns to display.

DMS View DMS Display

Configurations

DMSDisplayConfigReqHdlr :

setDMSDisplayConfigListColumnVisibility SD,

DynListReqHdlrDelegate : setColumnVisibility SD,

DMSDisplayConfigListSupporter : createColumns

SD

CHART R10 Detailed Design – Rev 3 7-13 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.2.1.4.24.

4.5.1

The system shall always display the

Name column and not allow the user to

choose to hide it.

DMS View DMS Display

Configurations

Prototype only

SR1.5.2.1.4.24.

4.6

The system shall allow the user to

choose to display the default columns.

DMS View DMS Display

Configurations

DMSDisplayConfigReqHdlr :

setDMSDisplayConfigListColumnVisibility SD,

DynListReqHdlrDelegate : setColumnVisibility SD,

DynListReqHdlrDelegate : initColumnVisibility SD

SR1.5.2.1.4.24.

4.7

The DMS Display Configuration List

shall allow a user with the manage dms

display configurations right to perform

actions on a DMS Display

Configuration.

DMS View DMS Display

Configurations

Prototype only

SR1.5.2.1.4.24.

4.7.1

The Edit action shall be available for

each DMS Display Configuration that

has zero DMSs using it, or if all DMSs

using it are offline.

DMS View DMS Display

Configurations

Prototype, DMSDisplayConfigReqHdlr :

getDMSDisplayConfigList SD

SR1.5.2.1.4.24.

4.7.2

The Remove action shall be available if

the DMS Display Configuration has zero

DMSs using it.

DMS View DMS Display

Configurations

Prototype, DMSDisplayConfigReqHdlr :

getDMSDisplayConfigList SD

SR1.5.2.1.4.24.

4.8

The system shall allow the user to access

a list of DMSs that are currently using a

display configuration (if any).

DMS View DMS Display

Configurations

Prototype only

SR1.5.2.1.4.24.

5

Specify DMS Display Configuration

Properties

DMS Specify DMS Display

Configuration

Properties

N/A (Heading)

SR1.5.2.1.4.24.

5.2

The system shall require the user to

specify the sign type (character matrix,

line matrix, or full matrix). [MOVED

FROM 1.5.2.1.4.23.2 and modified]

DMS Specify DMS Display

Configuration

Properties

DMSDisplayConfigReqHdlr :

parseDMSDisplayConfig SD

SR1.5.2.1.4.24.

5.3

The system shall require the user to enter

the sign height and width. [MOVED

FROM 1.5.2.1.4.23.6 and modified]

DMS Specify DMS Display

Configuration

Properties

DMSDisplayConfigReqHdlr :

parseDMSDisplayConfig SD

SR1.5.2.1.4.24.

5.3.1

The system shall require the sign height

to be entered as character rows when the

sign type is character matrix or line

matrix.

DMS Specify DMS Display

Configuration

Properties

DMSDisplayConfigReqHdlr :

parseDMSDisplayConfig SD

CHART R10 Detailed Design – Rev 3 7-14 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.2.1.4.24.

5.3.2

The system shall require the sign height

to be entered as pixel rows when the

sign type is full matrix.

DMS Specify DMS Display

Configuration

Properties

DMSDisplayConfigReqHdlr :

parseDMSDisplayConfig SD

SR1.5.2.1.4.24.

5.3.3

The system shall require the sign width

to be entered as character columns when

the sign type is character matrix.

DMS Specify DMS Display

Configuration

Properties

DMSDisplayConfigReqHdlr :

parseDMSDisplayConfig SD

SR1.5.2.1.4.24.

5.3.4

The system shall require the sign width

to be entered as pixel columns when the

sign type is line matrix or full matrix.

DMS Specify DMS Display

Configuration

Properties

DMSDisplayConfigReqHdlr :

parseDMSDisplayConfig SD

SR1.5.2.1.4.24.

5.4

The system shall require the line spacing

to be specified (in pixels) if the sign type

is full matrix. [MOVED FROM

1.5.2.1.4.23.31 and modified]

DMS Specify DMS Display

Configuration

Properties

DMSDisplayConfigReqHdlr :

parseDMSDisplayConfig SD

SR1.5.2.1.4.24.

5.5

The system shall require the inter-

character spacing to be specified (in

pixels) if the sign type is line matrix or

full matrix. [MOVED FROM

1.5.2.1.4.23.36 and modified]

DMS Specify DMS Display

Configuration

Properties

DMSDisplayConfigReqHdlr :

parseDMSDisplayConfig SD

SR1.5.2.1.4.24.

5.6

The system shall require the font to be

specified.

DMS Specify DMS Display

Configuration

Properties

DMSDisplayConfigReqHdlr :

parseDMSDisplayConfig SD

SR1.5.2.1.4.24.

5.6.1

The system shall allow the font to be

specified by uploading a font file.

DMS Specify DMS Display

Configuration

Properties

DMSDisplayConfigReqHdlr :

uploadDMSDisplayConfigFontFile SD

SR1.5.2.1.4.24.

5.6.2

The system shall allow the font to be

specified by copying the font from an

existing DMS Display Configuration.

DMS Specify DMS Display

Configuration

Properties

DMSDisplayConfigReqHdlr :

copyFontFromDMSDisplayConfig SD

SR1.5.2.1.4.24.

5.6.3

The system shall allow the font to be

specified by downloading the font from

an NTCIP DMS device.

DMS Specify DMS Display

Configuration

Properties

DMSDisplayConfigReqHdlr :

queryDMSDisplayConfigFrontFromNTCIPDMS SD

SR1.5.2.1.4.24.

5.7

The system shall require the user to

specify the maximum number of pages

(phases) allowed to be displayed in a

message on a DMS..

DMS Specify DMS Display

Configuration

Properties

DMSDisplayConfigReqHdlr :

parseDMSDisplayConfig SD

SR1.5.2.1.4.24.

5.7.1

The system shall restrict the DMS

maximum pages to 3. [MOVED FROM

1.5.2.1.4.23.10]

DMS Specify DMS Display

Configuration

Properties

DMSDisplayConfigReqHdlr :

parseDMSDisplayConfig SD

CHART R10 Detailed Design – Rev 3 7-15 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.2.1.4.24.

5.8

The system shall require the user to

specify whether or not the DMS Display

supports beacons. [MOVED FROM

1.5.2.1.4.23.8 and modified]

DMS Specify DMS Display

Configuration

Properties

DMSDisplayConfigReqHdlr :

parseDMSDisplayConfig SD

SR1.5.2.1.4.24.

5.9

The system shall require the user to

specify the default page justification

(top, middle, bottom) for the DMS

Display. [MOVED FROM

1.5.2.1.4.23.37 and modified]

DMS Specify DMS Display

Configuration

Properties

DMSDisplayConfigReqHdlr :

parseDMSDisplayConfig SD

SR1.5.2.1.4.24.

5.10

The system shall require the user to

specify the default line justification of

the DMS Display (left, right, or center).

[MOVED FROM 1.5.2.1.4.23.9 and

modified]

DMS Specify DMS Display

Configuration

Properties

DMSDisplayConfigReqHdlr :

parseDMSDisplayConfig SD

SR1.5.2.1.4.24.

5.11

The system shall require the user to

specify the default page on time for the

DMS Display, in seconds. [MOVED

FROM 1.5.2.1.4.23.11 and modified]

DMS Specify DMS Display

Configuration

Properties

DMSDisplayConfigReqHdlr :

parseDMSDisplayConfig SD

SR1.5.2.1.4.24.

5.12

The system shall require the user to

specify the default page off time for the

DMS Display, in seconds. [MOVED

FROM 1.5.2.1.4.23.12 and modified]

DMS Specify DMS Display

Configuration

Properties

DMSDisplayConfigReqHdlr :

parseDMSDisplayConfig SD

SR1.5.2.1.4.24.

5.13

The system shall require the user to

specify the maximum number of

characters allowed to be displayed in a

single line of a message.

DMS Specify DMS Display

Configuration

Properties

DMSDisplayConfigReqHdlr :

parseDMSDisplayConfig SD

SR1.5.2.1.4.24.

5.14

The system shall require the user to

specify the maximum number of rows of

text allowed to be displayed in a

message.

DMS Specify DMS Display

Configuration

Properties

DMSDisplayConfigReqHdlr :

parseDMSDisplayConfig SD

SR1.5.2.1.19 The system shall support setting

configuration parameters for Monitors.

 N/A N/A (Heading)

SR1.5.2.1.19.1 Specify Monitor Configuration N/A N/A (Heading)

SR1.5.2.1.19.1.

10

The system shall allow a user with the

Configure Monitor functional right or

the Maintain Monitor Auto Mode

functional right to enable or disable

Auto Mode for a monitor.

Video Configure Monitor Monitor Control IDL Classes CD,

MonitorImpl.setAutoMode SD

CHART R10 Detailed Design – Rev 3 7-16 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.2.1.19.1.

11

The system shall allow a user with the

Configure Monitor functional right to

select the Auto Mode dwell time for a

monitor.

Video Configure Monitor Monitor Control IDL Classes CD,

MonitorImpl.setAutoMode SD

SR1.5.2.1.19.1.

12

The system shall allow a user with the

configure monitor functional right to

associate one or more areas of

responsibility with a monitor.

AOR AssociateAORWithMo

nitor

MonitorControl IDL MonitorControlModule CD

AORServletClasses CD GUIVideoDataClasses CD

GUIVideoServletClasses CD

VideoSinkConfigReqHdlr:getAssociatedAORForm

SD VideoSinkConfigReqHdlr:associateAORs SD

SR1.5.2.1.19.1.

13

The system shall allow a user with the

configure monitor functional right to

remove associated areas of responsibility

from a monitor.

AOR AssociateAORWithMo

nitor

MonitorControl IDL MonitorControlModule CD

AORServletClasses CD GUIVideoDataClasses CD

GUIVideoServletClasses CD

VideoSinkConfigReqHdlr:getAssociatedAORForm

SD VideoSinkConfigReqHdlr:associateAORs SD

SR1.5.2.10 The system shall allow the user with

appropriate rights to put equipment on-

line in CHART.

 N/A N/A (Existing)

SR1.5.2.10.3 The system shall allow a suitably

privileged user to set a DMS online.

DMS Put DMS Online DMSProtocolsPkg:DMSProtocolsPkg CD

DMSControlModule:PutDMSOnline SD

DMSControlModule:VerifyFont SD

NTCIPProtocolHdlr:ValidateFont SD

NTCIPProtocolHdlr:ConfigureFont SD

SR1.5.2.10.3.3 If the DMS is an NTCIP DMS, the

system shall upload the font specified in

the DMS's Display Configuration into

the slot number specified by the NTCIP

DMS configuration when the DMS is

put online, if needed.

DMS Put DMS Online DMSProtocolsPkg:DMSProtocolsPkg CD

DMSControlModule:PutDMSOnline SD

DMSControlModule:VerifyFont SD

NTCIPProtocolHdlr:ValidateFont SD

NTCIPProtocolHdlr:ConfigureFont SD

SR1.5.2.10.3.3.

1

If the attempt to upload the font to an

NTCIP DMS fails when placing the

DMS online, the system shall prevent

the DMS from being placed online.

DMS Put DMS Online DMSProtocolsPkg:DMSProtocolsPkg CD

DMSControlModule:PutDMSOnline SD

DMSControlModule:VerifyFont SD

NTCIPProtocolHdlr:ValidateFont SD

NTCIPProtocolHdlr:ConfigureFont SD

CHART R10 Detailed Design – Rev 3 7-17 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.3 PERFORM ROUTINE

MAINTENANCE. The system shall

allow the user with appropriate rights to

view the device status, and know why

it's not on-line (including the key trouble

ticket information) and know the

problem is being addressed. The system

shall also allow the user to take the

device offline of maintenance or other

adjustments including resetting the

controller. Suggestion/example to be

validated: e.g., integrate device

maintenance web pages with CHART.

 N/A N/A (Heading)

SR1.5.3.1 The system shall allow a suitably

privileged user to place a device in

maintenance mode.

 N/A N/A (Existing)

SR1.5.3.1.1 The system shall allow a suitably

privileged user to set a DMS to

maintenance mode.

DMS Put DMS In Maint

Mode

N/A (Existing)

SR1.5.3.1.1.13 If the DMS is an NTCIP DMS, the

system shall upload the font specified in

the DMS's Display Configuration into

the slot number specified by the NTCIP

DMS configuration when the DMS is

put into maintenance mode, if needed.

DMS Put DMS In Maint

Mode

DMSProtocolsPkg CD

DMSControlModule:PutDMSInMaintMode SD

DMSControlModule:VerifyFont SD

NTCIPProtocolHdlr::ValidateFont SD

NTCIPProtocolHdlr:ConfigureFont SD

SR1.5.3.1.1.13.

1

If the upload of the font to an NTCIP

DMS fails while placing the device in

maintenance mode, the system shall

indicate the error but allow the device to

be placed into maintenance mode.

DMS Put DMS In Maint

Mode

DMSProtocolsPkg CD

DMSControlModule:PutDMSInMaintMode SD

DMSControlModule:VerifyFont SD

NTCIPProtocolHdlr::ValidateFont SD

NTCIPProtocolHdlr:ConfigureFont SD

SR1.5.4 RESPOND TO EQUIPMENT/ DEVICE

OUTAGE. The system shall allow users

with appropriate rights to notify

maintenance personnel of an equipment

outage that they have detected (or has

been brought to their attention).

Notificati

on

N/A N/A (Heading)

CHART R10 Detailed Design – Rev 3 7-18 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.4.9 The system shall support automatic

generation of a Device Failure

Notification for all DMS, HAR, and

SHAZAM devices that support being

polled for status.

HAR/SH

AZAM

N/A N/A (General)

SR1.5.4.9.2 If configured to do so, the system shall

send a notification to the communication

failure notification group configured for

the device (if any) when a DMS, HAR

or SHAZAM device transitions from a

communication failed status to a status

of OK.

LevA105

7

Poll DR1500 HAR

Reset SHAZAM to Last

Known State

SHAZAMControlModule.refreshImpl SD

SHAZAMControlModule.handleOpStatus SD

SR1.5.4.9.3 The system shall send a notification to

the communication failure notification

group configured for the device (if any)

when a DMS, HAR or SHAZAM device

transitions from a communication failed

status to a status of hardware failed if the

communication failure notification

group configured for the device is

different than the hardware failure

notification group configured for the

device. (This prevents duplicate

notifications; if the groups are different,

that means when the device transitions

to hardware failed it is no longer the

communication failure group's

responsibility. If the groups are the

same, the group will receive the

hardware failure notification due to

requirement SR1.5.4.9.4.)

LevA105

7

Poll DR1500 HAR

Reset SHAZAM to Last

Known State

SHAZAMControlModule.refreshImpl SD

SHAZAMControlModule.handleOpStatus SD

AlertAndNotificationHelper.notifyAndAlert SD

SR1.5.4.9.5 If configured to do so, the system shall

send a notification to the hardware

failure notification group configured for

the device (if any) when a DMS, HAR

or SHAZAM device transitions from a

hardware failed status to a status of OK.

LevA105

7

Poll DR1500 HAR

Reset SHAZAM to Last

Known State

SHAZAMControlModule.refreshImpl SD

SHAZAMControlModule.handleOpStatus SD

AlertAndNotificationHelper.notifyAndAlert SD

CHART R10 Detailed Design – Rev 3 7-19 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.4.9.6 The system shall send a notification to

the hardware failure notification group

configured for the device (if any) when a

DMS, HAR or SHAZAM device

transitions from a hardware failed status

to a status of communication failed if the

hardware failure notification group

configured for the device is different

than the communication failure

notification group configured for the

device. (This prevents duplicate

notifications; if the groups are different,

then when the device transitions to

communication failed it is no longer the

recipient's responsibility. If the groups

are the same, the recipients will receive

the communication failure notification

due to preceding requirements.)

LevA105

7

Poll DR1500 HAR

Reset SHAZAM to Last

Known State

SHAZAMControlModule.refreshImpl SD

SHAZAMControlModule.handleOpStatus SD

SHAZAMControlModule.setBeaconsState SD

AlertAndNotificationHelper.notifyAndAlert SD

SR1.5.4.9.7 If configured to do so, the system shall

issue a notification when a DMS, HAR

or SHAZAM transitions to the hardware

failed status and remains there for more

than a configurable communication

attemps to the device.

LevA105

7

Send Device

Notifications

Use Case Only

SR1.5.4.9.8 If configured to do so, the system shall

issue a notification when a DMS, HAR

or SHAZAM transitions to the

communication failed state and remains

there for more than a configurable

communication attemps to the device.

LevA105

7

Send Device

Notifications

Use Case Only

SR1.5.4.9.9 If configured to do so, the system shall

issue a notification when a DMS, HAR

or SHAZAM transitions to the OK state

and remains there for more than a

configurable communication attemps to

the device.

LevA105

7

Send Device

Notifications

Use Case Only

SR1.5.5 VIEW DEVICE LISTS N/A N/A (Heading)

CHART R10 Detailed Design – Rev 3 7-20 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.5.1 The system shall allow the user to view

the list of DMSs that exist in the

system.

DMS View DMS List N/A (Existing)

SR1.5.5.1.1 The system shall allow the user to view

detailed data for each DMS in the list

DMS View DMS List N/A (Existing)

SR1.5.5.1.1.15 The detailed data displayed for a DMS

shall include the name of its Display

Configuration.

DMS View DMS List chartlite.servlet.dms:dynlist_classes CD

SR1.5.5.1.1.15.

1

The Display Configuration name for a

DMS within the list shall be hidden by

default.

DMS View DMS List Prototype only

SR1.5.5.1.2 The system shall allow the user to sort

the list of DMSs that exist in the

system.

DMS View DMS List N/A (Existing)

SR1.5.5.1.2.15 The system shall allow the user to sort

the list of DMSs by Display

Configuration name.

DMS View DMS List Prototype only

SR1.5.5.1.2.15.

1

The sort on display configuration name

shall be based on sign type with

a secondary sort on sign size. (The sign

type ascending order is

character matrix, line matrix, full

matrix).

DMS View DMS List Prototype only

SR1.5.5.1.3 The system shall allow the user to filter

the list of DMSs that exist in the

system.

DMS View DMS List N/A (Existing)

SR1.5.5.1.3.14 The system shall allow the user to filter

the list of DMSs by Display

Configuration name.

DMS View DMS List Prototype only

SR1.5.5.6 The system shall allow the user to view

the list of Monitors that exist in the

system.

 N/A N/A

SR1.5.5.6.1 The system shall allow the user to view

detailed data for each Monitor in the list

 N/A N/A

SR1.5.5.6.1.7 The detailed data displayed for a

Monitor shall include the Auto Mode

enabled flag.

Video View Monitor List VideoServletClasses CD, GUIVideoDataClasses CD

CHART R10 Detailed Design – Rev 3 7-21 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.5.6.1.7.1 The Auto Mode enabled flag for a

Monitor within the list shall be hidden

by default.

Video View Monitor List VideoServletClasses CD, GUIVideoDataClasses CD

SR1.5.5.6.2 The system shall allow the user to sort

the list of Monitors that exist in the

system.

 N/A N/A

SR1.5.5.6.2.7 The system shall allow the user to sort

the Monitor list by the Auto Mode

enabled flag.

Video View Monitor List VideoServletClasses CD, GUIVideoDataClasses CD

SR1.5.5.6.3 The system shall allow the user to filter

the list of Monitors that exist in the

system.

 N/A N/A

SR1.5.5.6.3.6 The system shall allow the user to filter

the Monitor list by the Auto Mode

enabled flag.

Video View Monitor List VideoServletClasses CD, GUIVideoDataClasses CD

SR1.5.7 VIEW DEVICE DETAILS N/A (Heading) N/A

SR1.5.7.1 View DMS Details DMS N/A N/A (Heading)

SR1.5.7.1.3 The system shall show the DMS Display

Configuration for the DMS device.

[MODIFIED IN R10 - was DMS

Geometry]

DMS View DMS Details Prototype only

SR1.5.7.3 View Camera Details N/A N/A

SR1.5.7.3.19 The system shall show temporary presets

that exist for the camera.

Video View Camera Details VideoServletClasses CD, GUIVideoDataClasses CD

SR1.5.7.4 View Monitor Details N/A N/A

SR1.5.7.4.8 The system shall show the Auto Mode

enabled flag value.

Video View Monitor Details VideoServletClasses CD, GUIVideoDataClasses CD

SR1.5.7.4.9 The system shall show the Auto Mode

dwell time value.

Video View Monitor Details VideoServletClasses CD, GUIVideoDataClasses CD

SR1.5.7.4.10 The system shall show the current Auto

Mode tour list entries.

Video View Monitor Details VideoServletClasses CD, GUIVideoDataClasses CD

SR1.5.7.4.10.1 The system shall show the video source

name for an Auto Mode tour list entry.

Video View Monitor Details VideoServletClasses CD, GUIVideoDataClasses CD

SR1.5.7.4.10.2 The system shall show the optional

camera preset number (standard preset

or temporary preset) for an Auto Mode

tour list entry.

Video View Monitor Details VideoServletClasses CD, GUIVideoDataClasses CD

CHART R10 Detailed Design – Rev 3 7-22 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.7.4.10.3 The system shall show the requester's

name for an Auto Mode tour list entry.

(For example, the description of the

traffic event for which the entry was

added.)

Video View Monitor Details VideoServletClasses CD, GUIVideoDataClasses CD

SR1.5.7.4.11 The system shall show the Areas of

Responsibility (AORs) that have been

associated with a monitor.

AOR ManageVideo AORServletClasses CD GUIVideoDataClasses CD

SR1.5.10 Verify Device Compatibility N/A N/A (Heading)

SR1.5.10.1 The system shall provide a stand alone

tool to allow DMS suppliers to test if an

NTCIP DMS is compatible with the

CHART system.

DMS Verify NTCIP DMS

CHART Compatibility

NTCIPDMSComplianceTesterClasses CD

SR1.5.10.1.13 The NTCIP DMS Compatibility Tester

shall allow the user to test if the CHART

Get Font feature operates properly on an

NTCIP DMS.

DMS Test Download Font NTCIPDMSComplianceTesterClasses CD

NTCIPDMSTester:retrieveFont SD

SR1.5.10.1.14 The NTCIP DMS Compatibility Tester

shall allow the user to test if the CHART

Set Font feature operates properly on an

NTCIP DMS.

DMS Test Upload Font NTCIPDMSComplianceTesterClasses CD

NTCIPDMSTester:configureFont SD

SR1.6 MAINTAIN NOTIFICATION

SYSTEM

Notificati

on

N/A N/A

SR1.6.1 MAINTAIN NOTIFICATION

CONTACTS

Notificati

on

N/A N/A

SR1.6.1.1 The system shall allow a user with the

Configure Notification Contacts right to

add a Notification Contact.

Notificati

on

Add Notification

Contact

NotificationManagement CD,

NotificationManagerImpl:addNotificationContact

SD, chartlite.data.notification_classes CD

SR1.6.1.1.1 The system shall require a Notification

Contact to contain a name.

Notificati

on

Add Notification

Contact

NotificationManagement CD

SR1.6.1.1.2 The system shall require a Notification

Contact to contain an email address.

Notificati

on

Add Notification

Contact

NotificationManagement CD

SR1.6.1.1.3 The system shall allow the configuration

of a Notification Contact's Notification

Groups.

Notificati

on

Add Notification

Contact

NotificationManagement CD,

chartlite.data.notification_classes CD

SR1.6.1.2 The system shall allow a user with the

Configure Notification Contacts right to

update a Notification Contact.

Notificati

on

Modify Notification

Contact

NotificationManagement CD,

NotificationManagerImpl:modifyNotificationContact

SD, chartlite.data.notification_classes CD

CHART R10 Detailed Design – Rev 3 7-23 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR1.6.1.2.2 The system shall display the date/time

the Notification Contact was last

updated.

Notificati

on

View Notification

Contact

NotificationManagement CD

SR1.6.1.2.3 The system shall allow a user with the

Configure Notification Contact Email

right to configure a Notification

Contact's email address.

Notificati

on

Modify Notification

Contacts

NotificationManagerImpl:modifyNotificationContact

SD

SR1.6.1.2.4 The system shall allow a user with the

Configure Notification Contact and

Group associations right the ability to

specify the Notification Groups that the

Notification Contact belongs to.

Notificati

on

Modify Notification

Contacts

NotificationManagerImpl:modifyNotificationContact

SD, chartlite.data.notification_classes CD

SR1.6.1.3 The system shall allow a user with the

Configure Notification Contacts right to

remove a Notification Contact.

Notificati

on

Remove Notification

Contact

NotificationManagement CD,

NotificationManagerImpl:removeNotificationContac

t SD, chartlite.data.notification_classes CD

SR1.6.1.6 The system shall allow a user with the

right to view notification recipients to

view the list of Notification Contacts.

Notificati

on

View Notification

Contacts

NotificationManagement CD,

NotificationManagerImpl:getContacts SD,

DiscoverNotificationClassesCommand:getManagerI

ndividuals SD

SR1.6.1.6.1 The system shall allow a user to search

the list of Notification Contacts by

name, agency, or email address.

Notificati

on

View Notification

Contacts

Use Case Only

SR1.6.1.6.2 The column listing for Notification

Contacts shall include the date/time the

Notification Contact was last modified.

Notificati

on

View Notification

Contacts

Use Case Only

SR1.6.1.6.2.1 The date/time the Notification Contact

was last modified column is displayed

by default.

Notificati

on

View Notification

Contacts

Use Case Only

SR1.6.1.6.3 The column listing for Notification

Contacts shall include the name.

Notificati

on

View Notification

Contacts

Use Case Only

SR1.6.1.6.4 The column listing for Notification

Contacts shall include the email address.

Notificati

on

View Notification

Contacts

Use Case Only

SR1.6.1.6.4.1 The Notification Contact email address

column is displayed by default.

Notificati

on

View Notification

Contacts

Use Case Only

SR1.6.1.6.5 The column listing for Notification

Contacts shall include the Notification

Groups each Notification Contact

belongs to.

Notificati

on

View Notification

Contacts

Use Case Only

CHART R10 Detailed Design – Rev 3 7-24 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR1.6.1.6.5.1 The Notification Groups column is

displayed by default.

Notificati

on

View Notification

Contacts

Use Case Only

SR1.6.1.6.6 The system shall allow the user to sort

the list of Notification Contacts by

name.

Notificati

on

View Notification

Contacts

Use Case Only

SR1.6.1.6.7 The system shall allow the user to sort

the list of Notification Contacts by email

address.

Notificati

on

View Notification

Contacts

Use Case Only

SR1.6.1.6.8 The system shall allow the user to sort

the list of Notification Contacts by

Notification Groups.

Notificati

on

View Notification

Contacts

Use Case Only

SR1.6.1.6.9 The system shall allow the user to filter

the list of Notification Contacts by

Notification Group.

Notificati

on

View Notification

Contacts

Use Case Only

SR1.6.1.7 The system will maintain the date/time a

Notification Contact was added or last

updated.

Notificati

on

Add Notification

Contact Modify

Notification Contact

NotificationManagement CD

SR1.6.2 MAINTAIN NOTIFICATION

GROUPS

Notificati

on

N/A N/A

SR1.6.2.1 The system shall allow a user with the

Configure Notification Groups right to

add a Notification Group.

Notificati

on

Add Notification Group NotificationManagement CD,

NotificationManagerImpl:addNotificationGroup SD,

chartlite.data.notification_classes CD

SR1.6.2.1.1 The system shall require the user to

specify a name for a new Notification

Group.

Notificati

on

Add Notification Group NotificationManagement CD

SR1.6.2.1.2 The system shall allow a user to specify

the Notification Contacts that belong in

the Notification Group.

Notificati

on

Add Notification Group NotificationManagement CD,

chartlite.data.notification_classes CD

SR1.6.2.2 The system shall allow a user with the

Configure Notification Groups right to

update a Notification Group.

Notificati

on

Modify Notification

Group

NotificationManagement CD,

NotificationManagerImpl:modifyNotificationGroup

SD

SR1.6.2.2.1 The system shall allow a user with the

Configure Notification Groups right to

change the name of a Notification

Group.

Notificati

on

Modify Notification

Group

NotificationManagerImpl:modifyNotificationGroup

SD

CHART R10 Detailed Design – Rev 3 7-25 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR1.6.2.2.2 The system shall allow a user with the

Configure Notification Group and

Contact associations right to configure

the Notification Group's Contacts.

Notificati

on

Modify Notification

Group

NotificationManagerImpl:modifyNotificationGroup

SD, chartlite.data.notification_classes CD

SR1.6.2.3 The system shall allow a user with the

Configure Notification groups right to

remove a notification group.

Notificati

on

Remove Notification

Group

NotificationManagement CD,

NotificationManagerImpl:removeNotificationGroup

SD, chartlite.data.notification_classes CD

SR1.6.2.4 The system shall allow a user with the

View Notification Recipients right to

view the list of Notification Groups.

Notificati

on

View Notification

Groups

NotificationManagement CD,

NotificationManagerImpl:removeNotificationGroup

SD, chartlite.data.notification_classes CD

SR1.6.2.4.1 The column listing for Notification

Groups shall include the group name.

Notificati

on

View Notification

Groups

Use Case Only

SR1.6.2.4.2 The column listing for Notification

Groups shall include Notification

Contacts included in the Notification

Group.

Notificati

on

View Notification

Groups

Use Case Only

SR1.6.2.4.3 The system shall allow the user to sort

the list of Notification Groups by name.

Notificati

on

View Notification

Groups

Use Case Only

SR1.6.3 MAINTAIN EMAIL NOTIFICATION

CONFIGURATION

Notificati

on

N/A (Heading) N/A (Heading)

SR1.6.3.1 The system shall require primary and

backup email server configurations.

Notificati

on

Configure email servers NotificationModule CD, NotificationUtility CD,

NotificationManagerImpl:initialize SD

SR1.6.3.1.1 The system shall require configuration

of an SMTP port for the primary email

server.

Notificati

on

Configure email servers NotificationUtility CD

SR1.6.3.1.2 The system shall require configuration

of an SMTP port for the backup email

server.

Notificati

on

Configure email servers NotificationUtility CD

SR1.6.3.1.3 The system shall require a TCP/IP

address for the primary mail server.

Notificati

on

Configure email servers NotificationUtility CD

SR1.6.3.1.4 The system shall require a TCP/IP

address for the backup email server.

Notificati

on

Configure email servers NotificationUtility CD

SR1.6.3.2 The system shall support SMTP

authentication.

Notificati

on

Transmit Email

Notification

NotificationUtility CD

SR1.6.3.2.1 The notification system shall support

SMTP authentication using a name and

password for the primary email server.

Notificati

on

Transmit Email

Notification

NotificationUtility CD

CHART R10 Detailed Design – Rev 3 7-26 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR1.6.3.2.2 The notification system shall support

SMTP authentication using a name and

password for the backup email server.

Notificati

on

Transmit Email

Notification

NotificationUtility CD

SR1.6.3.2.3 The system shall support TLS/SSL

transport configuration for the primary

email server.

Notificati

on

Configure email servers NotificationUtility CD

SR1.6.3.2.3.1 The system shall support configuration

of an SSL port for the primary email

server.

Notificati

on

Configure email servers NotificationUtility CD

SR1.6.3.2.4 The system shall support TLS/SSL

transport configuration for the backup

email server.

Notificati

on

Configure email servers NotificationUtility CD

SR1.6.3.2.4.1 The system shall support configuration

of an SSL port for the backup email

server.

Notificati

on

Configure email servers NotificationUtility CD

SR1.6.3.3 The system shall support configuration

of a prefix to include on the subject line

of email notifications.

Notificati

on

Transmit Email

Notification

NotificationModule CD

SR2 PREPARE FOR EVENTS AND

EMERGENCIES

 N/A N/A (Heading)

SR2.3 MAINTAIN TRAFFIC PLANS. The

system shall allow the system

administrator to create, modify, and

delete FITMs [copies only] and alternate

routes, and device plans.

 N/A N/A (Heading)

SR2.3.3 MAINTAIN DEVICE PLANS N/A N/A (Heading)

SR2.3.3.1 The system shall allow the system

administrator to create device plans.

 N/A N/A (Unchanged for R10)

SR2.3.3.1.7 The allowable plan items shall include

putting a library message on a DMS.

DMS N/A N/A (Unchanged for R10)

SR2.3.3.1.7.1 Specify DMS Plan Item Properties DMS Add DMS Plan Items N/A (Heading)

SR2.3.3.1.7.1.1 The system shall allow the user to

specify the DMS stored message to be

displayed.

DMS Add DMS Plan Items N/A (Unchanged for R10)

SR2.3.3.1.7.1.1.

1

The system shall show the minimum

number of characters a DMS must be

able to display on a single line to be able

to display each of the stored messages.

DMS Add DMS Plan Items N/A (Unchanged for R10) Existing min cols

calculation will work.

CHART R10 Detailed Design – Rev 3 7-27 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR2.3.3.1.7.4 Add Multiple DMS Plan Items DMS Add DMS Plan Items N/A (Heading)

SR2.3.3.1.7.4.2 When a group of DMSs are selected to

receive the same message, the message

editor shall format the message for each

unique Display Configuration included

in the selected DMSs. [MODIFIED IN

R10]

DMS Add DMS Plan Items WebDMSPlanItem:updateGIF SD

SR3 MONITOR TRAFFIC AND

ROADWAYS

 N/A (Heading) N/A (Heading)

SR3.5 ISSUE NOTIFICATION Notificati

on

N/A (Heading) N/A (Heading)

SR3.5.1 The system shall allow a user with the

right to Send Notifications to send a

notification.

Notificati

on

Send Notification NotificationManagement CD,

NotificationManagerImpl:sendNotification

SR3.5.1.1 The system shall support a notification

method.

Notificati

on

Transmit Email

Notification

NotificationUtility CD

SR3.5.1.1.1 The system shall support the sending of

notifications by email. <moved from

4.2.3.4.7.5.1>

Notificati

on

Transmit Email

Notification

NotificationUtility CD,

MailManager:sendMailMessageAsync SD

SR3.5.1.1.1.1 The system shall require the email

notification contain a descriptive subject

.

Notificati

on

Transmit Email

Notification

NotificationManagement CD

SR3.5.1.1.2 DELETED - The system shall support

the sending of notifications by page.

<drawn from 4.2.3.4.7.7> [FUTURE]

Notificati

on

N/A N/A

SR3.5.1.1.2.1 DELETED - The paging Notification

Tool shall be usable from multiple

operations centers via the GUI. <moved

from 4.2.3.4.7.7.1> [FUTURE]

Notificati

on

N/A N/A

SR3.5.1.1.2.2 DELETED - The paging Notification

Tool shall support multiple paging

service providers. <combined from

4.2.3.4.7.7.2, 4.2.3.4.7.7.4, and

4.2.3.4.7.7.5> [FUTURE]

Notificati

on

N/A N/A

SR3.5.1.1.3 DELETED - The system shall support

the sending of notifications by fax.

<moved from 4.2.3.4.7.4> [FUTURE]

Notificati

on

N/A N/A

CHART R10 Detailed Design – Rev 3 7-28 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR3.5.1.1.3.1 DELETED - The fax Notification Tool

shall be usable from multiple operations

centers via the GUI. <moved from

4.2.3.4.7.4.1> [FUTURE]

Notificati

on

N/A N/A

SR3.5.1.1.4 DELETED - The system shall support

the sending of text to voice notifications

by phone.

Notificati

on

N/A N/A

SR3.5.1.1.5 DELETED - The system shall support

the sending of text by instant message.

<drawn from 4.2.3.4.7.6>

 N/A N/A

SR3.5.1.2 The system shall allow the user to

specify notification recipients.

Notificati

on

N/A NotificationManagement CD,

NotificationMangerImpl:SendNotification SD,

NotificationManagerImpl:createMailMessage SD

SR3.5.1.2.1 The system shall allow notifications to

be sent to one or more individual

Notification Contacts.

Notificati

on

N/A NotificationManagement CD,

NotificationMangerImpl:SendNotification SD,

NotificationManagerImpl:createMailMessage SD

SR3.5.1.2.1.1 DELETED - The system shall retrieve

the list of Notification Contacts from the

Notification Service.

Notificati

on

N/A N/A

SR3.5.1.2.2 The system shall allow notifications to

be sent to one or more Notification

Groups.

Notificati

on

N/A NotificationManagement CD,

NotificationMangerImpl:SendNotification SD,

NotificationManagerImpl:createMailMessage SD

SR3.5.1.2.2.1 DELETED - The system shall retrieve

the list of Notification Groups from the

Notification Service.

Notificati

on

N/A N/A

SR3.5.1.2.2.1.1 DELETED - The fax Notification Tool

shall support Notification Groups.

<modified from

4.2.3.4.7.4.3> *[FUTURE])

Notificati

on

N/A N/A

SR3.5.1.2.2.1.2 DELETED - The email Notification

Tool shall support Notification Groups.

<modified from 4.2.3.4.7.5.2>

Notificati

on

N/A N/A

SR3.5.1.2.2.1.3 DELETED - The paging Notification

Tool shall support Notification Groups.

<modified from 4.2.3.4.7.7.3>

Notificati

on

N/A N/A

SR3.5.1.3 The system shall allow a suitably

privileged user to send a notification

from an open traffic event.

Notificati

on

Send Notification Use Case Only

CHART R10 Detailed Design – Rev 3 7-29 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR3.5.1.3.2 DELETED - COVERED BY 3.5.1.6

The system shall record any notifications

sent from an open traffic event in the

corresponding event log. <moved from

4.2.3.4.7.3>

Notificati

on

N/A N/A

SR3.5.1.6 The system shall record all notifications

sent from within the context of a traffic

event in the traffic event's history log.

Notificati

on

Send Notification From

Open Event

N/A

SR3.5.1.6.1 The history log message shall contain

the recipients.

Notificati

on

Send Notification From

Open Event

N/A

SR3.5.1.6.2 The history log message shall contain

the message text.

Notificati

on

Send Notification From

Open Event

N/A

SR3.6 UTILIZE VIDEO N/A N/A

SR3.6.8 DELETED was (Cameras in Traffic

Events)

Decision

Support

N/A N/A

SR3.6.8.1 DELETED was (A suitably privileged

operator shall be able to include cameras

as part of the response plan of a CHART

II event (new).)

Decision

Support

N/A N/A

SR3.6.8.2 DELETED was (A suitably privileged

operator shall be able to indicate any

number of monitors on which to display

a response plan item camera upon

execution of the response plan item.)

Decision

Support

N/A N/A

SR3.6.8.2.1 DELETED was (The default monitor on

which the camera will be displayed shall

be the preferred monitor of the

workstation where the operator is

working.)

 N/A N/A

SR3.6.8.3 DELETED was (A suitably privileged

operator shall be able to indicate a preset

to which the response plan item camera

will move upon execution of the

response plan item.)

Decision

Support

N/A N/A

SR3.6.8.3.1 DELETED was (The response plan item

camera shall not be moved to a preset if

it is already being controlled.)

Decision

Support

N/A N/A

CHART R10 Detailed Design – Rev 3 7-30 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR3.6.8.4 DELETED was (A suitably privileged

operator shall be provided direct

capability to disable display of any

response plan item camera to the public.)

Decision

Support

N/A N/A

SR3.6.8.5 DELETED was (Upon specifying the

latitude and longitude of a traffic event,

a user shall be notified of camera(s)

within a configurable distance of the

event.)

Decision

Support

N/A N/A

SR3.6.8.5.1 DELETED was (A suitably privileged

operator shall be provided direct

capability to display any camera on the

nearby cameras list on the preferred

monitor of the workstation on which the

operator is working.)

Decision

Support

N/A N/A

SR3.6.8.5.1.1 DELETED was (The operator shall have

the ability to select an alternate set of

one or more monitors on which to

display the camera, instead of or in

addition to the preferred monitor.)

Decision

Support

N/A N/A

SR3.6.8.5.2 DELETED was (A suitably privileged

operator shall be provided direct

capability to open a camera control

session for any camera on the nearby

cameras list)

Decision

Support

N/A N/A

SR3.6.8.5.2.1 DELETED was (If the camera is

currently being controlled by another

operator, standard camera control

override processing shall be invoked to

determine if the operator has authority to

override the camera, and, if so, the

operator will be given an option to

override control in order for the camera

control session to be opened.)

Decision

Support

N/A N/A

CHART R10 Detailed Design – Rev 3 7-31 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR3.6.8.5.3 DELETED was (A suitably privileged

operator shall be able to request the

camera on the nearby cameras list to

point in the general direction of the

event, based on the latitude-longitude of

the event and latitude-longitude of the

camera.)

Decision

Support

N/A N/A

SR3.6.8.5.3.1 DELETED was (It will not be necessary

for the operator to open a camera control

session on the camera in order to request

it to point to the event.)

Decision

Support

N/A N/A

SR3.6.8.5.3.2 DELETED was (If the camera is

currently being controlled by another

operator, standard camera control

override processing shall be invoked to

determine if the operator has authority to

override the camera, and, if so, the

operator will be given an option to

override control in order for the camera

to be pointed.)

Decision

Support

N/A N/A

SR3.6.8.5.4 DELETED was (A suitably privileged

operator shall be provided direct

capability to disable display of any

camera to the public.)

Decision

Support

N/A N/A

SR3.6.8.5.5 DELETED was (A suitably privileged

operator shall be provided direct

capability to include any camera on the

nearby cameras list as a response plan

item for the event.)

Decision

Support

N/A N/A

SR3.6.8.5.5.1 DELETED was (It will not be necessary

for the operator to include a camera on

the nearby cameras list in the response

plan of the event in order to display,

control, point, or disable public access to

the camera.)

Decision

Support

N/A N/A

CHART R10 Detailed Design – Rev 3 7-32 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR3.6.8.6 DELETED was (Upon execution of a

response plan item camera will be

displayed on any monitor(s) indicated on

the plan, will be disabled to the public if

indicated in the plan, and, if the camera

is not currently being controlled, will

move to the preset if a preset is indicated

in the plan.)

Decision

Support

N/A N/A

SR3.6.8.6.1 DELETED was (If a camera response

plan item being executed has not been

set up to display on a monitor, move to a

preset, or disable access to the public,

execution of the response plan item shall

have no effect, and shall not be

considered an error.)

Decision

Support

N/A N/A

SR3.6.8.7 DELETED was (A suitably privileged

operator shall be provided direct

capability to open a camera control

session on any camera in a response

plan, provided the camera is displayed

on a local monitor, regardless of whether

the response plan item has been

executed. Upon execution of a response

plan item camera will be displayed on

any monitor(s) indicated on the plan,

will be disabled to the public if indicated

in the plan, and, if the camera is not

currently being controlled, will move to

the preset if a preset is indicated in the

plan.)

Decision

Support

N/A N/A

SR3.6.8.8 DELETED was (A suitably privileged

operator will be able to include a camera

snapshot in the event history of a traffic

event, for any camera included as a

response plan item of the event.)

Decision

Support

N/A N/A

CHART R10 Detailed Design – Rev 3 7-33 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR3.6.8.8.1 DELETED was (Any number of camera

snapshots from any number of cameras

shall be able to be included in the traffic

event history at any time while the

traffic event is open.)

Decision

Support

N/A N/A

SR3.6.10 Auto Mode Monitors Video N/A N/A

SR3.6.10.1 The system shall support a configurable

mode for a monitor, referred to as "Auto

Mode", that will allow its display to be

limited to a dynamic list of video

sources and optional presets.

Video Configure Monitor,

Display Auto Mode

Tour

MonitorControlIDLCD, MonitorImpl.setAutoMode

SD

SR3.6.10.2 The system shall allow a monitor to

maintain a list of video sources and

optional presets that a monitor will

display when in Auto Mode (Auto Mode

Tour List).

Video Add Auto Mode Tour

List Entry

MonitorImpl.addAutoModeEntries SD,

MonitorImpl.removeAutoModeEntries SD,

MonitorImpl.removeAutoModeEntriesForOwner

SD, MonitorImpl.cleanUpAutoModeTourEntries SD

SR3.6.10.2.1 An Auto Mode tour list entry shall

include a video source.

Video Add Auto Mode Tour

List Entry

MonitorControlIDL CD,

MonitorImpl.addAutoModeTourEntries SD

SR3.6.10.2.2 An Auto Mode tour list entry shall

include an optional camera preset

number (standard preset or temporary

preset).

Video Add Auto Mode Tour

List Entry

MonitorControlIDL CD,

MonitorImpl.addAutoModeTourEntries SD

SR3.6.10.2.3 An Auto Mode tour list entry shall

include the entry's requester. (For

example, the description of the traffic

event for which the entry was added.)

Video Add Auto Mode Tour

List Entry

MonitorControlIDL CD,

MonitorImpl.addAutoModeTourEntries SD

SR3.6.10.3 The system shall limit an Auto Mode

monitor's display to its Auto Mode tour

list only when the list has entries

(Monitor is available for displaying

cameras/tours or to be used in a camera

control sessions when Auto Mode tour

list is empty).

Video Display Auto Mode

Tour

MonitorImpl.startAutoModeTourIfNecessary SD,

AutoModeTourTimerTask.run SD,

MonitorImpl.stopAutoModeTour SD

CHART R10 Detailed Design – Rev 3 7-34 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR3.6.10.3.1 If an Auto Mode monitor is currently

being used in a camera control session

and is the sole monitor in the controlling

user's local monitor group when the

Auto Mode tour list moves to a non-

empty state, the monitor will delay

displaying the Auto Mode tour list until

the session ends.

Video Display Auto Mode

Tour

MonitorImpl.startAutoModeTourIfNecessary SD,

AutoModeTourTimerTask.run SD,

MonitorImpl.stopAutoModeTour SD

SR3.6.10.3.2 If an Auto Mode monitor is currently

being used to display a camera or tour

when the Auto Mode tour list moves to a

non-empty state, the monitor will

commence displaying the Auto Mode

tour list (replacing what was previously

being displayed on the monitor).

Video Display Auto Mode

Tour

MonitorImpl.startAutoModeTourIfNecessary SD,

AutoModeTourTimerTask.run SD,

MonitorImpl.stopAutoModeTour SD

SR3.6.10.3.2.1 The system will restore what was

previously being displayed on a monitor

(video source or video tour) when a

monitor has no more entries in it's auto

mode tour list.

Video Display Auto Mode

Tour

N/A

SR3.6.10.4 The system shall periodically remove

Auto Mode tour list entries from a

monitor that are no longer needed by the

entry's requester. (For example, the

traffic event that added the entry no

longer needs the entry as part of its

response plan.) (Note: normally the

requester will explicitly remove entries

at the appropriate time. This

functionality is used to remove entries

when explicit removal fails.)

Video Clean Up Auto Mode

Tour List

MonitorImpl.cleanUpAutoModeTourEntries SD

SR3.6.10.5 The system shall allow a user with the

Configure Monitor functional right to

remove Auto Mode tour list entries from

a monitor.

Video Remove Auto Mode

Tour List Entry

MonitorImpl.removeAutoModeTourEntires SD

CHART R10 Detailed Design – Rev 3 7-35 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR3.6.10.6 The system shall display entries in an

Auto Mode monitor's tour list in the

order in which they were added, grouped

by requester. (For example, the order

specified in each traffic event.)

Video Display Auto Mode

Tour

MonitorImpl.addAutoModeTourEntries SD

SR3.6.10.7 The system shall display each entry in

the Auto Mode tour list for the Auto

Mode dwell time configured for the

monitor before attempting display of the

next entry (see Specify Monitor

Configuration requirements).

Video Display Auto Mode

Tour

AutoModeTourTimerTask.run

SR3.6.10.7.1 The dwell time will start elapsing at the

time the display request completes, not

the time at which the image display

completes and stabilizes on the monitor.

Video Display Auto Mode

Tour

AutoModeTourTimerTask.run

SR3.6.10.8 The system shall not move a camera to a

preset as part of an Auto Mode tour list

if that camera is already controlled.

Video Display Auto Mode

Tour

AutoModeTourTimerTask.run

SR3.6.11 Camera Temporary Presets Video N/A

SR3.6.11.1 The system shall support temporary

presets for a controllable camera.

Video Add Camera

Temporary Preset

CameraControlModule CD

CameraControlIDLClasses CD

SR3.6.11.2 The system shall allow up to 10

temporary presets per camera.

Video Add Camera

Temporary Preset

CameraControlModule.saveTempPreset SD

CameraControlModule.getFirstAvailableTempPreset

Number SD

CameraContorlModule.createTempPreset SD

SR3.6.11.3 A temporary preset shall have a title. Video Add Camera

Temporary Preset

CameraContorlModule.createTempPreset SD

SR3.6.11.4 A temporary preset will contain a

camera position.

Video Add Camera

Temporary Preset

CameraControlModule.saveTempPreset SD

SR3.6.11.4.1 DELETED. A temporary preset's

position shall include the camera's

position (I.E when a temporary preset is

created it will simply store camera's

current position).

Video N/A N/A

SR3.6.11.5 A temporary preset will contain the

preset's requester. (For example, the

traffic event that requested the creation

of the temporary preset.)

Video Add Camera

Temporary Preset

VideoControl.CD CameraControlModule.CD

CHART R10 Detailed Design – Rev 3 7-36 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR3.6.11.6 A temporary preset will contain a system

assigned preset number.

Video Add Camera

Temporary Preset

CameraControlModule.saveTempPreset SD

CameraControlModule.getFirstAvailableTempPreset

Number SD

CameraContorlModule.createTempPreset SD

SR3.6.11.7 The system shall periodically remove

temporary presets from a camera that are

no longer needed by the preset's

requester. (Note that normally the

requester will remove its temporary

presets at the appropriate time. This will

clean up presets if that fails.)

Video Clean Up Camera

Temporary Presets

CameraControlModule.initialize CD

CameraContorlModule.cleanupCameraTempPreset

SD

SR3.6.11.8 The system shall allow a user with the

Configure Camera functional right to

remove temporary presets from a

camera.

Video Remove Camera

Temporary Preset

CameraContorlModule.deleteTempPreset SD

SR3.6.12 Camera Reject Move to Preset Video N/A N/A

SR3.6.12.1 The system shall allow a user with the

Configure System right to specify a

minimum dwell time for cameras as a

system wide setting to be used for

conditionally rejecting a move to preset

request.

Video Reject Move To Preset CameraControlModule CD

SR3.6.12.1.1 A minimum camera dwell time of 0 shall

indicate that the minimum camera dwell

time feature will be ignored. (Cameras

will always move immediately with each

request, which may shorten the lifespan

of camera PTZ units.)

Video Reject Move To Preset CameraControlModule.MoveToPreset SD

CameraControlModule.moveToTempPreset SD

SR3.6.12.2 A controllable camera shall reject a

move to preset if the request is made as

part of a tour and the camera has been in

its current position for less than the

system wide minimum dwell time for

cameras. (The camera will still be

displayed within the tour, but will

remain at its current position.)

Video Reject Move To Preset CameraControlModule.MoveToPreset SD

CameraControlModule.moveToTempPreset SD

SR4 MANAGE EVENTS N/A N/A (Heading)

SR4.1 Record and Update Event Status N/A N/A

CHART R10 Detailed Design – Rev 3 7-37 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR4.1.11 The system shall maintain an event

history log for each traffic event.

 N/A N/A

SR4.1.11.1 The system shall log details related to

opening, closing, or updating the state of

an event in the event’s history log.

 N/A N/A

SR4.1.11.1.1 The list of applicable areas of

responsibility shall be logged in the

event's history log at the time the event

is opened if the event has a location with

a defined latitude/longitude.

AOR ManageTrafficEvents AORUtilClasses CD

SR4.1.11.1.1.1 The list of applicable areas of

responsibility shall be logged in the

event's history log whenever the event

location is updated if the location has a

defined latitude/longitude.

AOR ManageTrafficEvents AORUtilClasses CD

SR4.2 OPEN EVENT N/A N/A (Heading)

SR4.2.2 RECORD EVENT DETAILS N/A N/A

SR4.2.2.2 SPECIFY LOCATION(S) AND

IMPACT

 N/A N/A

SR4.2.2.2.17 The system shall automatically display

the current applicable areas of

responsibility on the event details page if

the event has a location with a defined

latitude/longitude.

AOR ManageTrafficEvents AORUtilClasses CD Coded in R10 Prototype

SR4.2.2.7 SPECIFY NATURE OF

PROBLEM.The system shall allow the

user to capture additional details that

help determine the severity and type of

event, and any additional special

conditions. Suggestion to be validated:

There are at least three primary aspects

to this: Vehicle Type/Count, Incident

Type, and lanes affected. The current list

in CHART is fairly expansive and

should be validated during any

scheduled enhancement to this

capability.

 N/A N/A (Heading)

CHART R10 Detailed Design – Rev 3 7-38 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR4.2.2.7.1 The system shall allow the type of action

required to be specified for an Action

Event.

 N/A N/A (unchanged in R10)

SR4.2.2.7.1.2 The selectable action event types shall

include Debris.

 N/A N/A (unchanged in R10)

SR4.2.2.7.1.2.1 The system shall allow the user to enter

textual description for action event type

Debris.

 N/A N/A (unchanged in R10)

SR4.2.2.7.1.6 The selectable action event types shall

include Animal Carcass Requires

Removal 10-45.

 N/A N/A (unchanged in R10)

SR4.2.2.7.1.6.1 The system shall allow the user to enter

textual description for action event type

Animal Carcass Requires Removal 10-

45.

 N/A N/A (unchanged in R10)

SR4.2.2.7.1.7 The selectable action event types shall

include Device Test.

 N/A N/A (unchanged in R10)

SR4.2.2.7.1.8 The selectable action event types shall

include Parking Info.

 N/A N/A (unchanged in R10)

SR4.2.2.7.1.9 The selectable action event types shall

include Signal Out Complete 11-5 C.

 N/A N/A (unchanged in R10)

SR4.2.2.7.1.10 The selectable action event types shall

include Signal Red Out 11-5 R.

 N/A N/A (unchanged in R10)

SR4.2.2.7.1.11 The selectable action event types shall

include Signal Green Out 11-5 G.

 N/A N/A (unchanged in R10)

SR4.2.2.7.1.12 The selectable action event types shall

include Signal Yellow Out 11-5 Y.

 N/A N/A (unchanged in R10)

SR4.2.2.7.1.13 The selectable action event types shall

include Signal Green Arrow Out 11-5

GA.

 N/A N/A (unchanged in R10)

SR4.2.2.7.1.14 The selectable action event types shall

include Signal Yellow Arrow Out 11-5

YA.

 N/A N/A (unchanged in R10)

SR4.2.2.7.1.15 The selectable action event types shall

include Signal Stuck 11-6.

 N/A N/A (unchanged in R10)

SR4.2.2.7.1.16 The selectable action event types shall

include Signal Long/Short Timing 11-7.

 N/A N/A (unchanged in R10)

CHART R10 Detailed Design – Rev 3 7-39 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR4.2.2.7.1.17 The selectable action event types shall

include Signal On Flash 11-8.

 N/A N/A (unchanged in R10)

SR4.2.2.7.1.18 The selectable action event types shall

include Signal Involved In Crash 11-9.

R10Lev

APRs

N/A Screenshot Only

SR4.2.2.7.1.19 The selectable action event types shall

include Signal Temporary Repair 11-13.

 N/A N/A (unchanged in R10)

SR4.2.2.7.1.20 The selectable action event types shall

include Signal Twisted.

R10Lev

APRs

N/A Screenshot Only

SR4.2.2.7.1.21 The selectable action event types shall

include Utility (Wires Down).

 N/A N/A (unchanged in R10)

SR4.2.2.7.1.22 The selectable action event types shall

include Utility (Plate Shift).

 N/A N/A (unchanged in R10)

SR4.2.2.7.1.23 The selectable action event types shall

include Citizen Call.

 N/A N/A (unchanged in R10)

SR4.2.2.7.1.23.

1

The system shall allow the user to enter

textual description for action event type

Citizen Call.

 N/A N/A (unchanged in R10)

SR4.2.2.7.4 The system shall allow a suitably

privileged user to specify the attributes

for an Incident.

 N/A N/A (unchanged in R10)

SR4.2.2.7.4.1 The system shall allow the user to

specify the Incident Type.

 N/A N/A (unchanged in R10)

SR4.2.2.7.4.1.1

1

The list of incident types shall include

Utility Problem.

 N/A N/A (unchanged in R10)

SR4.2.2.7.4.1.1

2

The list of incident types shall include

Weather Closure.

 N/A N/A (unchanged in R10)

SR4.2.2.7.4.1.1

3

The list of incident types shall include

Weather Closure, High Water.

 N/A N/A (unchanged in R10)

SR4.2.2.7.4.1.1

4

The list of incident types shall include

Weather Closure, Winter Precip..

 N/A N/A (unchanged in R10)

SR4.2.2.7.4.1.1

5

The list of incident types shall include

Weather Closure, Debris.

 N/A N/A (unchanged in R10)

SR4.2.2.7.4.1.1

6

The list of incident types shall include

Weather Closure, Utility.

R10Lev

APRs

N/A Screenshot Only

CHART R10 Detailed Design – Rev 3 7-40 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR4.2.3 DEPLOY RESOURCES. The system

shall allow the user to view the pre-

defined decision support plans to suggest

the course of action and notifications,

and execute the selected (or modified)

course of action. The ability to record

the deploying of the resources only

applies to user generated events – not

External Events. *

 N/A N/A (Included for context)

SR4.2.3.2 EVALUATE EVENT RESPONSE

RECOMMENDATIONS. The system

shall display the most appropriate

corresponding recommended response

plan from the pre-defined decision

support plans, based on the event type,

conditions, day of week and time of day

(e.g., to determine closest open

maintenance shop), location, and area of

responsibility.

 N/A N/A (Included for context)

SR4.2.3.2.1 The system shall display the

recommended DMS, HAR, Detector,

CCTV camera and monitor usage and

the corresponding message/control,

based on the event location

 Request suggested

cameras.

SD TrafficEventGroup.requestCameraSuggestions

SR4.2.3.2.1.2 The system shall consider all applicable

devices located within a configurable

radius of the traffic event.

Decision

Support

MapAndGISUses.View

CloseDevicesOnMap

MapAndGISUses.View

DevicesCloseToTraffic

Event

N/A

SR4.2.3.2.1.2.3 The system shall include both CHART

and external devices as applicable that

are located within the specified radius of

the traffic event.

 N/A

SR4.2.3.2.1.2.3.

3

The system shall suggest that the user

view cameras that match the configured

camera search distance criteria.

Decision

Support

Request Suggested

Cameras

SD:TrafficEventGroup.requestCameraSuggestions

CHART R10 Detailed Design – Rev 3 7-41 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR4.2.3.2.1.2.3.

3.4

The system shall allow a user with the

"respond to traffic event" functional

right to add one or more suggested

cameras to the traffic event's response

plan as specified by SR4.2.3.3.1.7.

Decision

Support

Request Suggested

Cameras Add

Suggested Cameras to

Response

SD:VideoTourRPIDataImpl:SetItemData

SR4.2.3.2.1.2.3.

3.5

Camera suggestions shall be scored such

that they are displayed in a predictable

order.

Decision

Support

Request Suggested

Cameras

SD TrafficEventGroup.requestCameraSuggestions

SR4.2.3.2.1.2.3.

3.5.1

All cameras that are within the

configured immediate distance shall be

scored higher than those that are not

within the immediate distance.

Decision

Support

Request Suggested

Cameras

CD:VideoTourResponseClasses

SR4.2.3.2.1.2.3.

3.5.1.1

Cameras within the immediate distance

shall be ordered by distance from the

traffic event regardless of relative

proximity (route, direction,

upstream/downstream).

Decision

Support

Request Suggested

Cameras

CD:VideoTourResponseClasses

SR4.2.3.2.1.2.3.

3.5.2

Cameras that are in the near or far

distance categories shall be combined as

one list displayed with cameras that are

upstream, same route, same direction

suggested before all other cameras in

this combined list.

Decision

Support

Request Suggested

Cameras

CD:VideoTourResponseClasses

SR4.2.3.2.1.2.9 The system shall not recommend DMS

devices whose calculated proximity to

the target traffic event is a proximity that

is configured to have suggestions

disabled (Note: See Req 4.2.3.2.9.8 for

proximity related configuration).

Decision

Support

Disable Suggestions None: This was designed and implemented in R9..

This requirement was simply re-worded from

"devices" to "DMS devices" since cameras cannot

have their proximity values disabled..

SR4.2.3.2.9 The system shall allow a user with the

configure system right to configure

decision support settings.

Decision

Support

N/A N/A (unchanged in R10)

SR4.2.3.2.9.7 A user with the configure system

functional right shall be able to maintain

a set of message templates that will be

used by the system when suggesting

message content.

Decision

Support

Configure Decision

Support UCD:

ConfigureMessageTem

plate

N/A (unchanged in R10)

CHART R10 Detailed Design – Rev 3 7-42 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR4.2.3.2.9.7.1 A user with the configure system right

shall be able to maintain a set of

message templates to be used by the

system when suggesting message

content for DMS devices.

Decision

Support

Configure Decision

Support UCD:

ConfigureDMSMessag

eTemplate

N/A (unchanged in R10)

SR4.2.3.2.9.7.1.

1

A user with the configure system right

shall be able to use a DMS message

editor to create a DMS message template

that consists of static text and parameter

tags.

DMS Configure Decision

Support UCD:

AddDMSMessageTem

plate

chartlite.servlet.dms :

createDMSDecSuppMsgTemplateData SD

SR4.2.3.2.9.7.1.

1.13

The system shall allow the user to

display a preview of the sample message

for any of the DMS Display

Configurations defined in the system.

[MOVED FROM 4.2.3.2.9.7.5.1 and

modified]

DMS Configure Decision

Support UCD:

AddDMSMessageTem

plate

EditDMSMessageTemp

late

charlite.servlet.dms : getDMSEditorImage SD

SR4.2.3.2.9.7.1.

1.13.1

The system shall display a warning if the

sample message cannot be displayed

using any of the selected DMS Display

Configurations. Note: Even if the

sample message fits it does not

guarantee that the same message will fit

when substituted with live data values.

[MOVED FROM 4.2.3.2.9.7.5.1.1 and

modified]

DMS Configure Decision

Support UCD:

AddDMSMessageTem

plate

EditDMSMessageTemp

late

charlite.servlet.dms : getDMSEditorImage SD

SR4.2.3.2.9.7.1.

2

Message templates created for use by the

system when suggesting message

content for DMS devices shall apply

only to DMS devices that support at

least 8 characters per line. (For line

matrix and full matrix DMS, this will be

determined by the width of the widest

character in the font specified in the

Display Configuration) [MOVED

FROM 4.2.3.2.9.7.1.1.11 and modified]

DMS Configure Decision

Support UCD:

AddDMSMessageTem

plate

DecisionSupportManager :

findPertinentDMSDevices SD

CHART R10 Detailed Design – Rev 3 7-43 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR4.2.3.2.9.7.1.

3

Message templates created for use by the

system when suggesting message

content for DMS devices shall apply

only to DMS devices that support at

least 2 lines per page. [MOVED FROM

4.2.3.2.9.7.1.1.12 and modified]

DMS Configure Decision

Support UCD:

AddDMSMessageTem

plate

DecisionSupportManager :

findPertinentDMSDevices SD

SR4.2.3.2.9.7.1.

4

A user with the configure system right

shall be able to specify the maximum

width of a DMS (in characters) that a

message template pertains to. [MOVED

FROM 4.2.3.2.9.7.5 and modified]

DMS Configure Decision

Support UCD:

AddDMSMessageTem

plate

EditDMSMessageTemp

late

chartlite.servlet.dms :

createDMSDecSuppMsgTemplateData SD

SR4.2.3.2.9.11 A user with the configure system right

shall be permitted to configure the

decision support camera distance

category filters.

Decision

Support

Configure Camera

Distances

Use Case Only

SR4.2.3.2.9.11.

1

A user with the "configure system"

functional right shall be able to specify

the maximum distance from a traffic

event a camera may be located for it to

be assigned a distance category of

IMMEDIATE.

Decision

Support

Configure Distances

Configure Camera

Distances

Use Case Only

SR4.2.3.2.9.11.

2

A user with the "configure system"

functional right shall be able to specify

the maximum distance from a traffic

event a camera may be located for it to

be assigned a distance category of

NEAR.

Decision

Support

Configure Distances

Configure Camera

Distances

Use Case Only

SR4.2.3.2.9.11.

3

A user with the "configure system"

functional right shall be able to specify

the maximum distance from a traffic

event a camera may be located for it to

be assigned a distance category of FAR.

Decision

Support

Configure Distances

Configure Camera

Distances

Use Case Only

CHART R10 Detailed Design – Rev 3 7-44 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR4.2.3.2.9.11.

4

A user shall be able to specify a

percentage of lanes closed for each

camera distance category for the purpose

of device selection (Devices in this

distance category should be selected if

the target traffic event's lane closure

percentage is >= this setting).

Decision

Support

Configure Distances

Configure Camera

Distances

Use Case Only

SR4.2.3.3 SELECT/ MODIFY COURSE OF

ACTION. The system shall allow the

user to accept, modify, or bypass the

decision support recommendations for

device usage, message, and control; for

resource requests and notifications; for

equipment type; and for equipment

location.

 N/A N/A (Heading / general)

SR4.2.3.3.1 SELECT/ DESELECT RESOURCE OR

DEVICE. The system shall allow the

user to select or deselect the resources,

equipment, and devices (DMS, HAR,

SHAZAM, camera, monitor) that are to

be used for the response.

 N/A N/A

SR4.2.3.3.1.7 The system shall allow a user with the

"respond to traffic event" functional

right to add cameras to the traffic event

response plan.

Decision

Support

Add Cameras to

Response Plan Video

Tour

SD:VideoTourRPIDataImpl:SetItemData

SR4.2.3.3.1.7.1 All cameras added to the response plan

of a traffic event shall be added to a

single response video tour response plan

item.

Decision

Support

Add Cameras to

Response Plan Video

Tour

SD:VideoTourRPIDataImpl:SetItemData

SR4.2.3.3.1.7.1.

1

Cameras added to a traffic event's

response plan video tour shall be added

at the end of the tour and shall be

configured to use no preset.

Decision

Support

Add Cameras to

Response Plan Video

Tour

Use Case Only

SR4.2.3.3.1.8 If a traffic event has a defined location,

the system shall display the select list of

DMS, HAR or Camera devices to add to

the response plan sorted by distance

from the traffic event.

Decision

Support

Add Cameras to

Response Plan Video

Tour

Use Case Only

CHART R10 Detailed Design – Rev 3 7-45 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR4.2.3.3.1.8.1 If a device does not have a defined

lat/lon location it will be shown at the

bottom of the select list.

Decision

Support

Add Cameras to

Response Plan Video

Tour

Use Case Only

SR4.2.3.3.2 SELECT OR ENTER APPROPRIATE

MESSAGE

 N/A N/A (Heading)

SR4.2.3.3.2.2 The system shall allow the user to select

or enter the appropriate message for

devices that broadcast messages (i.e.,

DMS and HAR).

 N/A N/A (General)

SR4.2.3.3.2.2.9 Edit DMS Message DMS Set DMS Message for

use in Response Plan

N/A (Heading)

SR4.2.3.3.2.2.9.

1

The DMS message editors shall allow

the user to view the message as it would

appear on any of the sign layouts when

editing a message applicable to multiple

DMS Display Configurations.

[MODIFIED IN R10]

DMS Set DMS Message for

use in Response Plan

chartlite.servlet.dms:createDMSRPIMsgEditorData

SD

SR4.2.3.3.2.2.9.

4

The DMS message editor shall allow the

operator to view an updating display of

the message text formatted for any of the

DMS Display Configurations used by

the DMSs being altered. [MODIFIED

IN R10]

DMS Set DMS Message for

use in Response Plan

chartlite.servlet.dms:createDMSRPIMsgEditorData

SD

SR4.2.3.3.2.2.9.

5

The DMS message editor shall inform

the operator if the entered message text

would be truncated when formatted to fit

any DMS Display Configuration of the

DMSs being altered. [MODIFIED IN

R10]

DMS Set DMS Message for

use in Response Plan

chartlite.servlet.dms:createDMSRPIMsgEditorData

SD

SR4.2.3.3.2.2.9.

6

When a group of DMSs are selected to

receive the same message, the message

editor shall format the message for each

unique DMS Display Configuration

from the DMSs selected. [MODIFIED

IN R10]

DMS Set DMS Message for

use in Response Plan

chartlite.servlet.dms:createDMSRPIMsgEditorData

SD

CHART R10 Detailed Design – Rev 3 7-46 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR4.2.3.3.2.2.9.

9

Each DMS shall use only one font for

displaying DMS messages, as specified

in the Display Configuration for the

DMS. [MODIFIED IN R10]

DMS Set DMS Message for

use in Response Plan

chartlite.servlet.dms:createDMSRPIMsgEditorData

SD

SR4.2.3.3.2.2.1

0

The system shall allow the user to filter

the list of DMS devices by Display

Configuration name if they choose to set

the message on multiple DMSs in the

response plan.

DMS Set DMS Message for

use in Response Plan

Prototype only

SR4.2.3.3.2.3 DELETED - covered by 4.2.3.2.9 DS

templates. (Was: The system shall

provide the user with a message

template that is already formatted based

on the device characteristics (example:

3-line DMS), and which is pre-populated

based on event type, and with as much

specific data as is available

(suggestion/example to be validated:

Route number from the event location).)

DMS N/A N/A (DELETED)

SR4.2.3.3.5 ADJUST CAMERA PARAMETERS

AND MONITOR ASSIGNMENT

 N/A N/A (Heading/General)

SR4.2.3.3.5.1 The system shall allow a user with the

"respond to traffic event" functional

right to modify the traffic event response

plan video tour.

Decision

Support

Edit response plan

video tour.

Use Case Only

SR4.2.3.3.5.1.1 The system shall allow a suitably

privileged user to request control of a

camera that is in the traffic event

response video tour.

Decision

Support

Control Response

Camera

Use Case Only

SR4.2.3.3.5.1.1.

3

A camera control session that is

requested from a response plan video

tour entry shall allow the user to create a

temporary preset for the tour entry if the

camera supports presets.

Decision

Support

Control Response

Camera Create

Temporary Preset

Use Case Only

SR4.2.3.3.5.1.1.

3.1

A temporary preset created by a camera

control session that was established from

a response plan video tour entry shall be

the preset used for that tour entry.

Decision

Support

Create Temporary

Preset

Use Case Only

CHART R10 Detailed Design – Rev 3 7-47 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR4.2.3.3.5.1.4 The system shall allow a user with the

"respond to traffic event" functional

right to maintain the list of cameras that

are included in the response plan video

tour.

Decision

Support

Edit Response Plan

Video Tour Change

order of cameras

Duplicate Camera in

Tour Remove device

from response.

Use Case Only

SR4.2.3.3.5.1.4.

1

The system shall allow a user with the

"respond to traffic event" functional

right to move a camera up within the

video tour. (Doing so will place the

camera prior to the item that was

previously immediately above it in the

tour entry list).

Decision

Support

Change Order of

Cameras.

Use Case Only

SR4.2.3.3.5.1.4.

2

The system shall allow a user with the

"respond to traffic event" functional

right to move a camera down within the

video tour. (Doing so will place the

camera after the item that was

previously immediately below it in the

tour entry list).

Decision

Support

Change Order of

Cameras.

Use Case Only

SR4.2.3.3.5.1.4.

3

The system shall allow a user with the

"respond to traffic event" functional

right to duplicate a camera within the

response plan video tour. (Doing so will

place another entry at the end of list of

tour entries with no preset selected for

the new entry.)

Decision

Support

Duplicate Camera in

Tour

Use Case Only

SR4.2.3.3.5.1.4.

4

The system shall allow a user with the

"respond to traffic event" functional

right to specify an optional preset for the

camera to move to when viewed within

the tour.

Decision

Support

Set Preset to Use for

Camera

Use Case Only

SR4.2.3.3.5.1.4.

4.1

The user may specify that the camera

should use no preset. In this case the

camera will not move when displayed

during by the auto mode video tour.

Decision

Support

Set Preset to Use for

Camera

Use Case Only

CHART R10 Detailed Design – Rev 3 7-48 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR4.2.3.3.5.1.4.

4.2

The user may specify that the camera

should create a temporary preset to use.

In this case the tour will request that the

camera move back to the position it is

currently (when the temporary preset is

created) at each time it is displayed for

the tour.

Decision

Support

Set Preset to Use for

Camera

Use Case Only

SR4.2.3.3.5.1.4.

4.3

The user may specify that the camera

should use a pre-existing preset. In this

case the tour will request that the camera

move to the position associated with the

pre-existing preset when displayed

during the auto mode video tour.

Decision

Support

Set Preset to Use for

Camera

Use Case Only

SR4.2.3.4 EXECUTE COURSE OF ACTION N/A N/A (Heading)

SR4.2.3.4.6 DELETED Covered in SR4.2.3.4.12.1.1.

The system shall automatically update

the specified monitors with the

appropriate views in the appropriate

areas of responsibility.

Suggestion/example for validation: e.g.,

MSP barracks within area of

responsibility will get the new camera

view.

Decision

Support

N/A N/A (Deleted)

SR4.2.3.4.7 The system shall automatically send out

the selected messages or notifications to

the specified resources in accordance

with the selected course of action.

Notificati

on

N/A N/A (Included for context)

SR4.2.3.4.7.4 DELETED - The system shall provide

the capability to send notifications and

requests for resources via fax.

Notificati

on

N/A N/A

SR4.2.3.4.7.6 DELETED - The system shall provide

the capability to send notifications and

requests for resources via instant

message.

Notificati

on

N/A N/A

SR4.2.3.4.7.7 DELETED - The system shall provide

the capability to send notifications and

requests for resources via page.

Notificati

on

N/A N/A

CHART R10 Detailed Design – Rev 3 7-49 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR4.2.3.4.12 The system shall allow a suitably

privileged user to execute selected

individual response plan items.

 N/A N/A (Heading/General)

SR4.2.3.4.12.1 The system shall allow a user with the

"respond to traffic event" functional

right to activate the response plan video

tour by executing the response video

tour response plan item.

Decision

Support

Add Camera to Auto

Model Tour List

SD:VideoTourRPIHandler:execute

SR4.2.3.4.12.1.

1

When the response plan video tour

response plan item is executed the

system shall add the tour entries to the

auto mode tour list of all system

monitors that have at least one Areas of

Responsibility that contains the location

of the traffic event. (Note: only monitors

that are currently in auto mode will

immediately act on this; the others will

just hold the information in case they go

into auto mode.)

Decision

Support

Add Camera to Auto

Model Tour List

SD:VideoTourRPIHandler:execute

SR4.2.3.4.13 The system shall allow a suitably

privileged user to revoke the response

plan item execution.

 Revoke Response SD:VideoTourRPIHandler:revokeExecution

SR4.2.3.4.13.1 When a response plan video tour

response plan item is revoked all tour

entries for the traffic event will be

removed from each monitor they were

added to when the item was executed.

Decision

Support

Remove Cameras from

Monitor Auto Mode

Tour List

SD:VideoTourRPIHandler:revokeExecution

SR4.2.3.5 View Response Plan N/A N/A (Heading)

SR4.2.3.5.1 The system shall allow the user to view

a list of response plan items that are

being used in the response plan of an

open traffic event.

 N/A N/A (Included for context)

SR4.2.3.5.1.1 The system shall show the response plan

video tour response plan item in the list

of response plan items.

Decision

Support

View Response Plan

Video Tour

Use Case Only

CHART R10 Detailed Design – Rev 3 7-50 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR4.2.3.5.1.1.1 The video tour response plan item shall

show the list of monitors that currently

include the location of the traffic event

in their assigned Areas of

Responsibility.

Decision

Support

View Response Plan

Video Tour

Use Case Only

SR4.2.3.5.1.1.2 The response plan video tour response

plan item shall show the list of cameras

and optional presets that have been

added to the tour.

Decision

Support

View Response Plan

Video Tour

Use Case Only

SR4.2.3.5.1.1.3 The system shall allow an operator with

the "respond to traffic event" functional

right to display the response plan video

tour as a desktop video tour provided

that all other conditions for desktop

video display are met (as specified by

SR3.6.9.3 and sub-requirements).

Decision

Support

View Response Plan

Tour on Desktop

Use Case Only

SR4.2.3.5.7 The system shall display the state of

each response plan item to indicate

whether the item’s action has been

performed.

Decision

Support

N/A N/A

SR4.2.3.5.7.1 The system shall indicate if a DMS or

HAR item’s message is active on the

device.

Decision

Support

Not changed in R10. Reworded from r9 to change device to "DMS or

HAR" since cameras do not have messages activated

on them.

SR4.2.3.5.7.2 The system shall indicate if the response

plan video tour entries have been added

to the auto mode list of the target

monitors.

Decision

Support

View Response Plan

Video Tour

Use Case Only

SR4.3 RESPOND TO AND MONITOR

EVENT

 N/A N/A (Heading)

SR4.3.1 MONITOR EVENT. The system shall

allow the user to view and update the

status of devices, resources responding

to an event, and the event response

activities.

 N/A N/A (General)

SR4.3.1.1 MONITOR RESOURCE STATUS. N/A N/A (Heading)

CHART R10 Detailed Design – Rev 3 7-51 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR4.3.1.1.4 The system shall allow the user to

update the status of the resource when

they indicate that they cannot fulfill the

request, and display the next closest

similar resource that could be contacted.

Suggestion/example to be validated:

This is particularly important for

knowing field unit driver status.

Additional example: If the maintenance

shop reports that the requested

equipment is not available, the system

should provide the operator with the

suggested next closest other facility

based on "area of responsibility" that's

predefined at x mile radius. Also

important for tow truck response

history.

 N/A N/A (Included for context)

SR4.3.1.1.4.1 DELETED - The system shall provide

feedback regarding which individuals

could not be notified via page.

Notificati

on

N/A N/A (Deleted)

SR4.3.1.1.4.2 DELETED - The system shall provide

feedback regarding which individuals

could not be notified via fax.

Notificati

on

N/A N/A (Deleted)

SR4.3.1.3 MONITOR DEVICE STATUS N/A N/A (Heading)

SR4.3.1.3.1 The system shall allow the user to view

the status of a device, and view its data

or message.

 N/A N/A (General)

SR4.3.1.3.1.2 The navigator shall show the updating

attributes and status of each of the

devices.

 N/A N/A (General)

SR4.3.1.3.1.2.5 DELETED - covered by 1.5.7.1.3.

(Was: The navigator shall show the

DMS geometry for each DMS device.)

DMS N/A N/A (DELETED)

SR4.3.1.3.1.2.6 DELETED - covered by 1.5.7.1.4 and

others. (Was: The navigator shall show

the current message for each DMS

device.)

DMS N/A N/A (DELETED)

CHART R10 Detailed Design – Rev 3 7-52 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR4.3.1.3.1.7 The system shall provide a graphical

representation of DMS messages and

templates. [MODIFIED IN R10]

DMS View DMS True

Display

TrueDisplayClasses CD, DMSTrueDisplayMgr :

createImage SD

SR4.3.1.3.1.7.1 The graphical representation of a DMS

Message shall utilize the settings from

the Display Configuration for the DMS,

including the display size, font, inter-

character spacing (line matrix and full

matrix only), and line spacing (full

matrix only).

DMS View DMS True

Display

TrueDisplayClasses CD, DMSTrueDisplayMgr :

createImage SD

SR6 PROVIDE TRAVELER

INFORMATION

 N/A N/A (Heading)

SR6.1 BROADCAST INFORMATION. The

system shall provide audible and visual

or textual display messages to several

types of devices. The content of the

message and the trigger to activate the

device (where necessary) are initiated

(or calculated and dynamically updated

in the case of queue length and travel

time) by an earlier process.

 N/A N/A (General)

SR6.1.2 The system shall broadcast traveler

information via DMSs.

DMS N/A N/A

SR6.1.2.5 The system shall allow a user with

appropriate rights to manage traveler

information messages for a DMS.

DMS N/A N/A

SR6.1.2.5.1 The system shall allow the user to create

a traveler information message for use

on a specific DMS.

DMS Add Traveler

Information Message

chartlite.servlet.dms:getAddEditDMSTravInfoMsgF

orm SD

SR6.1.2.5.1.1 The system shall require the user to

select a previously defined message

template to be used for the traveler

information message.

DMS Add Traveler

Information Message

chartlite.servlet.dms:getAddEditDMSTravInfoMsgF

orm SD

CHART R10 Detailed Design – Rev 3 7-53 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR6.1.2.5.1.1.1 The system shall allow only message

templates whose target sign size is

compatible with the Display

Configuration specified for the DMS to

be selected for use in a traveler

information message for the DMS.

(Display Configuration compatibility

depends on the sign type. A character

matrix sign is compatible if its number

of rows and cols match those specified

in the template. A line matrix sign

matches if its rows match the rows

specified in the template and its

minimum columns match the columns

specified in the template. A full matrix

sign type matches if its minimum rows

and minimum columns match the rows

and columns specified in the template)

 [MODIFIED IN R10]

DMS Add Traveler

Information Message

chartlite.servlet.dms:getAddEditDMSTravInfoMsgF

orm SD

SR7 MANAGE CHART PERFORMANCE.

This process allows CHART managers

and others to assess and enhance the

effectiveness of CHART by reviewing

and evaluating the performance of

CHART operations, event management,

traffic flow management, and devices

and software performance. This process

also includes simulation of event

management and traffic management

based on historical data.

 N/A N/A (Heading)

SR7.3 MANAGE AND MEASURE DEVICE

PERFORMANCE

 N/A N/A (Heading)

SR7.3.2 CHECK AND VALIDATE SYSTEM

AND STATUS. The system shall

initiate the capture of data from polling

for devices and hardware.

 N/A N/A (Heading)

SR7.3.2.1 The system shall monitor and ping for

system services at pre-defined

periodicity.

 N/A N/A (General)

CHART R10 Detailed Design – Rev 3 7-54 08/14/2012

Tag Requirement Feature Use Cases Other Design Elements

SR7.3.2.1.1 The system shall provide a mechanism

to poll devices for status on a

configurable interval basis.

 N/A N/A (General)

SR7.3.2.1.1.6 The system shall verify that the font

specified in the Display Configuration of

an NTCIP DMS is loaded into the font

slot number specified for the DMS.

DMS Verify Font DMSControlModule:RunPollDMSTask SD

DMSControlModule:VerifyFont SD

NTCIPProtocolHdlr:ValidateFont SD

NTCIPProtocolHdlr::ConfigureFont SD

SR10 SYSTEM INTEGRATION N/A N/A (Heading)

SR10.7 The system shall support external

connections.

 N/A N/A

SR10.7.2 The system shall monitor and maintain

the state of external connections

established by the system.

 N/A N/A

SR10.7.2.1 The system shall provide an indication

to the users of any connections which

are detected to be down.

 N/A N/A

SR10.7.2.1.6 If configured to do so, the system shall

issue a notification when an external

connection transitions to the "OK" state

and remains there for more than a

configurable connection-specific amount

of time.

LevA105

7

Send External

Connection

Notifications

Use Case Only

CHART R10 Detailed Design – Rev 3 8-1 08/14/2012

8 Use Case Diagrams

The use case diagrams depict new functionality for CHART R10 and also identify existing

features that will be enhanced. The use case diagrams exist in the Tau design tool in the Release

10 area.

8.1 HighLevelUseCases (Use Case Diagram)

This diagram shows the main uses of the system at a very high level. Most of the use cases

will not be detailed further since they are not changing with CHART R3B1. New

functionality for CHART R3B1 includes the Manage Alerts and Configure Alerts use cases

which are further detailed with a corresponding use case diagram. The View Home Page

and View Working Page use cases are also new, which are simple enough to not require

further detail in separate use case diagrams. Some use cases are modified for R3B1,

including the Manage Dictionaries use case. This is further detailed in a separate use case

diagram.

Manage

Dictionaries

Configure
Operation

Centers

Manage Stored
Messages

View Home
MonitorDetails

View
Working Page

Administrator

Control HAR

Manage Video

Manage
Devices

See
ConfigureAlerts
Use Case Diagram

Manage
Traffic Events

Control DMS

Operator

Configure Alerts

View Device
Status

See
ManageAlerts
Use Case Diagram.

See
ManageDictionaries &
ManagePronunciations
Use Case Diagrams.

Specify
Home Monitor

View
Home Page

Login

Manage Alerts

Manage Plans

Manage
Device

Queues

Configure Devices

Administer
System

«extend»

«extend»

«extend»

«extend»

«include»

«extend»

«extend»

«extend»

«extend»
«extend»

«extend»

«extend»

«extend»

CHART R10 Detailed Design – Rev 3 8-2 08/14/2012

8.1.1 Administer System (Use Case)

An administrator (operator with the correct functional rights) may perform administrative

functions including configuring devices, configuring alerts, and managing dictionaries.

8.1.2 Administrator (Actor)

An administrator is a CHART user that has functional rights assigned to allow them to

perform administrative tasks, such as system configuration and maintenance.

8.1.3 Configure Alerts (Use Case)

A user with proper functional rights can configure various features of alert types and alerts

processing. Extended use cases define the types of configuration which can be performed.

8.1.4 Configure Devices (Use Case)

An administrator (operator with the correct functional rights) may configure devices. This

includes the devices themselves and all associated supporting configuration information.

8.1.5 Configure Operation Centers (Use Case)

A user with proper functional rights can configure operations centers that are known to the

system. Administrators can add and remove operations centers. Users can also view the

operations centers that have been defined in the system.

8.1.6 Control DMS (Use Case)

The following DMS sign models are supported: FP1001, FP2001, FP9500, TS3801,

ADCO, Display Solutions, Sylvia and NTCIP.

8.1.7 Control HAR (Use Case)

Highway Advisory Radio (HAR) allows the user to broadcast a message over an AM radio

channel to inform motorists of traffic conditions, incidents, events, etc. The user can set the

message on a HAR device, blank the message (which places the default message on the

device), reset the device, and take the device offline from the Chart II system or place the

device back on-line.

8.1.8 Login (Use Case)

A user with proper credentials can log into the CHART system. When logging in, the user

can choose to log into the standard GUI (default) or the device maintenance portal; the

same credentials and user rights will apply to both. When the user logs into the standard

GUI, the system will pop up two new windows, a home page window and a working

window. Both of these pages will be stripped of normal browser controls to better control

navigation within the application and to help prevent the user from leaving the application

while they are controlling shared resources. After these new windows are popped up, the

system will recommend that they close the window they used to initiate the login sequence.

CHART R10 Detailed Design – Rev 3 8-3 08/14/2012

If the user chooses to log into the maintenance GUI, all content will be presented in the

window in which the user logged in, and the browser adornments (navigation etc.) will be

left intact as they were prior to login. The system will not prevent the user from navigating

to other web pages outside of the CHART system and will not attempt to stop them from

closing their browser without logging out of the CHART system. When logged into the

maintenance portal, the system will identify all pages as such, and will also display the

user's operations center and username on all pages. A link will also exist on all pages

within the maintenance portal to allow the user to return to the home page. The system will

remember the user's choice regarding which GUI portal they logged into (standard GUI or

maintenance GUI) and will default to that choice the next time the user accesses the

CHART login page. If the user has not logged into CHART previously or they have

cleared their browser cache since the last login, the default will be to log into the standard

GUI.

8.1.9 Manage Alerts (Use Case)

A user with proper functional rights can view and respond to alerts generated by the system.

Details are shown in the Manage Alerts And Notifications use case diagram.

8.1.10 Manage Device Queues (Use Case)

Each HAR and DMS device contains a queue that serves to arbitrate the usage of the device

when more than one user needs to display a message on the device. When a user is

managing a traffic event and wishes to put a message on a HAR or DMS as part of the

response for the traffic event, the message is not sent directly to the device and is instead

sent to the device's arbitration queue. This arbitration queue uses a prioritization algorithm

that determines which message is to be sent to the device based on the source of the

message and the type of traffic event from which the message was sent. This determination

of the message to put on the device is done every time a message is removed from the

queue or added to the queue.

All messages set on DMS or HAR devices when the device is online must pass through the

device's queue via a traffic event. No direct setting of the DMS or HAR message is allowed

when the device is online.

The system allows users to view device queues to determine the priority of the messages in

the queue, see the message that is currently active, and manually re-prioritize the queue.

8.1.11 Manage Devices (Use Case)

An operator with the correct functional rights may perform basic operations on CHART

devices including DMSs, HARs, Video related devices, TSSs, and SHAZAMs. For R4,

NTCIP DMS processing will be updated. See the R4_NTCIP_DMS_Uses UCD for details.

8.1.12 Manage Dictionaries (Use Case)

An administrator (operator with the correct functional rights) may manage system

dictionaries. New in R3B1, Manage Dictionaries now includes managing pronunciations

for Text to Speech. See the Manage Dictionaries use case diagram for details.

CHART R10 Detailed Design – Rev 3 8-4 08/14/2012

8.1.13 Manage Plans (Use Case)

An operator with the correct functional rights may manage plans.

8.1.14 Manage Stored Messages (Use Case)

An operator with the correct functional rights may manage stored messages.

8.1.15 Manage Traffic Events (Use Case)

This diagram models the actions that an operator may take that relate to traffic events. This

includes responding to traffic events using field devices. Starting in R7, the system will pre-

select the road surface condition based on data from the nearest weather station with recent

data when the traffic event is opened. The operator can view the weather station that was

used to make the automatic selection. The weather station data will be logged to the event

history log when the event is opened and again when it is closed. The user may manually

select the road surface condition while the event is open. In R10, the system will populate

the event history log with the application areas of responsibility when the event is created

and when the event location is updated. The system will display the list of applicable areas

of responsibility to the operator on the event details page.

8.1.16 Manage Video (Use Case)

An operator with the correct functional rights may perform basic operations on Video

related devices including cameras and monitors. For R10, a user can one or more associate

areas of responsibility with a monitor. The associated areas or responsibility will be

displayed to the user on the monitor details page.

8.1.17 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password

combination and granted roles for system access.

8.1.18 Specify Home Monitor (Use Case)

When logging on, a user can specify a preferred home monitor. A link to the user's home

monitor (if one is selected) is displayed on the home page at all times for easy access.

8.1.19 View Device Status (Use Case)

The user may view the status of a device. The information that encompasses a device status

depends on the device type and sometimes even the device model within a device type.

Device status is viewable by users.

8.1.20 View Home MonitorDetails (Use Case)

If a user has specified a preferred home monitor upon logging in, a link to the user's home

monitor (if one is selected) is displayed on the home page at all times. The user can view

the details page for this monitor by clicking the link at any time.

CHART R10 Detailed Design – Rev 3 8-5 08/14/2012

8.1.21 View Home Page (Use Case)

This use case shows the home page being shown to the user. A user is shown the home

page when logging in, and can view the home page at any other time during the login

session. The home page always shows the user a visual indication of the number of open

alerts in the new state and allows the user to quickly view summary information about the

new alerts (including alert type, creation time, and description) without leaving their current

view.

8.1.22 View Working Page (Use Case)

This use case shows the working page being shown to the user. Most actions that the user

perform which requires display of a new page brings up the working page to show the

relevant data.

8.2 ManageAreasOfResponsibility (Use Case Diagram)

A user with sufficient privileges may use the system to manage areas of responsibility.

Refer to extending use cases for details.

8.2.1 Add AOR (Use Case)

A suitably privileged user may add a new area of responsibility to the system. A user may

specify the name, color, and one or more polygons that represent the area of responsibility.

8.2.2 Associate AOR (Use Case)

A suitably privileged user may associate an existing area of responsibility with other

objects in the system.

Operator

Add AOR

View AORs

View AORs On
Home Page Map

Edit AOR

Associate AOR
W ith Op Center

View AORs
At Location

Associate AOR

Associate AOR
W ith Monitor

View AORs List

Remove AOR

«extend»

«extend»

«extend»

«extend»

«extend»

CHART R10 Detailed Design – Rev 3 8-6 08/14/2012

8.2.3 Associate AOR With Monitor (Use Case)

A suitably privileged user may associate one or more areas of responsibility with a video

monitor. A suitably privileged user may also disassociate areas of responsibility with a

video monitor.

8.2.4 Associate AOR With Op Center (Use Case)

A suitably privileged user may associate one or more areas of responsibility with an

operations center. A suitably privileged user may also disassociate areas of responsibility

with an operations center.

8.2.5 Edit AOR (Use Case)

A suitably privileged user may edit the information for an existing area of responsibility. A

user may specify the name, color, and one or more polygons that represent the area of

responsibility.

8.2.6 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password

combination and granted roles for system access.

8.2.7 Remove AOR (Use Case)

A suitably privileged user may remove an area of responsibility from the system. The user

will be shown a confirmation dialog before the area of responsibility is removed. If the area

of responsibility is associated with any other objects in the system, the user will be shown a

list of currently associated objects with their object type and name.

8.2.8 View AORs List (Use Case)

A suitably privileged user may view the list of areas of responsibility in the system. The

detailed data for each area of responsibility in the list shall include the name and color. A

user may sort the list of areas of responsibility by name.

8.2.9 View AORs (Use Case)

A suitably privileged user may view areas of responsibility in the system either as a list or

on the home page map.

8.2.10 View AORs At Location (Use Case)

A suitably privileged user may view the applicable areas of responsibility at a specified

location on the home page map. By clicking on the map, the user can view a list of areas of

responsibility that are applicable for that location.

8.2.11 View AORs On Home Page Map (Use Case)

A suitably privileged user may view areas of responsibility on the home page map. The

home page map shall include 2 map layers for areas of responsibility. The Home AORs

CHART R10 Detailed Design – Rev 3 8-7 08/14/2012

layer will include all areas of responsibility that are associated with the user’s logged in

operations center. The Other AORs layer shall include all other areas of responsibility that

are associated with an operations center.

8.3 ManageNotifications (Use Case Diagram)

This diagram shows uses of the system related to notifications of groups or contacts via e-

mail.

8.3.1 Configure email servers (Use Case)

CHART system will support configuration of both primary and backup SMTP email

servers. Properties to be configured for an SMTP email server will include the SMTP port,

TCP/IP address, user name and password for SMTP authentication, TLS/SSL transport

configuration and SSL port.

8.3.2 Manage Notification Contacts (Use Case)

An operator with Configure System or Configure Notification Contacts functional rights

will be able to add, modify, and delete notification contacts in the CHART system. Please

see R10ManageNotificationRecipients use case diagram for additional details.

8.3.3 Manage Notification Groups (Use Case)

An operator with Configure System or Configure Notification Groups functional rights will

Tech Support

Configure
email servers

System

New in R10

Send Notification From
Outside Traffic Event

Specify Notification Recipients

Send Notification From
Open Event

Send Notification

Search Notification History

View Notification History

Operator

View Notification Details

Transmit Email
Notification

Modified in R10

View Notification Group Members

Manage Notification Contacts

Manage Notification Groups

Specify Notification Message R10: Changed text

«include»

«include»

«extend»

«include»

«include»

«extend»

«include»

«include»

«include»

CHART R10 Detailed Design – Rev 3 8-8 08/14/2012

be able to add, modify, and delete notification groups in the CHART system. Please see

R10ManageNotificationRecipients use case diagram for additional details.

8.3.4 Search Notification History (Use Case)

The user will be able to search the notification history. The search criteria will include a

traffic event indicator (None, Any, Specified Event), author, operations center, time sent,

recipients, and message text.

8.3.5 Send Notification (Use Case)

The user with the right to Send Notifications will be able to send a notification after

specifying the message and recipients. See the Specify Notification Recipients and Specify

Notification Message use cases for details. All notifications will be recorded in the

operations log.

8.3.6 Send Notification From Open Event (Use Case)

The user will be able to send notifications from the context of a traffic event. This

extension of the Send Notification use case adds some functionality specific to traffic event.

If a notification was previously sent from the traffic event, the recipients specified in the

prior notification will be populated in the selected recipients list. Typing shortcuts will be

added to assist the user in entering a notification message, in addition to the basic message

shortcuts described in the Send Notification use case. The additional shortcuts include:

Prior Message (the previously sent message from the event); HAZMAT (if the incident is

marked as HAZMAT); Location (similar to the full location description, but with

abbreviations for alias, county, direction); Incident type code (e.g., 10-50, "VEHICLE

FIRE"); Vehicles (vehicles involved description, possibly abbreviated); Lane Status (similar

to the lane status tooltip on the Home Page event list, but a shorter version); All Lanes

Open, All Lanes Closed, Scene Cleared. Sending a notification from a traffic event will

cause an entry to be added to the Event History log that includes the message text and

recipients.

8.3.7 Send Notification From Outside Traffic Event (Use Case)

The user will be able to send notifications outside the context of a traffic event. In addition

to the base functionality (see Send Notification), the user will be able to populate the

recipient list with the recipients from his/her most recent standalone notification. The user

will also be able to view the names of the notification group members.

8.3.8 Specify Notification Message (Use Case)

The user will be able to specify the notification message text. The user can invoke typing

shortcuts to append the message text. There will be a Prior Message shortcut, which will

append the user's last message if outside the context of a traffic event, or the event's last

message if in the context of a traffic event. There will be an Update shortcut, which will

prepend text indicating that the new message is an update to a previous condition. The user

can select from a list of SHA 10-codes to append the 10-code (e.g. "10-50" for a generic

accident), and the list of 10-codes will be configurable by an administrator. There will also

CHART R10 Detailed Design – Rev 3 8-9 08/14/2012

be a list of other miscellaneous typing shortcuts, as configured by an administrator, and

"one click" shortcuts for more frequently used shortcuts. (Other shortcuts related to traffic

events are listed in the Send Notification From Open Traffic Event use case). For the 10-

codes, miscellaneous shortcuts, and one-click shortcuts, the administrator will be able to

configure whether they are applicable in the context of a traffic event and/or in a standalone

notification. A warning will be displayed if the message exceeds a warning length (default:

140 characters) and the message will not be sent if it exceeds a configurable error length

(default: not specified).

8.3.9 Specify Notification Recipients (Use Case)

The user will be able to specify notification recipients, including groups and contacts. The

available notification recipients (groups and contacts) will be maintained in the CHART

database, and will be queried by CHART for display in the GUI. The user can select one or

more groups or contacts and add them to the Selected Recipients list. The user can also

select one or more recipients from this list and remove them. After selecting the type of

available recipients to choose from (either groups or contacts), the user can specify search

text to narrow the list of groups or contacts. By default the available recipients starting

with the search text will be shown, but the user will be able to change the search to match

available recipients containing the search text anywhere in the name. The user's most

recently used (MRU) group (or contacts) used in the same context (either traffic event or

standalone) will be displayed at the top of the list of groups / contacts.

8.3.10 Transmit Email Notification (Use Case)

The system will attempt to send the email notification to the specified notification contacts

or groups via the configured SMTP email servers. The backup SMTP email server will be

used only if the primary service is unavailable. All necessary authentications and transport

configurations for the SMTP server will be done prior to transferring the email notification.

8.3.11 View Notification Details (Use Case)

The user will be able to view the details for a standalone notification and for a notification

sent from the context of a traffic event. The details include the author, op center, message,

time sent, traffic event (if applicable), and the notification status for each of the recipients.

The status of the notification will indicate one of the following: successful delivery of the

email notification to the configured primary or backup email server, failure in transmitting

the email notification, or successful delivery of the email notification to the list of recipients

by the email server.

8.3.12 View Notification Group Members (Use Case)

When sending a notification, the user will be able to see the individual members of groups

that are available for selection as a recipient of the notification.

8.3.13 View Notification History (Use Case)

The user will be able to view the notification history, which shows all notifications sent

recently. The time sent, author, op center, message, status, and traffic event (if applicable)

CHART R10 Detailed Design – Rev 3 8-10 08/14/2012

will be displayed. The user will be able to specify whether to show all notifications or only

those notifications not sent from traffic events. The user will be able to navigate through

the pages of the notification history (i.e., view the next/previous page), and will be able to

specify how many notifications to display per page. The history will include standalone

notifications sent within a configurable duration before the current time, and all

notifications sent for all online traffic events. Older standalone notifications and

notifications for offline traffic events will be archived and will not be available for viewing.

8.4 MapDeviceAndTrafficEventUses (Use Case Diagram)

This diagram shows the ways that users may interact with devices and traffic events from

the map.

8.4.1 Display Camera on Home Monitor (Use Case)

A user may click on a link in the camera map popup to display the camera on the user's

home monitor, if a home monitor has been assigned.

8.4.2 Display Camera on Local Monitor (Use Case)

A user may click on a link in the camera map popup to display the camera on a monitor in

the user's local monitor group (if a group has been assigned) and bring up the list of local

monitors in the working window.

8.4.3 Edit DMS Response Message (Use Case)

A suitably privileged user may edit and execute a DMS response message from the DMS

Edit DMS Response
Message

Use Camera
from MapRelease Control

of Camera

View Camera
Details Page

Modified for R10

Use TSS from Map

View TSS Details Page

Override Control
of Camera

All use cases shown can be
accessed directly by the operator
via the text-based R4 interface.

View HAR Details
Page

Edit HAR Response
Message

View SHAZAM
Details Page

Use HAR from Map

Use SHAZAM
from Map

Operator

Use DMS from Map

Request Control
of Camera

Display Camera on
Home Monitor

Display Camera on
Local Monitor

Use Traffic Event
from Map

View Traffic Event
Details Page

Edit Traffic Event
Roadway Conditions

View DMS Details
Page

«extend»
«extend»

«extend»

«extend»

«extend»

«include»

«extend»

«extend»

«include»

«extend»

«extend»

«extend»

«extend»

«extend»

«extend»

«extend»

CHART R10 Detailed Design – Rev 3 8-11 08/14/2012

map popup. The user may invoke either the DMS Response Message (Auto) Editor or the

DMS Response Message (Manual) Editor from the DMS map popup. The edited DMS

response message will be executed when the editor form is submitted.

8.4.4 Edit HAR Response Message (Use Case)

A suitably privileged user may edit and execute a HAR response message from the HAR

map popup. The user may invoke the HAR Response Message Editor from the HAR map

popup, and the edited HAR response message will be executed when the editor form is

submitted.

8.4.5 Edit Traffic Event Roadway Conditions (Use Case)

A user may click on a link to invoke the roadway conditions editor from the traffic event

map popup.

8.4.6 Override Control of Camera (Use Case)

A suitably privileged user may override control of a controllable camera (that is currently

being controlled by another user) from the camera map popup.

8.4.7 Release Control of Camera (Use Case)

A suitably privileged user may release control of a camera that is currently being controlled,

from the camera map popup.

8.4.8 Request Control of Camera (Use Case)

A suitably privileged user may request control of a controllable camera from the camera

map popup.

8.4.9 Use Camera from Map (Use Case)

A Camera will have a different icon on the Map depending on its operational status (e.g.

online or offline). When a user causes the mouse cursor to hover over a Camera icon in the

map, the name or location of the camera (as specified in the system profile) will appear. A

user may click on a camera icon in the map to display summary information in a popup.

The Camera map popup will display the name or location of the Camera (as configured in

the system profile) and the name and operations center of the user controlling a camera, if

the camera has a control session open.

8.4.10 Use DMS from Map (Use Case)

A DMS will have a different icon on the Map depending on its mode (e.g. online, offline, or

maintenance) and whether it is currently displaying a message. When a user causes the

mouse cursor to hover over a DMS icon in the map, the name of the DMS and a plain text

representation of the DMS message will appear. A user may click on a DMS in the map to

display summary information in a popup. The DMS map popup will display the name and

location of the DMS, a representation of the DMS's current message, a list of open traffic

events that currently have the DMS in their response plans, and an indicator of whether a

CHART R10 Detailed Design – Rev 3 8-12 08/14/2012

traffic event owns a message that is active on the DMS's message queue. In R10, the DMS

message image is enhanced to use settings in the DMS Display Configuration, including the

font, when creating the image.

8.4.11 Use HAR from Map (Use Case)

A HAR will have a different icon on the Map depending on its mode (e.g. online, offline, or

maintenance) and whether it is currently playing a non-default message. When a user

causes the mouse cursor to hover over a HAR icon in the map, the name of the HAR will

appear. A user may click on a HAR icon in the map to display summary information in a

popup. The HAR map popup will display the name of the HAR, a representation of the

HAR's current message, a list of open traffic events that currently have the HAR in their

response plans, and an indicator as to whether a traffic event owns a message that is active

on the HAR's message queue.

8.4.12 Use SHAZAM from Map (Use Case)

A SHAZAM will have a different icon on the Map depending on its mode (e.g. online,

offline, or maintenance) and whether it has its beacons on. When a user causes the mouse

cursor to hover over a SHAZAM icon in the map, the name of the SHAZAM and the

current beacon state will appear. A user may click on a SHAZAM icon in the map to

display the name of the SHAZAM in a popup.

8.4.13 Use Traffic Event from Map (Use Case)

A traffic event will have a different icon on the Map depending on the type of incident. A

user may click on a traffic event icon in the map to display summary information in a

popup. When a user causes the mouse cursor to hover over a traffic event icon in the map,

the name of the traffic event and a description of the lane closures (if the traffic event has a

defined roadway configuration) will appear. The traffic event map popup will display the

name of the traffic event and a graphical representation of the lane closures (if the traffic

event has a defined roadway configuration).

8.4.14 Use TSS from Map (Use Case)

A TSS will have a different icon on the Map depending on its mode (e.g. online, offline, or

maintenance). If a TSS is online (and is not comm. marginal, comm. failure, or hardware

failure) and has at least one zone group that is displayable on maps, an arrow will appear on

the map for each zone group that is displayable on maps. The arrow for each zone group

shall be red if the speed for that zone group is 0-30 mph, orange if the speed for that zone

group is > 30 and <= 50 mph, green if speed is > 50 mph. The arrow for a zone group shall

be gray if the speed data for the detector is more than 10 minutes old. The zone group

arrows will be positioned on the map based on the configured zone group display order per

direction. Starting at the location of the TSS, zone groups with a lower display order will

appear first and zone groups with higher display orders will appear further away from the

TSS lat/lon position. When a user causes the mouse cursor to hover over a TSS icon on the

map, the name of the TSS and its direction will appear. A user may click on a TSS icon on

the map to display the name of the TSS and zone group information in a popup. If the user

CHART R10 Detailed Design – Rev 3 8-13 08/14/2012

has the View Detailed VSO right, the zone group information will include the name, speed,

volume, and occupancy for each zone group that is displayable on maps. If the user has the

View Summary VSO right, the popup will include speed summary information for each

zone group that is displayable on maps. If a user does not have either the View Detailed

VSO right or the View Summary VSO right, the zone group speed data will be restricted.

8.4.15 View Camera Details Page (Use Case)

A user may click on a link in the Camera map popup to invoke the Camera details page in

the working window.

8.4.16 View DMS Details Page (Use Case)

A user may click on a link in the DMS map popup to invoke the DMS details page in the

working window.

8.4.17 View HAR Details Page (Use Case)

A user may click on a link in the HAR map popup to invoke the HAR details page in the

working window.

8.4.18 View SHAZAM Details Page (Use Case)

A user may click on a link in the SHAZAM map popup to invoke the SHAZAM details

page in the working window.

8.4.19 View Traffic Event Details Page (Use Case)

A user may click on a) a link in the traffic event map popup, b) a traffic event listed in the

DMS map popup, or c) a traffic event listed in the HAR map popup to invoke the traffic

event details page in the working window.

8.4.20 View TSS Details Page (Use Case)

A user may click on a link in the TSS popup on the map to invoke the TSS details page in

the working window.

8.5 R10ConfigureDMSTravelerInfoMsgSettings (Use Case Diagram)

This diagram shows use cases related to configuring the DMS settings related to traveler

information messages.

CHART R10 Detailed Design – Rev 3 8-14 08/14/2012

8.5.1 Add Travel Route to DMS (Use Case)

The user shall be able to add a travel route to a DMS so that it is available for selection

when configuring traveler information messages for the DMS.

8.5.2 Add Traveler Information Message (Use Case)

A user with sufficient rights will be able to add a traveler information message to a DMS,

so that the message will be available for later use by an operator. A newly added message

will be disabled by default.

8.5.3 Edit Traveler Information Message (Use Case)

A user with sufficient rights will be able to edit a traveler information message that was

previously added to a DMS. The user will be able to change anything specified when

adding the message to the DMS (which does not include editing the message template

itself). See the Specify Traveler Information Message Format use case for details.

8.5.4 Remove Travel Route From DMS (Use Case)

The user shall be able to remove a travel route from a DMS so that it is no longer available

for selection when configuring traveler information messages for the DMS.

8.5.5 Remove Traveler Information Message (Use Case)

A user with sufficient rights will be able to remove a traveler information message that was

previously added to a DMS. The system will ask the user for confirmation, and will

automatically disable the message before removing it.

8.5.6 Set DMS Travel Time Display Schedule (Use Case)

The system shall allow a user with appropriate rights to set the travel time display schedule

for a DMS. The user can choose to use the system-wide schedule or to override it for the

DMS. The schedule shall include one or more time ranges when travel times should be

displayed, or it may be a 24/7 schedule.

Changed in R10

Changed in R10

View
Traveler Information Message

True Display

Administrator

View DMS
Traveler Information

Messages

Specify
Traveler Information

Message FormatView Associated
Travel Routes

Add
Travel Route

to DMS

Remove
Travel Route
From DMS

Specify DMS
Traveler Information

Message Settings

Add
Traveler Information

Message

Edit
Traveler Information

Message

Set DMS
Travel Time

Display Schedule

Remove
Traveler Information

Message

For additional details on true display,
see the Manage Traveler Information
Message use case diagram.

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»
«include»

«include»

«include»

«include»

CHART R10 Detailed Design – Rev 3 8-15 08/14/2012

8.5.7 Specify Traveler Information Message Format (Use Case)

The system shall allow a user with appropriate rights to set the format used to display a

traveler information message for a DMS. The user will be able to select one of the

previously defined message templates that fit the Display Configuration of the DMS. The

system will display a textual representation of the message template including the tags,

which contain index values indicating which travel route selection will serve as the data

source for the tag. For each travel route index used in the message, the user will be able to

select from among the travel routes associated with the DMS that can provide the data to

satisfy all tags having the given index. The default travel route of "None" will always be

available, and this will be the only option if there are no associated travel routes that can

supply the data requested by the tag. When specifying the message, a graphical

representation of the message will be displayed, and it will use actual data from the source

if available, or dummy data if not available. (See the View Traveler Information Message

True Display use case for details). (If routes are not selected (i.e., "None" is selected), the

graphic will degrade according to the rules specified in the template.) The user will be able

to specify whether the rows of the message (after the message is degraded due to missing

data, if any) will be aligned automatically. This use case is changed in R10 to allow

templates that will fit a line matrix or full matrix sign to be selected. Line and full matrix

signs do not have an exact character width because they can use variable width fonts, so

their minimum width (and minimum height for full matrix) will be used to determine if a

template fits. This will result in templates that have a row and column size smaller than

line and full matrix signs to be available for use on those signs. For example a template

with a size of 3x8 will be selectable for use on a large full matrix sign. The user will need

to use the graphical image to determine if the template produces a satisfactory result when

used on the sign.

8.5.8 Specify DMS Traveler Information Message Settings (Use Case)

A user with appropriate rights shall be permitted to configure a DMS for displaying traveler

information messages for travel times and/or toll rate information. The user will be able to

associate travel routes with the DMS to make them available for use by the message

templates, and the user will be able to view the currently associated travel routes. The user

will be able to manage (create, edit, delete, and view) traveler information messages for a

DMS. Traveler information messages use pre-defined message templates and associated

travel routes. The traveler information messages are configured in advance for a DMS so

that an operator can use the messages without having to edit them. The user will be able to

specify the arbitration queue levels at which travel time and toll rate messages will be

added. (By default, these levels will be the Travel Time and Toll Rate levels, but other

levels may be selected). The user will be able to specify a travel time display schedule for a

DMS that overrides the system-wide display schedule. See the specific use cases for

details.

8.5.9 View Associated Travel Routes (Use Case)

The system shall allow the user to view the travel routes associated with the DMS.

CHART R10 Detailed Design – Rev 3 8-16 08/14/2012

8.5.10 View DMS Traveler Information Messages (Use Case)

The system will allow the user to view the traveler information messages configured for a

DMS. It will display a graphical representation of the message, using actual data from the

routes if available, or dummy data if not available. It will also display the enabled /

disabled status of the messages.

8.5.11 View Traveler Information Message True Display (Use Case)

The system shall allow the user to preview the traveler information message as a graphical

representation. The message will be formatted for display as described in the Format

Traveler Information Message use case. The graphic will be updated if the message

changes (although if the message exceeds the sign size, the image may not be updated).

The graphical representation will assume a character matrix sign that matches the size of

the template and will utilize a generic fixed width font.

8.6 R10DMSManagementUses (Use Case Diagram)

This diagram shows use cases related to DMS management that are new or changed in R10.

Create NTCIP DMS

Configure NTCIP DMS

Copy DMS

Set DMS HAR
Notification Message

Change DMS
Display Configuration

Set DMS Message

View DMS List

View DMS Details

Modified in R10

Modified in R10

Configure DMS

Add DMS

Modified in R10

New in R10

Operator

Put DMS Online

Put DMS In Maint Mode

Upload DMS Font

Poll DMS

Verify Font

View DMS True Display

«include»

«include»

«include»

«include»

«include»

«include»

«extend»

«extend»

«extend»

«extend»

CHART R10 Detailed Design – Rev 3 8-17 08/14/2012

8.6.1 Add DMS (Use Case)

The system allows a user with the configure DMS right to add a new DMS to the system.

In R10 the system requires the user to select an existing DMS Display Configuration for the

DMS. The Display Configuration provides properties related displaying messages, such as

the size of the face of the sign and the font to be used.

8.6.2 Change DMS Display Configuration (Use Case)

The system shall allow a user with the Configure DMS right to change the Display

Configuration selected for a DMS. The DMS must be offline to change its Display

Configuration.

8.6.3 Configure DMS (Use Case)

The system shall allow a user with appropriate rights to configure the settings for a DMS,

unless it is an external DMS. This feature was enhanced in R3B3 to include more location

information, configuration of traveler information message settings and the ability to use

TCP/IP for communication. For NTCIP DMSs, settings were added for default font.

Settings will include the operations center to send an alert to when the DMS goes into

hardware failure, the operations center to send an alert to when the DMS goes into

communications failure, the notification group to send a notification to when the DMS goes

into hardware failure, and the notification group to send a notification to when the DMS

goes into communication failure. In R10, all display related settings have been moved into

a DMS Display Configuration. When configuring a DMS the user need only select an

existing DMS Display Configuration instead of specifying the display related settings

individually.

8.6.4 Configure NTCIP DMS (Use Case)

The system shall allow a user with appropriate rights to configure an NTCIP DMS. In R10

this use case is changed to move the page justification, default line spacing, and default

character spacing into the DMS Display Configuration. These fields are no longer NTCIP

specific. Also the font slot number is removed; the CHART system will use a system-wide

slot number when loading a font into a DMS.

8.6.5 Copy DMS (Use Case)

A user with the rights to configure a DMS can copy it. Copying a DMS is similar to adding

a DMS except the Add DMS form is initialized with data from the DMS being copied. In

R10 this is changed to ensure the DMS Display Configuration setting is copied.

8.6.6 Create NTCIP DMS (Use Case)

The system shall provide the capability to add a new DMS of type “NTCIP” which

communicates via the NTCIP DMS protocol. NTCIP version 1 and NTCIP version 2 are

supported by CHART.

CHART R10 Detailed Design – Rev 3 8-18 08/14/2012

8.6.7 Poll DMS (Use Case)

The system shall allow a user to poll the DMS to get the status of the DMS. The system

will periodically poll the DMS as indicated by a system configuration value. When a poll is

executed on an NTCIP DMS, the following data is collected: NTCIP control mode status,

v2 short error statuses, detected sign size (in pixels), and message source status.

8.6.8 Put DMS In Maint Mode (Use Case)

A user with appropriate rights can put a DMS in maintenance mode. When a DMS is in

maintenance mode, its arbitration queue is deactivated and the user can issue maintenance

mode only commands. If the DMS is an NTCIP DMS, the system will load the font

specified in the DMS Display Configuration into the DMS.

8.6.9 Put DMS Online (Use Case)

A user with appropriate privileges can put a DMS online if that DMS has previously been

taken offline or put in maintenance mode. This makes the DMS available for control

through the system. When the DMS is brought online, it is automatically blanked.

Automatic polling is resumed using the current polling settings for the DMS. If the DMS is

an NTCIP DMS, the system will load the font specified in the DMS Display Configuration

into the DMS.

8.6.10 Set DMS HAR Notification Message (Use Case)

A user with rights to configure a DMS can set the message that is to be displayed when the

DMS is used as a HAR Notifier (a device used to notify the traveling public that a message

is active on a HAR). In R10 the editor used to specify the message is changed such that the

true display image will take into consideration the font and other display properties as set in

the DMS Display Configuration. The algorithm that detects if the message will fit on the

DMS will also use these settings, including the font.

8.6.11 Set DMS Message (Use Case)

The message on a DMS can be set when the DMS is online or in maintenance mode. When

the DMS is online, the message is set by the DMS's arbitration queue. This queue sets the

message of the DMS to be the message that is on the queue that has the highest priority.

The system may also combine messages on the queue based on rules specified in the system

profile. If the system does combine messages, the page limit as set in the DMS Display

Configuration applies. When the DMS is in maintenance mode, an operator with proper

functional rights can set the message on a DMS directly. Two types of DMS editors exist

for setting DMS messages; a manual editor and an automatic editor. The manual editor

allows the user to specify the text for each line of the DMS. The auto editor uses

formatting rules as specified in the requirements to automatically format the message text

specified by the user. As of R10, the message editors are changed to utilize the DMS font

and other display related settings specified in the DMS Display Configuration when

showing a graphic of the DMS message and when determining if a message will fit on the

DMS without truncation. Before sending a message to a sign, the system will check to

make sure the message will fit the sign. As of R10, the fit check will use the Display

CHART R10 Detailed Design – Rev 3 8-19 08/14/2012

Configuration for the DMS, including the font to make this determination. When setting a

message on an NTCIP DMS, the system will also set the default font to the font slot number

specified for use by CHART and other settings, such as the inter-character spacing, line

spacing, and default page justification.

8.6.12 Upload DMS Font (Use Case)

The system will upload a font to NTCIP DMSs as specified in the DMS's Display

Configuration into a font slot on the DMS. CHART will use the slot number specified

within CHART as the default font slot number and this will be uniform across all NTCIP

DMSs.

8.6.13 Verify Font (Use Case)

The system will verify that the font loaded in the slot configured for use by an NTCIP DMS

contains the font specified in the NTCIP DMS's Display Configuration. If the system finds

the font does not match, the system will download the font from the display configuration

into the DMS. The system will verify the font periodically as part of the DMS automated

polling, however not necessarily on every DMS poll (the frequency for verifying the font

can be greater than the polling interval).

8.6.14 View DMS Details (Use Case)

The system shall allow a user with appropriate rights to view the details of a DMS device.

This feature is modified in R10 to show the display configuration selected for the DMS and

the details of the display configuration. Display related properties that existed previously

that are part of the display configuration are no longer shown in their old location.

8.6.15 View DMS List (Use Case)

The system will allow a user with appropriate rights to view the list of DMSs defined in the

system. Columns displayed for the DMSs include the route, county, direction, milepost,

owning organization, port managers, connection site, and travel time schedule overridden

indicator. To save screen space, the visible columns are selectable. Several columns

(milepost, owning organization, port managers, connection site, and travel time schedule

overridden indicator) are hidden by default to save space. The user will be able to sort the

DMS list by county, route, direction, port manager names, connection site, travel time

schedule overridden indicator, state milepost, and owning organization name (in addition to

the columns that already support sorting as of R3B2). The user will be able to filter the

DMS list by county, route, direction, port manager names, connection site, travel time

schedule overridden indicator, and owning organization name (in addition to the columns

that already support sorting as of R3B2). The system will allow the user to filter the list to

include or exclude external DMSs and/or internal (CHART) DMSs if the user has rights to

view external DMSs; otherwise, external DMSs will be filtered out. If external DMSs are

displayed, the user will be able to filter the list by agency. In R10 a new column, displayed

by default, is added to show the name of the display configuration used by the DMS. This

column replaces the previously existing Geometry column and supports sorting and

CHART R10 Detailed Design – Rev 3 8-20 08/14/2012

filtering.

8.6.16 View DMS True Display (Use Case)

The system shall allow the user to view DMS messages graphically. This applies to many

places throughout the system where DMS messages are shown, including lists of DMSs and

within DMS message editors. The graphical representation will utilize the properties

specified in a DMS Display Configuration, including the font, to approximate what the

message will look like when displayed on the actual DMS. Note that for NTCIP signs, this

graphical image will be a good approximation of the message because cHART will be using

the font that is actually stored in the sign controller. For other model DMSs, this graphical

image may not accurately represent the message because CHART does not support

upload/download of fonts for those other models so the graphic will utilize the font in the

display configuration which does not necessarily match the font used by the DMS.

8.7 R10ImportRITISData (Use Case Diagram)

This diagram contains use cases related to importing RITIS data.

8.7.1 Create CHART External DMS (Use Case)

When DMS data is imported from RITIS, if an administrator has already indicated that the

DMS is to be included in CHART, and it has not already been added to CHART, it will be

added to CHART as an External DMS. This use case is changed in R10 regarding how the

system creates the External DMS. Previously the system would try to figure out the size of

an external DMS based on its current message, and would allow the size to increase but not

decrease (so the sign size would eventually grow to its actual size). In R10, the display

related settings are stored in a Display Configuration for each DMS, so rather than

attempting to find or create a display configuration, the system will create External DMSs

without any display configuration. The CHART GUI will create a display configuration as

needed to be able to show a graphical representation of the current message on an external

DMS.

«extends»

«extends»

Modified for R10.

Import RITIS
DMS Data

Create CHART External DMS

Update Existing CHART External DMS

Translate RITIS DMS Data

System

«include»

«include»

CHART R10 Detailed Design – Rev 3 8-21 08/14/2012

8.7.2 Import RITIS DMS Data (Use Case)

The system shall import DMS data from RITIS. RITIS provides the data in the TMDD

standard. Only DMSs that have been selected for inclusion in CHART by the administrator

will become CHART external DMSs. Once a DMS has been included in CHART, its data

will be kept updated in CHART as updates for it are received from RITIS.

8.7.3 Translate RITIS DMS Data (Use Case)

When DMS data is imported from RITIS, the system will convert the data from the RITIS

format (TMDD with RITIS extensions) into CHART format.

8.7.4 Update Existing CHART External DMS (Use Case)

When a DMS is imported from RITIS, if it has been previously added to CHART as an

External DMS, the data for that external DMS will be updated. For R10, the DMS

row/column size is no longer expanded based on the size of the current message. External

DMSs will not have a display configuration and the GUI will take the necessary actions to

be able to show a graphical representation of the current message.

8.8 R10LibraryAndPlanUses (Use Case Diagram)

This diagram shows the use cases related to message libraries and plans that are changed in

R10.

Modify DMS Stored Message

View Message
Library Details

Add DMS
Stored Message

User

Add DMS Plan Items
Edit Plan

«extend»

CHART R10 Detailed Design – Rev 3 8-22 08/14/2012

8.8.1 Add DMS Stored Message (Use Case)

The system allows a user with the Modify Message Library right to add a DMS stored

message to a message library. The user can use the automatic editor, which formats the

message automatically using rules specified in the requirements, or the manual editor,

which allows the user to specify the text for each line on each page of the message. The

number of pages allowed for a message is specified in the DMS Display Configuration and

can be changed by an administrator. In R10, these library message editors are changed to

show the list of all DMS display configurations that exist in the system (instead of just sign

geometries). The user can view a true display image to see how the message will look on

any of the display configurations, which includes the font. As the user types, the system

will indicate any of the display configurations where the message will not fit and will

indicate specifically why the message will not fit the currently selected display

configuration (too wide, too many rows, or too many pages).

8.8.2 Add DMS Plan Items (Use Case)

The user will be able to add DMS plan items to a plan. The user can select a single library

message and multiple DMSs, and a plan item will be added for each selected DMS. In R10

this feature is changed to show the number of characters (rather than minimum DMS width

required) for the DMS library messages presented to the user for selection, as the width

required to display a message depends on the display configuration of each DMS, which

includes the font.

8.8.3 Edit Plan (Use Case)

A user with sufficient rights will be able to modify a plan. The user can specify filtering

attributes for the plan. The user will also be able to add multiple DMS plan items (or HAR

plan items) at one time.

8.8.4 Modify DMS Stored Message (Use Case)

A user with the right to manage libraries can edit an existing DMS stored message. This

use is similar to the Add DMS Stored Message use except the editor will be initialized with

the data from the message being edited.

8.8.5 View Message Library Details (Use Case)

The system allows a user to view the details of a message library. The details include the

name of the library, the site where the library is hosted, and the DMS and HAR stored

messages included in the library. In R10 this use is changed to show the length of each

DMS message, in characters. (The display previously showed the minimum DMS width

which no longer applies if using a line or full matrix DMS, as the font and/or character

spacing set in the DMS Display Configuration will determine if a message will fit and the

number of characters is no longer the only factor to consider).

CHART R10 Detailed Design – Rev 3 8-23 08/14/2012

8.9 R10ManageDMSDisplayConfigs (Use Case Diagram)

This diagram shows use cases related to the managment of DMS Display Configurations.

8.9.1 Add DMS Display Configuration (Use Case)

The system shall allow a user with the configure system right to add a new DMS Display

Configuration to the system. The system will allow the properties of the new display

configuration to be set as specified in Specify DMS Display Configuration Properties.

8.9.2 Edit DMS Display Configuration (Use Case)

The system shall allow a user with the configure system right to modify an existing DMS

Display Configuration if there are no DMSs configured to use the display configuration or

if all DMSs configured to use the display configuration are currently offline. The system

will allow the properties of the display configuration to be set as specified in Specify DMS

Display Configuration Properties.

8.9.3 Remove DMS Display Configuration (Use Case)

The system shall allow a user with the configure system right to remove a DMS Display

Configuration from the system if there are no DMSs configured to use the display

configuration.

8.9.4 Specify DMS Display Configuration Properties (Use Case)

The system shall allow the following properties of a DMS Display Configuration to be set:

Name, Sign type (character, line, or full matrix), Sign Size, Beacon indicator, line spacing

(for full matrix), character spacing (for line or full matrix), Font, Max pages, default page

justification, default line justification, the default page on time, the default page off time,

the maximum number of characters allowed to be displayed on a single line, and the

maximum number of rows allowed to be displayed on a page. The sign size is specifed in

View DMS Display
Configurations

Add DMS Display
Configuration

Edit DMS Display
Configuration

Remov e DMS Display
Configuration

Administrator

Specify DMS Display
Configuration

Properties

«include»

«include»

CHART R10 Detailed Design – Rev 3 8-24 08/14/2012

rows and columns for character matrix, rows and pixel width for line matrix, and pixel

height and pixel width for full matrix. The character height in pixels is required for

character and line matrix signs, and the character width in pixles is required for character

matrix signs. The font can be specified by copying the font from an existing DMS Display

Configuration, loading the font from a file, or loading the font from an NTCIP DMS (via

tcp/ip).

8.9.5 View DMS Display Configurations (Use Case)

The system shall allow a user with the configure system right to view the DMS Display

Configurations that currently exist in the system. The following columns will be available

for each display configuration: Name, Sign Type, Sample Message, Number of DMSs

using, Character Rows, Character Columns, Max Pages, Geometry Description, Beacon

indicator, Font, Sign width pixels, Sign heigth pixels, Character width pixels, and Character

height pixels. The system shall allow sorting and filtering of this list. The system will

allow the user to choose which columns are displayed.

8.10 R10ManageNotificationRecipients (Use Case Diagram)

This diagram shows the use cases related to notification recipients that are being added in

R10.

CHART R10 Detailed Design – Rev 3 8-25 08/14/2012

8.10.1 Add Notification Contact (Use Case)

An operator with Configure System or Configure Notification Contacts functional right will

be able to add a new notification contact to the CHART system. The attributes to be

specified for the new notification contact will include type [Individual or agency], name

[first/last name for Individuals or Agency name], email address and associated notification

groups. The system will maintain the date/time a Notification Contact was added.

8.10.2 Add Notification Group (Use Case)

An operator with Configure System or Configure Notification Groups functional right will

be able to add a new notification group to the CHART system. The attributes to be

specified for the notification group will include the name and associated notification

contacts.

8.10.3 Modify Notification Contact (Use Case)

An operator with appropriate functional rights will be able to modify an existing

notification contact in the CHART system. The attributes that could be updated for the

Operator

Add Notification
Group

Modify Notification
Group

Remove Notification
GroupView Notification

Groups

View Notification
Contacts

Add Notification
Contact Modify Notification

Contact

Remove Notification
Contact

CHART R10 Detailed Design – Rev 3 8-26 08/14/2012

notification contact will include type [Individual or Agency], name [first/last name for

Individuals or Agency name], email address and associated notification groups. The

operator's functional rights will be checked based on what's being changed. For name and

type changes the operator should have either Configure System or Configure Notification

Contacts rights. For changes to the email address, the operator should have either Configure

System or Configure Notification Contacts or Configure Contacts Email rights.

Modifications to the contacts groups will require either Configure System or Configure

Notification Contacts or Configure Contacts Groups rights. The system will maintain the

date/time a Notification Contact was last updated.

8.10.4 Modify Notification Group (Use Case)

An operator with appropriate functional rights will be able to modify an existing

notification group in the CHART system. The attributes that could be updated for the

notification group will include name and associated notification contacts. The operator's

functional rights will be checked based on what's being changed. For name changes the

operator should have either Configure System or Configure Notification Contacts rights.

Modifications to the notification contacts for the group will require either Configure System

or Configure Notification Groups or Configure Notification Group Contacts rights.

8.10.5 Remove Notification Contact (Use Case)

An operator with Configure System or Configure Notification Contacts functional right will

be able to remove an existing notification contact from the CHART system. Removing a

notification contact will not delete the associated notification groups from the system.

8.10.6 Remove Notification Group (Use Case)

An operator with Configure System or Configure Notification Groups functional right will

be able to remove an existing notification group from the CHART system. Removing a

notification group will not delete the associated notification contacts from the system.

8.10.7 View Notification Contacts (Use Case)

An operator with View Notification Contacts functional right will be able to view all

available notification contacts in the CHART system. The display will include notification

contact name, type [Individual or Agency], last time the notification contact was updated,

email address and associated notification groups. Sorting capabilities will include sort by

name, type [Individual or Agency], email address, notification groups or last time updated.

The view will allow the user to filter by either notification contact type [Individual or

Agency] or by notification group. Searching capabilities will be provided to the user to

search the list by name or email address.

8.10.8 View Notification Groups (Use Case)

An operator with View Notification Groups functional right will be able to view all

notification groups in the CHART system. The display will include notification group name

and associated notification contacts. Sorting capabilities in the view will include sort by

notification group name.

CHART R10 Detailed Design – Rev 3 8-27 08/14/2012

8.11 R10ManageTravelerInformationMessages (Use Case Diagram)

This diagram shows use cases related to configuring traveler information messages.

8.11.1 Activate Traveler Information Message (Use Case)

The system will activate a traveler information message on a DMS when the traveler

information message has been enabled by the user, or if a currently enabled travel time

message is currently not active due to the travel time display schedule and the schedule now

indicates travel time messages may be displayed. The message will be activated on the

device even if the device is not used by a traffic event. The system will format the message

and place it on the DMS's arbitration queue. The level at which the message is added will

be determined by whether a toll rate field is in the message template. If there is one, it will

use the bin that specified for toll rate messsages in the DMS configuration to determine

which bin to use. (By default, it will go into the "Toll Rate" bin). If the template does not

contain a toll rate field but does contain a travel time field, the message will be placed in the

bin specified for travel time messages in the DMS configuration. (By default, it will go into

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

Changed for R10

Changed for R10

Administrator

Edit
Traveler Information
Message Template

View
Traveler Information
Message Templates

Specify
Traveler Information
Message Template

For the configuration of
traveler information messages
for a DMS, see the Configure
Devices use case diagram.

View DMS
Traveler Information

Messages

Operator

View
Traveler Information Message

True Display

Deactivate
Traveler Information

Message

Enable
Traveler Information

Message

Remove
Traveler Information
Message Template

Disable
Traveler Information

Message

Configure
Traveler Information
Message Templates

Check
Traveler Information
Message Template

For Banned Words

Format
Traveler Information

Message

Add
Traveler Information
Message Template

Check
Traveler Information
Message Template

Spelling

System

Activate
Traveler Information

Message

Update
Traveler Information

Message

Monitor Travel
Time Schedule

Changed for R10

Replace
Traveler Information
Message Template

Tags

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

CHART R10 Detailed Design – Rev 3 8-28 08/14/2012

the "Travel Time" bin). Once it is added to the queue, the message will follow priority and

message combination rules to determine what message is displayed to drivers. The system

will only allow one traveler information message to be active at a time, so it will deactivate

any previously active message before activating the new one. The system will add an entry

to the operations log to record the message when a traveler information message is

displayed on the DMS.

8.11.2 Add Traveler Information Message Template (Use Case)

A user with sufficient privileges will be able to add a new traveler information DMS

message template. The user will specify a size for the template (in character rows and

columns), and specify other aspects of the template as defined in the Specify Traveler

Information Message Template use case.

8.11.3 Check Traveler Information Message Template For Banned Words (Use

Case)

The system will check the traveler information message template for words that exist in the

banned words dictionary and will not allow the message to be saved if it contains banned

words.

8.11.4 Check Traveler Information Message Template Spelling (Use Case)

A user editing a traveler information message template will be able to perform a spell check

on the message template.

8.11.5 Configure Traveler Information Message Templates (Use Case)

A user with sufficient rights will be able to configure the available DMS message templates

that may be used for travel time / toll rate messages. The user will be able to add, edit,

remove, and view these templates.

8.11.6 Deactivate Traveler Information Message (Use Case)

The system will support deactivating an active traveler information message, causing it to

be removed from the arbitration queue. The message will be deactivated if the user disables

the message, if another traveler information message is activated, if the currently active

message or template is removed, or if the message becomes invalid or empty due to

changes in the travel route data. A travel time message can be deactivated as specified in

the travel time display schedule used by the DMS (the system-wide schedule or the

schedule specified for the DMS). Note that only traveler information messages with at least

one toll rate field are considered toll rate messages, not travel time messages, and therefore

are unaffected by the travel time schedule even if they also contain travel time fields. The

system will log a message to the operations log when a traveler information message is

deactivated, whether it was initiated by the user or automatically.

8.11.7 Disable Traveler Information Message (Use Case)

The system shall allow a user with appropriate rights to disable a traveler information

CHART R10 Detailed Design – Rev 3 8-29 08/14/2012

message that was previously enabled for a DMS. Disabling a message causes the system to

deactivate it.

8.11.8 Edit Traveler Information Message Template (Use Case)

A user with sufficient privileges will be able to edit an existing traveler information DMS

message template. The user cannot change the size of an existing template, but can change

any other attribute as described in the Specify Traveler Information Message Template use

case.

8.11.9 Enable Traveler Information Message (Use Case)

The system shall allow a user with appropriate rights to enable a traveler information

message that has been configured for a DMS. Enabling a traveler information message

allows it to be activated by the system.

8.11.10 Format Traveler Information Message (Use Case)

The system will format the traveler information message to obtain the final MULTI string

to be sent to the DMS or displayed to the user. This formatting algorithm will use the

settings specified in the traveler information message, which includes the message template

and the travel routes. If available, the system will use current data from the travel route(s)

used by the message. If a travel route cannot supply current data, the behavior will depend

on a flag indicating whether to use dummy data for missing travel route data. The use of

dummy data would apply if the message is being formatted for a message editor or

simulation graphic. If it is not using dummy data (e.g., if it's building a message for use on

the DMS), it will exclude the missing travel route data from the message and any associated

message text, using the rules specified in the template (i.e., discard the row, page, or

message). After the tags are replaced with data and any invalid portions of the message are

discarded, the system will apply the automatic row formatting algorithm if it is requested in

the message settings. If a page has one line of text, it will be placed on line two of a 3 or 4

line DMS. If a page has two lines of text, it will be placed on lines one and three of a 3 or 4

line DMS. If a page has three lines of text, it will be placed on the first three lines of a 3 or

4 line DMS. For R10, this formatting algorithm, which includes choosing the preferred or

alternate destination text based on the width of the target sign will be changed to utilize the

DMS display configuration which takes into account the size of characters in the font.

8.11.11 Monitor Travel Time Schedule (Use Case)

If a message is a travel time message (and does not include toll rates) and is currently

enabled, the system will use the travel time schedule (system-wide by default unless

overridden in the DMS settings) to determine when to put the travel time message on the

sign. If the active message is a travel time message, the system will use the travel time

schedule to determine when to deactivate the mesage. It will activate or deactivate the

message at the appropriate times.

8.11.12 Remove Traveler Information Message Template (Use Case)

A user with sufficient privileges will be able to remove a traveler information DMS

CHART R10 Detailed Design – Rev 3 8-30 08/14/2012

message template from the system. The system will prompt the user for confirmation

before removing the template. The system will prevent the template from being removed if

it is used by a DMS.

8.11.13 Replace Traveler Information Message Template Tags (Use Case)

The system will replace tags in the traveler information message template when formatting

the message. A destination tag will be replaced with the preferred, alternate 1, or alternate

2 destination name for a travel route will be used such that it fits within the allocated space

for the tag. (Note that the destination tag can occupy all remaining space on a row, or it can

be a fixed number of characters). The destination name will be justified within the space

allocated for it using the justification specified in the message template. A travel time tag

will be replaced with the actual travel time, using the format specified in the template. A

travel time range tag will be replaced with a travel time range, according to the format

specified in the template. The values for the range will be calculated by using the actual

travel time and adding / subtracting the specified number of minutes as specified in the

system profile. If a travel time falls below the minimum travel time specified for the travel

route, the minimum value for the travel route will be used. The travel time / travel time

range data will not be used if travel times are disabled for the travel route, the actual travel

time exceeds the maximum travel time specified for the travel route, or the data does not

meet the data quality threshold standard for a number of links exceeding the number

specified for the travel route. A toll rate tag will be replaced with the toll rate, using the

format specified in the message template. If toll rates are disabled for the travel route, the

toll rate will not be used in the message. A toll rate time tag will be replaced with the latest

toll rate time from any of the toll rate source (travel routes) used in the message for which

toll rates are not disabled. The toll rate time will use the format specified in the message

template. If toll rates are unavailable or disabled for all travel routes used for toll rates in

the message, the toll rate time will not be used in the message. A route length tag will be

replaced with the route length, using the format specified in the message template. For all

tag types containing numbers, the numbers will be right justified within the space allocated

for them within the tag, according to the specified format. If a travel route is not found, if it

cannot provide the required data, or if the data is too large to fit in the allocated space, those

tags will be ignored and the rules for missing data as specified in the message template will

be applied. For R10 the tag replacement will take into consideration the DMS Display

Configuration set for the template when determining message fit.

8.11.14 Specify Traveler Information Message Template (Use Case)

A user adding or editing a traveler information DMS message template will be able to

specify a DMS message template for later use, which can be up to 2 pages long. The user

will be able to edit the contents of each row of the message using a combination of freeform

text and/or "tags" which act as placeholders for travel route information that will be filled in

later. The user will be able to specify the line justification for each row (left, center, right).

Tags types will include: destination name, travel time, travel time range, toll rate, toll rate

time, and route length. These tags (with the exception of toll rate time) contain an index

corresponding to a travel route to be assigned when the template is configured for a specific

DMS. The use of indexes will allow data for multiple routes to be represented in the same

CHART R10 Detailed Design – Rev 3 8-31 08/14/2012

template, and up to 6 routes may be used. By default the "destination" tag occupies all

remaining space on a row of the message (negating any line justification for that row), but

the user can also restrict a destination tag to a specified size. The user will be able to

specify the justification within all destination tags (left/right/center) in case there is extra

space. The other tags - travel time, travel time range, toll rate, toll rate time, and route

length - all contain numbers. Within the numeric portion(s) of the tags the numbers will be

right justified. For each of the numeric tag types that is used in the message, the user will

be able to select one of several different number formats of various lengths, which may be

necessary to get the message to fit on smaller signs. The user can specify the behavior to

follow if an assigned travel route cannot provide the data at run time, including: discarding

the row, discarding the page, or discarding the entire message. The user can also specify

the page on / page off times for the message, and the description for the template. If the

text of the message becomes too long for a row when the user is editing, the system will

display a warning message.

8.11.15 Update Traveler Information Message (Use Case)

The system will update an active traveler information message when new data is received

for the travel routes in the message. The system will update the message if the travel route

settings are modified (for example, if travel times and/or toll rates are enabled or disabled).

The system will also update the message if the message template is changed (e.g., by the

user), or if the message is changed as it is configured for a DMS. The system will reformat

the message and will update the message on the DMS if the message has changed. The

message will remain on the arbitration queue during this process and will not lose its place

on the queue unless the new data causes the message to become invalid or empty, in which

case it will be automatically deactivated. The system will add an entry to the operations log

to record the message when a traveler information message is updated on the DMS.

8.11.16 View DMS Traveler Information Messages (Use Case)

The system will allow the user to view the traveler information messages configured for a

DMS. It will display a graphical representation of the message, using actual data from the

routes if available, or dummy data if not available. It will also display the enabled /

disabled status of the messages.

8.11.17 View Traveler Information Message Templates (Use Case)

A user with sufficient rights will be able to view the list of traveler information DMS

message templates. The system will display the template name, template size (character

rows and columns), and textual and graphical representations of the message. It will also

display a respresentation of the formats used in the template for travel time, travel time

range, toll rate, toll rate time, and route length. The graphical representation will assume a

character matrix sign with a generic fixed width font. The list will be sortable on template

name, template size, travel time format, travel time range format, toll rate format, toll rate

time format, and route length format. The list will be filterable on template size, travel time

format, travel time range format, toll rate format, toll rate time format, and route length

format. The filterable values for the formats will include values indicating whether or not

the template contains a tag of the corresponding type.

CHART R10 Detailed Design – Rev 3 8-32 08/14/2012

8.11.18 View Traveler Information Message True Display (Use Case)

The system shall allow the user to preview the traveler information message as a graphical

representation. The message will be formatted for display as described in the Format

Traveler Information Message use case. The graphic will be updated if the message

changes (although if the message exceeds the sign size, the image may not be updated).

The graphical representation will assume a character matrix sign that matches the size of

the template and will utilize a generic fixed width font.

8.12 R10VerifyNTCIPDMSCompatibility (Use Case Diagram)

This diagram shows the use cases for the NTCIP DMS Compatibility Tester, a stand alone

tool made available to DMS vendors to check if their sign is compatible with the CHART

system.

8.12.1 Configure NTCIP DMS Complatibility Tester (Use Case)

The NTCIP DMS Compatibility Tester shall show the user to configure the

communications and sign settings to be used during the tests. The communication settings

will support direct RS232 connection or TCP/IP connection, and all parameters required by

CHART for those connections. The sign settings will include fields related to the sign

being tested, such as its size and other settings required by the CHART system.

8.12.2 Perform NTCIP DMS Compatibility Tests (Use Case)

The NTCIP DMS compatibility tester shall allow the user to run tests to determine if their

Test Upload Font

Test Download Font

New for R10

Test DMS Poll Now Command

Test Set DMS Message Command

Test Get Extended DMS Status Command

Test Blank DMS Command

Test Perform DMS Pixel Test Command

Test Reset DMS Command

Configure NTCIP DMS Complatibility Tester

View NTCIP DMS Compatibility Test Results

DMS Supplier

Test Set DMS Central Control
 Mode Command

Perform NTCIP DMS Compatibility Tests

Sav e NTCIP DMS Compatibility Test Results

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

CHART R10 Detailed Design – Rev 3 8-33 08/14/2012

DMS supports the commands used by the CHART system.

8.12.3 Save NTCIP DMS Compatibility Test Results (Use Case)

The NTCIP DMS Compatibility tester shall allow the user to save the currently displayed

results to a text file. A standard file dialog shall be used to allow the user to choose the

location and name of the file.

8.12.4 Test Blank DMS Command (Use Case)

The system shall allow the user to test if the DMS supports the CHART blank DMS

command.

8.12.5 Test DMS Poll Now Command (Use Case)

The system shall allow the user to test if the DMS supports the CHART poll now

command.

8.12.5.1.1 Test Download Font (Use Case)

The system shall allow the user to test if the DMS supports downloading a font (retrieving a

font from the DMS).

8.12.6 Test Get Extended DMS Status Command (Use Case)

The system shall allow the user to test if the DMS supports the CHART get extended status

command.

8.12.7 Test Perform DMS Pixel Test Command (Use Case)

The system shall allow the user to test if the DMS supports the CHART perform pixel test

command.

8.12.8 Test Reset DMS Command (Use Case)

The system shall allow the user to test if the DMS supports the CHART reset DMS

command.

8.12.9 Test Set DMS Central Control Mode Command (Use Case)

The system shall allow the user to test if the DMS supports the CHART set central control

mode command.

8.12.10 Test Set DMS Message Command (Use Case)

The system shall allow the user to test if the DMS supports the CHART set DMS message

command. The system shall allow the user to specify the message text as MULTI or plain

text. When the message is specified as plain text, the tester shall use the CHART automatic

message formatting algorithm to format the message for the sign.

8.12.11 Test Upload Font (Use Case)

The system shall allow the user to test if the DMS supports uploading a font (sending a font

CHART R10 Detailed Design – Rev 3 8-34 08/14/2012

to the DMS).

8.12.12 View NTCIP DMS Compatibility Test Results (Use Case)

The NTCIP DMS compatibility tester shall show the user the results of any tests that they

run. Each tests results shall be appended to the previously displayed results. The user shall

have the ability to clear the results.

8.13 R10VideoEnhancements (Use Case Diagram)

8.13.1 Add Auto Mode Tour List Entry (Use Case)

The System will allow Auto Mode Tour Enties to be added to a monitor's Auto Mode Tour

List. For R10, entries are added as the result of a Video Response Plan Item being executed

from a traffic event. Each Auto Mode Tour Entry will contain a video source, an optional

preset (persistent or temporary) and the owner that the entry was created for.

8.13.2 Clean Up Auto Mode Tour List (Use Case)

The system will periodically clean up a monotor's Auto Mode tour list by removing entries

that are no longer required by the entry's requestor.

«extends» «extends»

«uses»

«uses»

«uses»

Mov e To
Preset

Add Auto Mode
Tour List Entry

Create Camera
Temporary Preset

View Camera Details

View Monitor Details

View Monitor List

Display Camera
On Monitor

Updated for R10

Existing

Use Cases new
for R10
unless noted.

Rej ect Mov e
To Preset

Clean Up Camera
Temporary Presets

Remov e Camera
Temporary Preset

Display Auto Mode Tour

System

Remov e Auto Mode
Tour List Entry Clean Up Auto

Mode Tour List

Configure Monitor

Operator

CHART R10 Detailed Design – Rev 3 8-35 08/14/2012

8.13.3 Clean Up Camera Temporary Presets (Use Case)

The system will periodically clean up a camera's list of temporary presets by removing

presets that are no longer required by the preset's requestor.

8.13.4 Configure Monitor (Use Case)

A user with appropirate privileges can configure a monitor. For R10, this has been updated

to allow configuration of the following: Configuration of a monitor's Auto Mode Enabled

flag and Auto Mode dwell time)which controls how long a camera in the monitor's Auto

Mode tour list is displayed when monitor is in Auto Mode). Also, a user with appropriate

privleges can select Areas of Responsibility to be associated with a monitor.

8.13.5 Create Camera Temporary Preset (Use Case)

The System will allow Temporary Presets to be added to a camera. For R10, entries are

added as the result of a Video Response Plan Item being created from a traffic event. Each

Temporary Preset will contain a system assigned temp preset number between 21 and 30

(limiting the number of temporary presets per camera to 10), a system generated title, the

camera position at the time the preset was created, and the owner that the preset was created

for.

8.13.6 Display Auto Mode Tour (Use Case)

The system will display an Auto Mode monitor's Auto Mode tour list when entries exist in

the list. The entries in this list will be displayed in the order received (grouped by

requester) using the monitor's configured auto mode dwell time. Each entry in this list will

contain a video source, an optional camera preset (temp or static), and the requester. When

an Auto Mode monitor has entries in its Auto Mode Tour list, the monitor will be limited to

displaying the tour list and will not be available for displaying cameras/tours or for use in a

camera control session. When an Auto Mode monitor's Auto Mode tour list is empty, the

monitor will be available for other uses. If the monitor is currently being used to display a

camera or persistent tour when the Auto Mode tour list changes from an empty state to a

non-empty state, the Auto Mode tour list will start (replacing what was previously

displayed). Note: when the last Auto Mode Tour List entry is removed from the monitor,

the system will restore the camera/tour that was being displayed before the Auto Mode

Tour List entries started. If the monitor is currently being used as part of a camera control

session when the Auto Mode tour list changes from an empty state to a non-empty state, the

Auto Mode tour list will delay until the camera control session is over before starting.

8.13.7 Display Camera On Monitor (Use Case)

An operator with the proper functional rights may display a camera on a monitor by

commanding the proper Decoder or V1500 Switch. If the camera currently displayed on

the target monitor is being controlled, and that monitor the only display within the

controlling operator's monitor group, the display request will be normally rejected. The

exception to this rule occurs if a camera is being taken offline, and the camera is being

controlled. In this case a NoVideoAvailable source is displayed on the monitor and camera

control is terminated.

CHART R10 Detailed Design – Rev 3 8-36 08/14/2012

8.13.8 Move To Preset (Use Case)

When the last image of a camera is removed from any monitor (as part of a new display

request), the camera will move to a default preset position if defined. A camera may also

move to a pre-defined preset as part of a display associated with a video tour.

8.13.9 Reject Move To Preset (Use Case)

The system will reject a move to preset request received by a camera when the request is

being made as part of a tour (static tour or Auto Mode tour) when the camera has not been

in its current position for the minimum dwell time.

8.13.10 Remove Auto Mode Tour List Entry (Use Case)

An administrator can remove an entry from a monitor's Auto Mode tour list manually. This

feature is meant to be used in situations where an entry may no longer be needed by its

requestor. Additionally, the system can remove Auto Mode tour list entries when it

determines that they are no longer needed by the entries requestor.

8.13.11 Remove Camera Temporary Preset (Use Case)

An administrator can remove a temporary preset from a camera manually. This feature is

meant to be used in situation where a temporary preset may no longer be needed by its

requestor. Additionally, the system can remove a temporary preset when it determines that

they are no longer needed by the requestor.

8.13.12 View Camera Details (Use Case)

The system shall allow a user with appropriate rights to view the details of a camera. This

is an existing feature and is enhanced in R10 to show current temporary presets for the

camera.

8.13.13 View Monitor Details (Use Case)

The system shall allow a user with appropriate rights to view the details of a monitor. This

is an existing feature and is enhanced in R10 to show the monitors Auto Mode flag, Auto

Mode dwell time and Areas of Responsibility associated with the monitor.

8.13.14 View Monitor List (Use Case)

The system shall allow a user with the proper rights to view a list of monitors defined in the

system. This is an existing feature and is enhanced in R10. A new column displaying the

monitors Auto Mode enabled flag will be added. It will be hidden by default, but (when

visible) will allow the user to sort and filter the list by Auto Mode flag.

CHART R10 Detailed Design – Rev 3 8-37 08/14/2012

8.14 ConfigureDecisionSupport (Use Case Diagram)

The system allows an operator to configure the decision support settings that are used to

generate suggested actions (both devices and messages) for a traffic event response plan.

The user may configure general settings (distances, proximities, and route types), DMS

message templates, route direction replacement text, event type and incident type tag

replacements, and word substitutions.

8.14.1 Add DMS Message Template (Use Case)

A user with sufficient privileges may create a new DMS message template. The user must

configure a message consisting of static text and parameter tags, applicable traffic event

types, applicable proximities, applicable distances, and maximum width. The possible

parameter tags include: event type, incident type, route type, route number, route name,

route direction, intersecting exit number, intersecting exit road name, and lane closures. The

resulting message can contain up to 2 pages. The maximum width can be used to restrict the

use of the template on larger signs, or it can be set without a maximum. The system will

allow the user to view an image of the template using sample data on any of the DMS

Display Configurations defined in the system.

«extends»
«extends»

«extends»

«extends»

«extends»

«extends»

«extends»

«extends»

«extends»

«extends»

«extends»

Configure DMS
DIstancesConfilgure Camera

Distances

Changed for R10

Configure Word Substitution

Remove DMS Message Template

Configure Proximities

Configure Distances

Configure DMS Message Template

Configure Event Type
Tag Replacements

Configure Route Direction
Replacements

Configure Incident Type
Tag Replacements

Configure Message Template

Add DMS Message Template

Operator

Configure General Settings

Configure Route Types

Edit DMS Message Template

Configure Lane Closure Word

Configure Tag Replacements

CHART R10 Detailed Design – Rev 3 8-38 08/14/2012

8.14.2 Configure Distances (Use Case)

A user with sufficient privileges may configure the decision support distance settings. A

user may configure the 3 maximum distances (in miles) - one for each of the 3 distance

types: Immediate, Near, and Far. A user may configure a lane closure percentage for each

of the 3 distance types. These settings are used to determine whether a device should be

suggested for a traffic event.

8.14.3 Configure DMS DIstances (Use Case)

The user may specify distance settings (percentage of lanes closed and distance values)

thar are specific to DMS devices.

8.14.4 Configure DMS Message Template (Use Case)

A user with sufficient privileges may configure DMS message templates. These templates

are used to generate message suggestions for a DMS. Refer to the extending use cases for

the details of what can be configured for a message template.

8.14.5 Configure Event Type Tag Replacements (Use Case)

A user with sufficient privileges may configure the decision support event type tag

replacement settings. The event type replacements are used to replace event type values

from the traffic event that are replacing event type tags in the message template. A user may

configure a long version and/or a short version for each event type.

8.14.6 Configure General Settings (Use Case)

A user with sufficient privileges may configure the general settings for decision support

including: distance, proximity, and route type. These settings are used when determining if

a DMS or DMS Message Template should be suggested for a traffic event. Refer to the

extending use cases for the details of what can be configured.

8.14.7 Configure Incident Type Tag Replacements (Use Case)

A user with sufficient privileges may configure the decision support incident type tag

replacement settings. The incident type replacements are used to replace incident type

values from the traffic event that are replacing incident type tags in the message template. A

user may configure a long version and/or a short version for each incident type.

8.14.8 Configure Lane Closure Word (Use Case)

A user with sufficient privileges may configure the decision support lane closure word

substitution settings. Both a long and a short substitution can be configured for each word.

The lane closure words are used to replace lane closure tags in the message template. The

lane closure word defaults to a value of "CLOSED" for Planned Roadway Closures and

Special Events and a default value of "BLOCKED" for all other traffic event types.

8.14.9 Configure Message Template (Use Case)

A user with sufficient privileges may configure decision support message templates. These

CHART R10 Detailed Design – Rev 3 8-39 08/14/2012

templates are used to generate decision support message suggestions. Refer to the extending

use cases for the details of what can be configured for a message template.

8.14.10 Configure Proximities (Use Case)

A user with sufficient privileges may configure the decision support proximity settings. A

user may configure the applicable proximities using the following 3 options: a) “Same route

only?”, b) “Same direction only?”, and c) “Upstream only?”. The same direction and

upstream options will only apply if the same route option is true. These settings are used to

determine whether a DMS should be suggested for a traffic event.

8.14.11 Configure Route Direction Replacements (Use Case)

A user with sufficient privileges may configure the decision support route direction

replacements settings. The replacements are used to replace directions from the traffic event

that are replacing tags in the message template. A user may specify a blank replacement for

a route direction to indicate that the route direction should not be used in message content.

8.14.12 Configure Route Types (Use Case)

A user with sufficient privileges may configure the decision support route type settings. A

user may configure the Route Type / Number and Route Name separately for each available

route type. The route type settings will determine if a template will be suggested for a DMS

based on whether a Route Type / Number tag or a Route Name tag exists in a DMS

message template.

8.14.13 Configure Tag Replacements (Use Case)

A user with sufficient privileges may configure the decision support tag replacement

settings. These settings are used when replacing values from the traffic event that are

replacing tags in the message template. Refer to the extending use cases for the details of

what can be configured.

8.14.14 Configure Word Substitution (Use Case)

A user with sufficient privileges may configure the decision support word substitutions

settings. Both a long and a short substitution can be configured for each word. It is valid for

the user to enter blanks (not text) for short version, long version, or both. If both the long

and short versions are blank, the word or phrase will be removed from the message

completely. The substitutions are not used to replace text entered by the user.

8.14.15 Confilgure Camera Distances (Use Case)

The user may specify distance settings (percentage of lanes closed and distance values)

thar are specific to camera devices.

8.14.16 Edit DMS Message Template (Use Case)

A user with sufficient privileges may edit an existing DMS message template. The user

may edit the current values for the message, applicable traffic event types, applicable

CHART R10 Detailed Design – Rev 3 8-40 08/14/2012

proximities, applicable distances, and maximum sign width.

8.14.17 Remove DMS Message Template (Use Case)

A user with sufficient privileges may remove an existing DMS message template.

8.15 RespondToTrafficEvent (Use Case Diagram)

The system allows an operator to control devices in response to an event through the use of

a response plan. The user may add devices to the plan, select the desired state of the

devices, then activate the plan. Any of the devices used by the event response plan may be

deactivated while the event is open by removing the item for that device from the plan.

When the event is closed, if the response plan is active, it will be deactivated automatically.

8.15.1 Add Camera to Monitor Auto Mode Tour List (Use Case)

When the video tour response plan is executed it will add the cameras and their optional

presets (the tour entries) to the list of monitors that are currently targeted by the response

plan item.

«extends»

«extends»«uses»

«extends»

«extends»

«extends»

«uses»

«extends»

«extends»

«extends»

«extends»

«extends»

«uses»

«extends»

«extends»

«uses»

«extends»

«extends»

«extends»

«extends»

«extends»

«extends»

«extends»
«extends»

«extends»

«uses»
«extends»

«uses»

«extends»

«extends»

«extends»

«extends»

«extends»

«extends»

«extends»
«extends»

«extends»

«extends»

«uses»

«uses»

«extends»

View Response
Plan VIdeo

Tour

Revoke Response Remove Cameras
from Monitor Auto Mode

Tour List

Disable
Suggestions

for a
Camera

Add Camera
to Monitor Auto Mode

Tour List

Request Suggested
Cameras

Set Preset to
use for Camera

Change Order
of Cameras

Create Temporary
Preset

View Response
Camera Image

Disable
Suggestions

Add Cameras
to Response Plan

Video Tour

Add Suggested Cameras
to Response

Edit Response
Plan Video Tour

Duplicate Camera
in Tour

Control
Response
Camera

View Response
Plan Tour on Desktop

Changed in R10

Disable Suggestions
For A DMS

Disable Suggestions
for a PlanRequest Suggested

Response Actions

Request Suggested
DMS Messages

Request Suggested
Plans

Use Suggested
Response Actions

Add Suggested
DMS Messages

To Response

Add Suggested
Plan Items
To Response

Evaluate Response
Plan

View Response
Plan Preview Map

View Device
Use Warnings

View Devices
That Should Be
Considered for

Response

Add Plan to
Response

Remove Device
from Response

Add Device
to Response

Execute
Response

Configure
 Response

Set DMS
Message

Set HAR
Message

Control Devices
in Response to

Event

Operator

Set HAR Message
for use in

Response Plan

Add HAR to
Response Plan

Set DMS Message
for use in

Response Plan

View Message
Currently Active on
Response Device

Request Suggested
Message For

Response Plan Devices

CHART R10 Detailed Design – Rev 3 8-41 08/14/2012

8.15.2 Add Cameras to Response Plan Video Tour (Use Case)

A user with sufficient privileges may add one or more cameras to a traffic event response

plan video tour by selecting them from a list of all cameras, searching for cameras, or by

adding them from the decision support list of suggested cameras. All cameras added will

be added to the end of the response plan video tour. When selecting cameras to add from a

list of all cameras or from search results cameras will be shown in order of distance from

the traffic event.

8.15.3 Add Device to Response (Use Case)

An operator with the correct functional rights may add a device to the response plan of a

traffic event. Please refer to the extending use cases to see the types of devices that can be

added to a response plan.

8.15.4 Add HAR to Response Plan (Use Case)

An operator with the correct functional rights may add a HAR to the response plan of a

traffic event. Doing so will cause the message on that HAR to be set when the response

plan is executed. In this version of the system, the HAR will be added with a blank initial

message which the operator may modify before executing the plan. In future releases, the

HAR object could suggest a message based on the properties of the traffic event whose

response plan it was being added to.

8.15.5 Add Plan to Response (Use Case)

An operator with the correct functional rights may add the items from an existing plan to a

traffic event's response plan. This action is performed by dragging the plan to the traffic

event. Doing so will cause the traffic event's response plan to contain a response item for

each item in the plan. This feature will be useful when responding to recurring congestion

events or special events where a predefined plan can be established and stored. The

operator may also drag one or more individual plan items from a plan to a traffic event. If

response items already exist in the response plan for the devices referenced by the plan

items, the message will be changed in the response item; otherwise, new response items

will be created. These changes or additions of the response items are only proposed

changes and will not affect the device unless the response items are subsequently executed.

8.15.6 Add Suggested Cameras to Response (Use Case)

A user with sufficient privileges may add one or more suggested cameras to the traffic

event response plan video tour.

8.15.7 Add Suggested DMS Messages To Response (Use Case)

A user may opt to add a suggested DMS message to the current response plan. If the device

is already in the response plan, it will be updated to use the suggested message. The user

may also opt to activate the message immediately when adding it.

CHART R10 Detailed Design – Rev 3 8-42 08/14/2012

8.15.8 Add Suggested Plan Items To Response (Use Case)

A user may opt to add one or more suggested DMS plan item messages to the current

response plan. If the device is already in the response plan, it will be updated to use the

suggested message. The user may also opt to activate the message immediately when

adding it.

8.15.9 Change Order of Cameras (Use Case)

A user with sufficient privileges shall be able to change the order of cameras within a

response plan video tour by moving cameras up or down within the tour.

8.15.10 Configure Response (Use Case)

An operator with the correct functional rights may configure a response plan to control

devices in response to a traffic event. Please refer to the extending use cases for details.

8.15.11 Control Response Camera (Use Case)

A user with sufficient privileges may request control of a camera from within the response

plan video tour screen. Doing so will allow the user to conveniently access the camera

control session, but will also allow them to make modifications to the tour entry from

within the control session by creating a temporary preset.

8.15.12 Control Devices in Response to Event (Use Case)

A user may control devices in response to an event by adding the devices to the traffic

event response plan, editing a message for each device, then activating the response plan

items.

8.15.13 Create Temporary Preset (Use Case)

When a user requests control of a camera from within a response plan video tour, they will

be allowed to create a temporary preset within their control session. The temporary preset

will be added to the camera and will also be stored in the respose plan video tour entry as

the preset to use for that tour entry.

8.15.14 Disable Suggestions (Use Case)

A user with sufficient privileges will be able to disable suggestions for a particular DMS,

camera or plan (see extending use cases). The suggestions can be disabled for the life of

the traffic event, or may be disabled only for the current response plan suggestions session.

Once they are disabled, suggestions may also be re-enabled.

8.15.15 Disable Suggestions For A DMS (Use Case)

Suggestions may be disabled and re-enabled for a particular DMS.

8.15.16 Disable Suggestions for a Camera (Use Case)

Suggestions may be disabled and re-enabled for a particular camera.

CHART R10 Detailed Design – Rev 3 8-43 08/14/2012

8.15.17 Disable Suggestions for a Plan (Use Case)

Suggestions may be disabled and re-enabled for a particular plan.

8.15.18 Duplicate Camera in Tour (Use Case)

A user with sufficient privileges shall be able to duplicate a camera withing a response plan

video tour. Doing so will add another instance of the camera to the end of the tour with no

preset position.

8.15.19 Edit Response Plan Video Tour (Use Case)

A user with sufficient privileges may modify a response plan video tour. See extending use

cases for the types of modifications that can be made.

8.15.20 Evaluate Response Plan (Use Case)

Users may utilize the system to evaluation their current response plan. Refer to the

extending use cases for a list of supported evaluation tools.

8.15.21 Execute Response (Use Case)

An operator with the correct functional rights may execute the response plan for a particular

traffic event. Performing this operation will place the message from each response plan

item on the arbitration queue of the corresponding device.

8.15.22 Remove Cameras from Monitor Auto Mode Tour List (Use Case)

When the response plan video tour item has execution revoked, it will remove all tour

entries from all monitors that it last executed on.

8.15.23 Remove Device from Response (Use Case)

An operator with the correct functional rights may remove a device from a traffic event's

response plan. This action will result in the message from this response plan item being

removed from the arbitration queue of the device which is being removed.

8.15.24 Request Suggested Cameras (Use Case)

The system will suggest cameras that are located within a configurable distance of the

traffic event. Suggested cameras are scored according to their proximity to the traffic event.

Cameras that are in the configured immediate proximity will be scored such that the closest

devices are scored the highest without regard for route or direction of travel. Cameras that

are in the near or far distance categories will be scored such that cameras that are upstream

from the traffic event on the same route in the same direction of travel are scored more

highly than others regardless of distance from the event location.

8.15.25 Request Suggested DMS Messages (Use Case)

The system will suggest template based DMS messages for DMS devices that are located

within a configurable distance of the traffic event. Each device can have multiple template

CHART R10 Detailed Design – Rev 3 8-44 08/14/2012

based suggestions. Each template is tested to verify that it is suitable for the traffic event

type, distance and proximity of the sign to the traffic event, and sign geometry. Each

suitable template will result in a suggested message. Suggestions are scored according to

their specificity of the DMS/Traffic Event combination. Thus, a template that pertains only

to incidents will be scored higher than a similar template that pertains to all traffic event

types. Templates with higher scores are display to the user first. The system will also locate

plans that contain the nearby DMS devices and will also suggest the planned messages for

each of these devices. Because the system has no knowledge of the content of these

messages they will be given the lowest possible score.

8.15.26 Request Suggested Message For Response Plan Devices (Use Case)

A user with sufficient privileges may request message suggestions for either all DMSs in

the response plan or DMSs in the response plan with a blank message. The system will

suggest messages for a DMS in the response plan even if that DMS was not originally

suggested for this traffic event.

8.15.27 Request Suggested Plans (Use Case)

The system shall also suggest plans that contain DMS devices that are within the

configurable range of the traffic event. Each plan that contains any "nearby" devices will be

suggested. Plans will be scored according to the percentage of total plan items that are

nearby DMS devices and will be presented to the user in order of score.

8.15.28 Request Suggested Response Actions (Use Case)

A user with sufficient privileges may request the suggested response actions for a traffic

event. Refer to extending use cases to see what types of suggestions are supported.

8.15.29 Revoke Response (Use Case)

A user with sufficient privileges may revoke execution of a response plan or select repsonse

plan items.

8.15.30 Set DMS Message (Use Case)

The message on a DMS can be set when the DMS is online or in maintenance mode. When

the DMS is online, the message is set by the DMS's arbitration queue. This queue sets the

message of the DMS to be the message that is on the queue that has the highest priority.

The system may also combine messages on the queue based on rules specified in the system

profile. If the system does combine messages, the page limit as set in the DMS Display

Configuration applies. When the DMS is in maintenance mode, an operator with proper

functional rights can set the message on a DMS directly. Two types of DMS editors exist

for setting DMS messages; a manual editor and an automatic editor. The manual editor

allows the user to specify the text for each line of the DMS. The auto editor uses

formatting rules as specified in the requirements to automatically format the message text

specified by the user. As of R10, the message editors are changed to utilize the DMS font

and other display related settings specified in the DMS Display Configuration when

showing a graphic of the DMS message and when determining if a message will fit on the

CHART R10 Detailed Design – Rev 3 8-45 08/14/2012

DMS without truncation. Before sending a message to a sign, the system will check to

make sure the message will fit the sign. As of R10, the fit check will use the Display

Configuration for the DMS, including the font to make this determination. When setting a

message on an NTCIP DMS, the system will also set the default font to the font slot number

specified for use by CHART and other settings, such as the inter-character spacing, line

spacing, and default page justification.

8.15.31 Set DMS Message for use in Response Plan (Use Case)

An operator with the correct functional rights may modify the message which will be

displayed on a DMS when a traffic event response plan is executed. This can be done by

using the manual or automatic message editor. The user can set the message on a single

DMS or multiple DMSs. When setting the message for multiple DMSs, the system will

show each unique display configuration from the selected DMSs and allow the user to view

the message as it will appear with each display configuration. The system will also indicate

if the message as specified will not fit on any of the display configurations. When setting

the message on multiple DMSs, the system will allow the user to filter their selection by

DMS Display Configuration to allow them to easily set the message on all signs with a

specific display configuration at one time.

8.15.32 Set HAR Message (Use Case)

A HAR's message is set through the execution of an event response plan or set directly by

an administrator when the device is in maintenance mode. The message activation may

specify messages which were previously stored in message slots in the controller or a

message that was created using the HAR message editor.

When activating a HAR message created by the message editor the user may choose to use

the default header and trailer or just use the message body for the entire message. Messages

activated in this manner shall be loaded into the HAR controller in the slot designated for

immediate broadcast.

A HAR message activation also specifies if each associated SHAZAM should be activated

or not. The selected notifiers will be activated only after the message has been activated on

the HAR.

The system shall support sending messages to at least 4 HARs at one time; each constituent

of a synchronized HAR counts as 1 HAR toward this total. A synchronized HAR is

comprised of individual constituent HARs that play the same message at the same time.

Each constituent can be specified as being active or inactive; messages activated on a

synchronized HAR are only activated on the active constituents.

8.15.33 Set HAR Message for use in Response Plan (Use Case)

An operator with the correct functional rights may modify the message which will be

broadcast from a HAR when the traffic event's response plan is executed. This can be done

using the HAR message editor, or dragging a HAR stored message to the item in the

response plan.

CHART R10 Detailed Design – Rev 3 8-46 08/14/2012

8.15.34 Set Preset to use for Camera (Use Case)

A user with sufficient privileges may specify the preset to use for a camera in a response

plan video tour. The user can specify no preset, an existing preset, or a temporary preset

that should be created immediately for the current camera position.

8.15.35 Use Suggested Response Actions (Use Case)

A user with sufficient privileges may use a suggested response action. Refer to the

extending use cases to see the list of supported response actions the user may use.

8.15.36 View Device Use Warnings (Use Case)

The system will highlight any devices that are currently in the response plan that appear to

be inappropriate. A good example of a potentially inappropriate device is a DMS that is on

the same route, same direction as the traffic event but is downstream from the event.

8.15.37 View Devices That Should Be Considered for Response (Use Case)

A user will be able to see a list of devices that decision support rules indicate should be

considered for use in the response plan of the traffic event but that are currently in the

response plan.

8.15.38 View Message Currently Active on Response Device (Use Case)

The system will allow a user to see the currently active message on a response device. This

can aid the user in deciding whether the currently planned response message is useful. This

is changed in R10 to utilize the DMS display configuration, including the font, when

showing the currently active message on a DMS.

8.15.39 View Response Camera Image (Use Case)

A user with suitable privileges shall be able to view the image from a response tour camera

on the desktop.

8.15.40 View Response Plan Preview Map (Use Case)

A user may view a map that shows the traffic event, all currently planned response plan

items, and any response plan items that should be considered. For each response plan item,

the suggested message can be viewed by opening the device callout. Devices in the

response plan that should not be considered will be highlighted on the map. Devices not in

the response plan that should be considered will also be highlighted on the map. This will

help the operator to visualize the future state of the system if the response plan is executed

as currently planned.

8.15.41 View Response Plan Tour on Desktop (Use Case)

The system shall allow a user with sufficient privileges to view the response plan video tour

as a desktop video tour. When this is done the system will show the cameras in the tour in

the order they will be shown on an auto mode monitor, but presets will not be used.

CHART R10 Detailed Design – Rev 3 8-47 08/14/2012

8.15.42 View Response Plan VIdeo Tour (Use Case)

The user shall be able to see the list of targeted monitors for a traffic event response plan, as

well as the list of cameras and optional presets that would be displayed on those monitors

upon execution. The video tour response plan item will also provide the user with feedback

that indicates if the current list of tour entries and monitors matches the last executed list.

CHART R10 Detailed Design – Rev 3 9-1 08/14/2012

9 System Interfaces Design (IDL)

9.1 CameraControlIDLClasses (Class Diagram)

This class diagram shows IDL generated classes used for defining video camera

configuration in chart.

Figure 9-1. CameraControlIDLClasses (Class Diagram)

9.1.1 CameraActionState (Class)

This enumeration identifies what action the camera is currently performing (if any).

9.1.2 CameraBusyException (Class)

This exception is thrown if an atttempt to issue an immediate mode camera control

command (such as pan, tilt, etc.) is issued while the camera is performing a long-running

command (such as a moveToPresetCommand or a setTitleCommand). This indicates to the

operator that the camera is momentarily busy, and the operator should try the action again

in a few seconds, or when the camera image on the monitor shows that the long-running

request has completed.

9.1.3 CameraCommand (Class)

CameraCommand contains information about the commands sent to, and responses

received from, the camera.

9.1.4 CameraControlCommandResponseType (Class)

Identifies the camera control command response type expected from a command.

New f or R 10
m _t em pPr eset : Tem pCam er aPr eset []

11

New f or R10

TempCameraPreset
«st r uct »

TempPreset Creat i onResul t
«dat at ype»

New f or R9.
For R9, m _st r eam Exist s will always be t r ue
and m _st r eam Blocked will be set when t he
unblock/ block com m ands ar e successf ul f r om CHART.
St at us will not be quer ied f r om t he SFSs f or R9.

Vi deoCont rol Fl ashSt at us

Added m _public f lag f or R9.

NO TE - subm it t ed LevC3159 f or
possibly r eplacing t his st r uct wit h
an I D r ef er encing one of t he SFSs
def ined in t he Syst em Pr of ile.

*
1

* 1

NTCI PCameraConf i g
«st r uct »

1

1

1

1

1

1

1
1

Vi deoCameraSt at usEvent I nf o
«st r uct »

Vi deoTransmi ssi onDevi ceConf i g
«st r uct »

Vi deoComponent Type
«enumer at ion»

Vi deoSourceSt at usEvent I nf o
«st r uct »

1

1

1

1

1

1

1

1

11

1

1

Com m andPr ocessor Added
or

Com m andPr ocessor Conf igChanged

1

1

Com m andPr ocessor Delet ed

CommandProcessorEvent
«union»

CommandProcessorConf i gEvent I nf o
«st r uct »

11

1

1

CommandProcessorEvent Type
«enumer at ion»

CommandProcessorI nf o
«st r uct »

CommandProcessorFact ory
«int er f ace»

1

NTCI PCameraSt at usEvent I nf o
«st r uct »

NTCI PCameraSt at us
«st r uct »

1

1

1

1
NTCI PCam er aSt at usChanged

1 1 1

1

1
1

NTCI PCameraConf i gEvent I nf o
«st r uct »

NTCI PCam er aAdded
or

NTCI PCam er aConf igChanged

Cont rol l abl eVi deoCameraI nf o
«st r uct »

1
1

NTCI PCamera
«int er f ace»

Vi deoProvi derType

1

1

Vi deoSourceI nf o
«st r uct »

1
1

VideoSour ceAdded
or

VideoSour ceConf igChanged

1
1

VideoCam er aAdded
or

VideoCam er aConf igChanged

1
1

CO HU3955Cam er aAdded
or

CO HU3955Cam er aConf igChanged

1 1ViconSVFTCam er aAdded
or

ViconSVFTCam er aConf igChanged
11

VideoCam er aSt at usChanged

1

1

1

1

1

1

1

Vi conSVFTCameraConf i gEvent I nf o
«st r uct »

1

1

CameraI sCont rol l edExcept i on
«except ion»

1

VideoSour ceDelet ed

Vi deoSourceEvent
«union»

1

1

11
VideoSour ceSt at usChanged

1

1

CO HU3955Cam er aSt at usChanged

11
ViconSVFTCam er aSt at usChanged

1

1

CameraCommand
«st r uct »

CommandProcessorConf i g
«st r uct »

CO HU3955CameraConf i gEvent I nf o
«st r uct »

1

1

1

1

1

1

1

1

Vi deoSourceConf i gEvent I nf o
«st r uct »

Vi deoCameraConf i gEvent I nf o
«st r uct »

CO HU3955CameraSt at usEvent I nf o
«st r uct »

Vi conSVFTCameraSt at usEvent I nf o
«st r uct »

1

Vi deoCont rol Fl ashConf i g
«st r uct »

Vi deoCont rol Devi ceConf i g
«st r uct »

CO HU3955CameraConf i g
«st r uct »

Vi conSVFTCameraConf i g
«st r uct »

1

1

1

CameraCont rol CommandPacket
«st r uct »

I mageRemoval Resul t
«st r uct »

CameraCont rol CommandResponseType
«enumer at ion»

TmddCct vSt at usType
«enumer at ion»

TmddCct vRequest CommandType
«enumer at ion»

TmddCct vErrorType
«enumer at ion»

CO HU3955CameraSt at us
«st r uct »

Vi conSVFTCameraSt at us
«st r uct »

Cont rol l abl eVi deoCameraSt at us
«st r uct »

Vi deoCameraSt at us
«st r uct »

Vi deoSourceSt at us
«st r uct »

CameraPreset
«st r uct »

CameraNot Cont rol l edExcept i on
«except ion»

I nval i dM oni t orG roupExcept i on
«except ion»

CommandProcessor
«int er f ace»

Preset Undef i nedExcept i on
«except ion»

CameraNot Di spl ayedLocal l yExcept i on
«except ion»

CameraNot Cont rol l edReason
«enumer at ion»

CameraAct i onSt at e
«enumer at ion»

TmddCct vI mageType
«enumer at ion»

TmddCameraCont rol Type
«enumer at ion»

Cont rol l abl eVi deoCameraConf i g
«st r uct »

1

1

Vi deoCameraI nf o

1

1

CameraBusyExcept i on
«except ion»

1

1

I dent i f i er

1

1 1

Transf erabl eSharedResource
«int er f ace»

1

Cont rol l abl eVi deoCameraFact ory
«int er f ace»

Vi deoSourceFact ory
«int er f ace»

Vi deoCameraFact ory
«int er f ace»

1

1

1
1

1

1

1

1

1

11

Vi deoProvi derSt at us
«st r uct »

1

1
Vi conSVFTPgmCmd

«enumer at ion»

Vi deoSourceEvent Type
«enumer at ion»

1

1

Vi deoProvi der
«int er f ace»

CO HU3955Camera
«int er f ace»

Vi conSVFTCamera
«int er f ace»

Vi deoSource
«int er f ace»

Uni quel yI dent i f i abl e
«int er f ace»

CommEnabl ed
«int er f ace»

Cont rol l abl eVi deoCamera
«int er f ace»

Vi deoCameraConf i g
«st r uct »

Vi deoSourceConf i g
«st r uct »

Vi deoProvi derConf i g
«st r uct »

1

1

1

1

Vi deoProvi derFact ory
«int er f ace»

Vi deoCamera
«int er f ace»

For R9, added:
set SFSBlocked()

+m _r eason: Cam er aNot Cont r olledReason
+m _act ionSt at e: Cam er aAct ionSt at e
+m _inf o : Cont r ollingI nf o

+r eason : st r ing

TM DD_CCTV_ERR_UNUSED
TM DD_CCTV_ERR_CO M M UNI CATI O NS_ERRO R
TM DD_CCTV_ERR_PO WER_FAI LURE
TM DD_CCTV_ERR_DEVI CE_ERRO R
TM DD_CCTV_ERR_CO NTRO LLER_ERRO R

+r eason : st r ing

O VERRI DDEN
TAKEN_O FFLI NE
LO ST_I M AG E
NO T_CO NTRO LLI NG _USER

+m _inf o : Cont r ollingI nf o
+m _wouldBeAllowed : boolean

TM DD_CCTV_CTRL_UNUSED
TM DD_CCTV_CTRL_STATUS_O NLY
TM DD_CCTV_CTRL_CO M M AND_O NLY
TM DD_CCTV_CTRL_STATUS_AND_CO M M AND
TM DD_CCTV_CTRL_NO T_SPECI FI ED

TM DD_CCTV_STAT_UNUSED
TM DD_CCTV_STAT_O N
TM DD_CCTV_STAT_O FF
TM DD_CCTV_STAT_I N_SERVI CE
TM DD_CCTV_STAT_O UT_O F_SERVI CE
TM DD_CCTV_STAT_UNAVAI LABLE
TM DD_CCTV_STAT_UNKNO WN

TM DD_CCTV_CM D_UNUSED
TM DD_CCTV_CM D_PRESET
TM DD_CCTV_CM D_JO G _PO SI TI O NI NG
TM DD_CCTV_CM D_DI RECTI O N
TM DD_CCTV_CM D_FO CUS
TM DD_CCTV_CM D_M ANUAL_I RI S
TM DD_CCTV_CM D_WI PER_O N_O FF
TM DD_CCTV_CM D_LO CK_FO R_THE_CAM ERA
TM DD_CCTV_CM D_PAN
TM DD_CCTV_CM D_TI LT
TM DD_CCTV_CM D_ZO O M
TM DD_CCTV_CM D_TEXT_O VERLAY
TM DD_CCTV_CM D_SWI TCH_1_I N_TO _1_O UT

CM D_UP
CM D_DO WN
CM D_LEFT
CM D_RI G HT
CM D_SELECT
CM D_CANCEL
CM D_AUX1
CM D_AUX2

t akeO f f line(AccessToken, Com m andSt at us) : void
put O nline(AccessToken, Com m andSt at us) : void
put I nM aint enanceM ode(AccessToken, Com m andSt at us) : void
get Com m M ode() : Com m unicat ionM ode

+sinkRem ovalSuccesses : VideoCollect or I nf o[]
+sinkRem ovalFailur es : VideoCollect or I nf o[]
+sinkRem ovalUnaf f ect eds : VideoCollect or I nf o[]
+sinkRem ovalNAs : VideoCollect or I nf o[]
+sinkRem ovalUnknowns : VideoCollect or I nf o[]
+f lashSt r eam Rem ovalSuccesses : VideoCollect or I nf o[]
+f lashSt r eam Rem ovalFailur es : VideoCont r olFlashConf ig[]

void set Cont r ollingO pCent er (AccessToken t oken,
 O pCt r I nf o opCt r I nf o)

TM DD_CCTV_I M AG E_UNUSED
TM DD_CCTV_I M AG E_JPEG
TM DD_CCTV_I M AG E_TI FF
TM DD_CCTV_I M AG E_M PEG
TM DD_CCTV_I M AG E_NTSC
TM DD_CCTV_I M AG E_PAL
TM DD_CCTV_I M AG E_SECAM
TM DD_CCTV_I M AG E_HDTV
TM DD_CCTV_I M AG E_O THER

+get Pr ovider St at us() : VideoPr ovider St at us
+get Pr ovider Conf ig(t oken) : VideoPr ovider Conf ig
+r em ovePr ovider (t oken)
+addDisplay(t oken, displayI nf o) : void
+r em oveDisplay(t oken, displayI D)
+addConnect edCollect or (t oken, collect or I D)
+r em oveConnect edCollect or (t oken, collect or I D)

+get Sour ceSt at us() : VideoSour ceSt at us
+get Sour ceConf ig(I dent if ier) : VideoSour ceConf ig
+set Sour ceConf ig(I dent if ier , VideoSour ceConf ig, Com m andSt at us)
+set User DisplaySt at us(I dent if ier , boolean)
+blockToPublic(t oken, Ext endedCom m andSt at us)
+set SFSBlocked(t oken, sf sHost , blocked : boolean, Com m andSt at us) : void
+unblockToPublic(t oken)
+set RevokeDisplayO r gs(t oken, r evokedO r gI Ds, xCm dSt at)
+isNoVideoAvailable() : boolean
+isDisplayable(I dent if ier , VideoCollect or I nf o, r eason: st r ing) : boolean
+isRem ovable(VideoCollect or I nf o, m onit or G r oupI D[] , r eason: st r ing) : boolean

VI DEO _PRO VI DER
VI DEO _SO URCE
VI DEO _CAM ERA
CO NTRO LLABLE_VI DEO _CAM ERA
NTCI P_CAM ERA
CO HU_3955_CAM ERA
VI CO N_SVFT_CAM ERA
BRI DG E_CI RCUI T_O UTPUT

t em pPr eset I d: I dent if ier
pr eset Num : shor t
descr ipt ion: st r ing

+m _t oken : AccessToken
+m _cam er aType : VideoPr ovider Type
+m _com m and : Cam er aCont r olCom m and
+m _r esponseType : Cam er aCont r olCom m andResponseType

m _t em pPr eset I D: I dent if ier
m _t em pPr eset Ent r yO wner I nf o: Tem pPr eset O wner I nf o
m _num ber : shor t
m _descr ipt ion: st r ing

+isCont r ollable() : boolean
+get Cam er aSt at us() : VideoCam er aSt at us
+get Cam er aConf ig(t oken) : VideoCam er aConf ig
+set Cam er aConf ig(t oken, VideoCam er aConf ig)
+set Locat ion(t oken, ol)

+m _cont r ollableI D : I dent if ier
+m _cont r ollable : Cont r ollableVideoCam er a
+m _t ype : VideoPr ovider Type

+m _cam er aI D : I dent if ier
+m _cam er a : VideoCam er a
+m _t ype : VideoPr ovider Type

ACKNO WLEDG EM ENT
FI XED_RESPO NSE
VARI ABLE_RESPO NSE

+get Cont r ollableCam er aSt at us() : Cont r ollableVideoCam er aSt at us
+get Cont r ollableCam er aConf ig(t oken) : Cont r ollableVideoCam er aConf ig
+set Cont r ollableCam er aConf ig(t oken, conf ig, cm dSt at)
+set User Cont r olSt at us(t oken, st at e)
+r equest Cont r ol(t oken, over r ideRequest ed: boolean, inf o: Cont r ollingI nf o, cm dSt at : Com m andSt at us)
+t er m inat eCont r ol(t oken)
+set RevokeCont r olO r gs(t oken, r evokedO r gI Ds, cm dSt at)
+isCont r olled() : boolean
+get ValidTit leChar s() : st r ing
+adjpan(t oken, dir ect ion: int)
+adjTilt (t oken, dir ect ion: int)
+adjZoom (t oken, dir ect ion: int)
+adjFocus(t oken, wher e: int)
+adjI r is(t oken, dir ect ion: int)
+set Aut oI r is(t oken, boolean)
+adjRed(t oken, dir ect ion)
+adjBlue(t oken, dir ect ion)
+set Act iveTit le(t oken, t it le, lineNum : in, cm dSt at : Com m andSt at ust)
+r eset Cam er a(t oken)
+pollCar m er a(t oken)
+m oveToPr eset (t oken, pr eset , f or Tour)
+savePr eset (t oken, cam Pr eset , cm dSt at)
+delet ePr eset (t oken, pr eset Num , cm dSt at)
+m oveToTem pPr eset (t oken, pem pPr eset I D, cm dSt at)
+saveTem pPr eset (t oken, pr eset O wner , cm dSt at) : Tem pPr eset Cr eat ionResult
+delet eTem pPr eset (t oken, t em pPr eset I D, cm dSt at)
+r em oveTem pPr eset List For O wner (t oken, owner I d)

+get ViconSVFTCam er aSt at us() : ViconSVFTCam er aSt at us
+get ViconSVFTCam er aConf ig(t oken) : ViconSVFTCam er aConf ig
+set ViconSVFTCam er aConf ig(t oken, conf ig, cm dSt at)
+set Pr ogr am m ingM ode(t oken, st at e, com m ToCam er a)
+pr ogr am Com m and(t oken, cm d)
+set Color G ainSet upM ode(t oken, st at e)
+t oggleColor G ainM ode(t oken)
+ent er BlueColor G ainM ode(t oken)
+ent er RedColor G ainM ode(t oken)
+exit Adjust Color M ode(t oken, save)
+abor t (t oken)
+changeLensSpeed(t oken)

VI DEO _SO URCE_CO M PO NENT
VI DEO _SI NK_CO M PO NENT
VI DEO _BRI DG E_CI RCUI T

+m _com ponent Type : VideoCom ponent Type
+m _nam e : St r ing
+m _net wor kConnect ionSit e : St r ing
+m _owningO r gI D : byt e[]
+m _pr ovider Type : VideoPr ovider Type
+m _sendingDeviceConf ig : VideoTr ansm issionDeviceConf ig[]
+m _sendingDeviceI Ds : byt e[] []

+m _host : st r ing
+m _por t : shor t
+m _passwor d : st r ing
+m _public : boolean +m _pr ovider Conf ig: VideoPr ovider Conf ig

+m _m aint ainingO r gI D : I dent if ier
+m _isNoVideoAvailableSour ce: boolean
+m _st r eam ingFlashConf ig : VideoCont r olFlashConf ig[]

+get CO HU3955Cam er aSt at us()
 : CO HU3955Cam er aSt at us
+get CO HU3955Cam er aConf ig(I dent if ier)
 : CO HU3955Cam er aConf ig
+set CO HU3955Cam er aConf ig(I dent if ier ,
 CO HU3955Cam er aConf ig)
+set Aut oFocus(t oken, boolean)
+set Aut oColor (t oken, boolean)
+set LensFast (t oken, boolean)
+set Power O n(t oken, boolean)

 get Pr ovider I nf oList () : VideoPr ovider I nf oList

+cr eat eVideoSour ce(t oken, conf ig) : VideoSour ce
+get Sour ceI nf oList () : VideoSour ceI nf oList
+get NoVideoAvailableSour ces() : VideoSour ceI nf oList
+get NoVideoAvailableSour cesFor Fabr ic(swit chFabr icI D) : VideoSour ceI nf oList
+get O nlineNoVideoAvailableSour ces() : VideoSour ceI nf oList
+get O nlineNoVideoAvailableSour cesFor Fabr ic(swit chFabr icI D) : VideoSour ceI nf oList

+m _sour ceConf ig: VideoSour ceConf ig
+m _cam er aNum ber : int
+m _locat ion: O bject Locat ion
+m _r egions: st r ing[]
+m _displayO nI nt r anet M ap : boolean
+m _displayO nPublicM ap : boolean
+m _t m ddDeviceNam e: st r ing
+m _t m ddCCTVI m age: Tm ddCct vI m ageType
+m _t m ddCont r olType: Tm ddCam er aCont r olType
+m _t m ddLocnExt Hor izDat um : LRM SHor izont alDat um Type
+m _t m ddLocnExt LRM SLat it ude: int
+m _t m ddLocnExt LRM SLongit ude: int
+m _t m ddLocnExt Ver t Dat um : LRM SVer t icalDat um Type
+m _t m ddLocnExt LRM SHeight : int
+m _t m ddLocnExt Ver t Level: int
+m _t m ddRequest Com m ands: int

+get NTCI PCam er aSt at us() : NTCI PCam er aSt at us
+get NTCI PCam er aConf ig(t oken) : NTCI PCam er aConf ig
+set NTCI PCam er aConf ig(t oken, NTCI PCam er aConf ig , Com m andSt at us)
+set Aut oFocus(t oken, boolean)
+set Power O n(t oken, boolean)

+cr eat eVideoCam er a(t oken, conf ig) : VideoCam er a
+get Cam er aI nf oList () : VideoCam er aI nf o[]
+get ValidRegionList () : St r ing[]

+m _cam er aConf ig: VideoCam er aConf ig
+m _cont r olDeviceI D: I dent if ier
+m _cont r olDeviceConf ig : VideoCont r olDeviceConf ig
+m _pollEnabled: boolean
+m _pollI nt er valCont r olledSecs: long
+m _pollI nt er valUncont r olledSecs: long
+m _enableDeviceLogging : boolean
+m _def ault Pr eset Num : shor t
+m _def ault Tit le : st r ing

get I D()
get Nam e()

+cr eat eCO HU3955Cam er a(t oken, conf ig) : CO HU3955Cam er a
+cr eat eViconSVFTCam er a(t oken, conf ig) : ViconSVFTCam er a
+cr eat eNTCI PCam er a(t oken, conf ig) : NTCI PCam er a
+get Cont r ollableCam er aI nf oList () : Cont r ollableVideoCam er aI nf oList

+get Conf ig(t oken) : Com m andPr ocessor Conf ig
+set Conf ig(t oken : AccessToken, conf ig : Com m andPr ocessor Conf ig)
+r em ove(t oken)
+init ialize(init ialize, cam er aResponseTim eout) : boolean
+connect (t oken) : boolean
+get Act ualByt esRead() : long
+shut down() : boolean
+r est ar t () : boolean
+send(t oken) : boolean
+r eceive() : Cam er aCom m and[]

+sour ceRef : VideoSour ce
+sour ceI D : I dent if ier
+conf ig : VideoSour ceConf ig

+m _cont r ollableConf ig : Cont r ollableVideoCam er aConf ig
+m _def ault Tit le2 : st r ing
+m _dspSt at usEnabled : boolean
+m _dspSt at usLengt h : long

+m _cont r ollableConf ig : Cont r ollableVideoCam er aConf ig
+m _def ault Tit le2 : st r ing
+m _nt cipCom m unit y : st r ing
+m _enableHDLCFr am ing : boolean
+m _m inPanSpeed : shor t
+m _m axPanSpeed: shor t
+m _m inTilt Speed: shor t
+m _m axTilt Speed: shor t
+m _var iableZoom Speed: shor t
+m _var iableFocusSpeed: shor t
+m _m inZoom Range: int
+m _m axZoom Range: int

+cm dPr ocRef : Com m andPr ocessor
+cm dPr ocI D : I dent if ier
+conf ig : Com m andPr ocessor Conf ig

+m _sour ceI D : I dent if ier
+m _sour ce : VideoSour ce
+m _t ype : VideoPr ovider Type

+sour ceRef : VideoCam er a
+sour ceI D : I dent if ier
+conf ig : VideoCam er aConf ig

+cr eat eCom m andPr ocessor (t oken, conf ig) : Com m andPr ocessor
+get Com m andPr ocessor I nf oList () : Com m andPr ocessor I nf o[]

+m _cm dPr ocI D : I dent if ier
+m _cm dPr oc : Com m andPr ocessor

+m _cont r ollableConf ig : Cont r ollableVideoCam er aConf ig

+discr im inat ior : Com m andPr ocessor Event Type
+cm dPr ocConf igI nf o : Com m andPr ocessor Conf igEvent I nf o
+cm dPr ocI D : I dent if ier

+m _header : byt e []
+m _header Response: byt e[]
+m _com m and: byt e[]
+m _com m andResponse: byt e[]
+m _expect edLengt h: int
+m _com m andType: int

+sour ceRef : CO HU3955Cam er a
+sour ceI D : I dent if ier
+conf ig : CO HU3955Cam er aConf ig

+m _nam e : st r ing
+m _host nam e : st r ing
+m _owningO r gI D : I dent if ier
+m _net wor kConnect ionSit e : Net wor kConnect ionSit e
+m _por t Nam e : por t Nam e
+m _com m Por t Conf ig : FieldCom m unicat ions
+m _enableDeviceLogging : boolean

+sour ceRef : ViconSVFTCam er a
+sour ceI D : I dent if ier
+conf ig : ViconSVFTCam er aConf ig

+sour ceRef : NTCI PCam er a
+sour ceI D : I dent if ier
+conf ig : NTCI PCam er aConf ig

NO _ACTI O N
PAN_LEFT
PAN_RI G HT
TI LT_UP
TI LT_DO WN
ZO O M _I N
ZO O M _O UT
FO CUS_FAR
FO CUS_NEAR
I RI S_O PEN
I RI S_CLO SE
SET_TI TLE
RED_PLUS
RED_M I NUS
BLUE_PLUS
BLUE_M I NUS
I N_PRO G RAM _M O DE
I N_CO LO R_G AI N_M ENU
I N_ADJ_BLUE_M ENU
I N_ADJ_RED_M ENU
M O VE_TO _PRESET
SAVE_PRESET
DELETE_PRESET

+m _cont r ollableSt at us: Cont r ollableVideoCam er aSt at us
+m _inAut oColor M ode: boolean
+m _power O n: boolean
+m _lensSpeedFast : boolean
+m _cur r ent Tit le2: st r ing

Com m andPr ocessor Added
Com m andPr ocessor Conf igChanged
Com m andPr ocessor Delet ed

+cam er aI D : I dent if ier
+st at us : CO HU3955Cam er aSt at us

+discr im inat or : VideoSour ceEvent Type
+sour ceConf igI nf o : VideoSour ceConf igEvent I nf o
+cam er aConf igI nf o : VideoCam er aConf igEvent I nf o
+cohu3955Conf igI nf o : CO HU3955Cam er aConf igEvent I nf o
+nt cipConf igI nf o : NTCI PCam er aConf igEvent I nf o
+viconSVFTConf igI nf o : ViconSVFTCam er aConf igEvent I nf o
+sour ceI D : I dent if ier
+sour ceSt at usI nf o : VideoSour ceSt at usEvent I nf o
+cam er aSt at usI nf o : VideoCam er aSt at usEvent I nf o
+cohu3955St at usI nf o : CO HU3955Cam er aSt at usEvent I nf o
+nt cipSt at usI nf o : NTCI PCam er aSt at usEvent I nf o
+viconSVFTSt at usI nf o : ViconSVFTCam er aSt at usEvent I nf o

+m _cam er aSt at us: VideoCam er aSt at us
+m _cont r olled: boolean
+m _cont r ollingUser I nf o: Cont r ollingUser I nf o
+m _act ionSt at e: Cam er aAct ionSt at e
+m _inAut oFocusM ode: boolean
+m _inAut oI r isM ode: boolean
+m _cur r ent Tit le: st r ing
+m _at Pr eset Num : shor t
+m _def inedPr eset s : Cam er aPr eset []
+m _t em pPr eset : Tem pCam er aPr eset []
+m _last Cont r olCm dTim eSecs: long
+m _user Cont r olSt at us: boolean

+m _cont r ollableSt at us : Cont r ollableVideoCam er aSt at us
+m _cur r ent Tit le2 : st r ing
+m _power O n : boolean

+m _r eason: st r ing
+m _act ionSt at e: Cam er aAct ionSt at e

+cam er aI D : I dent if ier
+st at us : NTCI PCam er aSt at us

+m _num ber : shor t
+m _descr ipt ion : st r ing

+m _cont r ollableSt at us : Cont r ollableVideoCam er aSt at us
+m _cur r ent Tit le2 : st r ing

+cam er aI D : I dent if ier
+st at us : ViconSVFTCam er aSt at us

VideoSour ceAdded
VideoCam er aAdded
CO HU3955Cam er aAdded
NTCI PCam er aAdded
ViconSVFTCam er aAdded
VideoSour ceDelet ed
VideoSour ceConf igChanged
VideoCam er aConf igChanged
CO HU3955Cam er aConf igChanged
NTCI PCam er aConf igChanged
ViconSVFTCam er aConf igChanged
VideoSour ceSt at usChanged

+m _sf sHost : st r ing
+m _st r eam Exist s : boolean
+m _st r eam Blocked : boolean

+m _pr ovider St at us: VideoPr ovider St at us
+m _m aint M odeUser Nam e: st r ing
+m _blockedToPublic: boolean
+m _user DisplaySt at us: boolean
+m _r evokedDisplayO r gI D[]
+m _r evokedCont r olO r gI Ds[]
+m _st r eam ingFlashSt at us :
 VideoCont r olFlashSt at us[]

+cam er aI D : I dent if ier
+st at us : VideoCam er aSt at us

+sour ceI D : I dent if ier
+st at us : VideoSour ceSt at us

+m _sour ceSt at us: VideoSour ceSt at us

CHART R10 Detailed Design – Rev 3 9-2 08/14/2012

9.1.5 CameraIsControlledException (Class)

This exception is used to indicate a request to control a camera has failed because it is

already controlled, or a request to override control has failed because the requester does not

have authority to override the current control session, or a request to move a camera to a

preset for a tour has been denied because the camera is currently being controlled.

9.1.6 CameraNotControlledException (Class)

This is an exception thrown if an attempt to issue a camera control command is issued when

the camera is not currently controlled by the requester. This is most likely to occur

immediately after a control override, in cases where the client has not received or processed

the override event yet.

9.1.7 CameraNotControlledReason (Class)

This enumeration identifies reasons why a CameraNotControlledException would be

thrown.

9.1.8 CameraNotDisplayedLocallyException (Class)

This exception is thrown when a user tries to request control of a camera without having the

camera displayed on a local monitor.

9.1.9 CameraPreset (Class)

This structure stores information about a preset configured for a camera.

9.1.10 COHU3955Camera (Class)

The COHUCamera interface is implemented by objects representing COHU-brand video

cameras. The COHUCamera interface is extended by the COHUMPCCamera and

COHU3955Camera interfaces. The COHUCamera interface includes all methods which

are common to the two COHU cameras used by CHART II, the COHU MPC camera and

the COHU 3955 camera. (Note that this interface may well contain a superset of methods

which would be implemented by the entire line of all models of COHU video cameras).

9.1.11 COHU3955CameraConfig (Class)

This structure defines configuration data for the COHU 3955 model video camera.

9.1.12 COHU3955CameraConfigEventInfo (Class)

This struct is used for passing event data related to a COHU 3955 camera configuration.

This is used when a COHU 3955 camera is added to the system or undergoes a

configuration change. NOTE: The current configuration is passed along with object on

adds as well as configuration changes, otherwise clients would immediately need to

immediately query a new object for its configuration data after notification of the camera

being added.

CHART R10 Detailed Design – Rev 3 9-3 08/14/2012

9.1.13 COHU3955CameraStatus (Class)

The CameraStatus class is an abstract value-type class which provides status information

for a Camera. This status information is relatively dynamic: things like the communication

mode, operational status, operation center information, status change time.

9.1.14 COHU3955CameraStatusEventInfo (Class)

This struct is used for passing event data related to a COHU 3955 camera status. This is

used when a COHU 3955 video source undergoes a status change.

9.1.15 CommandProcessor (Class)

The CommandProcessor interface is implemented by a class representing a command

processor control port with direct connection to the control port of several video cameras.

It is used to send video camera control commands and return responses to a camera control

process.

9.1.16 CommandProcessorConfig (Class)

This structure defines configuration data for a command processor.

9.1.17 CommandProcessorConfigEventInfo (Class)

This struct is used for passing event data related to a CommandProcessor configuration

when a CommandProcessor undergoes a configuration change.

9.1.18 CommandProcessorEvent (Class)

This union identifies the data to be passed with CommandProcessor events that are pushed

through the event service. The data pushed with these events is defined in the

CommandProcessorEvent union.

9.1.19 CommandProcessorEventType (Class)

This enum lists the events related to CommandProcessor control, which are pushed on a

CommandProcessor event channel through the CORBA event service. The data pushed

with these events is defined in the CommandProcessorEvent union.

9.1.20 CommandProcessorFactory (Class)

This interface defines an object that is used to manage command processor objects in the

system.

9.1.21 CommandProcessorInfo (Class)

A structure of related information about a single CommandProcessor.

9.1.22 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put

online, or put in maintenance mode through a standard interface. These states typically

CHART R10 Detailed Design – Rev 3 9-4 08/14/2012

apply only to field devices. When a device is taken offline, it is no longer available for use

through the system and automated polling (if any) is halted. When put online, a device is

again available for use by TrafficEvents within the system and automated polling is enabled

(if applicable). When put in maintenance mode a device is offline (i.e., cannot be used by

TrafficEvents), and maintenance commands appropriate for the particular type of device are

allowed to help in troubleshooting.

9.1.23 ControllableVideoCamera (Class)

The ControllableVideoCamera interface is implemented by objects representing

controllable video cameras within the CHART II system. The ControllableVideoCamera

interface represents a controllable video camera as opposed to the uncontrollable,

immovable VideoCamera. Current plans call for classes to represent a COHU MPC

camera, COHU 3955 camera, Vicon SVFT camera, and NTCIP-compliant camera, and

there are interfaces defined for each of these subtypes of ControllableVideoCamera. The

ControllableVideoCamera interface includes all methods common to the three known types

of video cameras currently in use by MDSHA, although it is likely to contain a superset of

methods which would be implemented by the entire universe of all video cameras which

could someday be used. This interface may have to be refined in the event that future

brands or models of video cameras might be incorporated under CHART II, but it is an

appropriate set of methods for the present day. Current plans call for classes to represent a

COHU MPC camera, COHU 3955 camera, Vicon SVFT camera, and NTCIP-compliant

camera.

9.1.24 ControllableVideoCameraConfig (Class)

The ControllableVideoCameraConfig is used to hold and transmit configuration

information about ControllableVideoCamera objects at the ControllableVideoCamera level.

9.1.25 ControllableVideoCameraInfo (Class)

A structure of related information about a single ControllableVideoCamera.

9.1.26 ControllableVideoCameraStatus (Class)

The ControllableVideoCameraStatus is used to hold and transmit status information about

ControllableVideoCameraStatus objects at the ControllableVideoCamera level.

9.1.27 Identifier (Class)

Wrapper class for a CHART2 identifier byte sequence. This class will be used to add

identifiable objects to hash tables and perform subsequent lookup operations.

9.1.28 ImageRemovalResult (Class)

This structure contains the results of a call to either of the VideoSource operations

blockToPublic() or revokeDisplay(). This structure contains lists comprising all VideoSink

objects which were displaying this image (or were believed to be) giving the status of each.

This list also contains flash stream configurations which contain information for where this

VideoSource is streaming.

CHART R10 Detailed Design – Rev 3 9-5 08/14/2012

9.1.29 InvalidMonitorGroupException (Class)

This exception is used to indicate a request to control a camera has failed because the

MonitorGroup provided in the ControllingInfo in the request is not known to exist.

9.1.30 NTCIPCamera (Class)

This interface is used to represent an NTCIP model video camera in the field. The system

contains an instance of this interface for each NTCIP video camera.

9.1.31 NTCIPCameraConfig (Class)

This structure defines configuration data for the NTCIP type video camera.

9.1.32 NTCIPCameraConfigEventInfo (Class)

This struct is used for passing event data related to a NTCIP camera configuration. This is

used when a NTCIP camera is added to the system or undergoes a configuration change.

NOTE: The current configuration is passed along with object on adds as well as

configuration changes, otherwise clients would immediately need to immediately query a

new object for its configuration data after notification of the camera being added.

9.1.33 NTCIPCameraStatus (Class)

This structure defines the status data for the NTCIP video camera type.

9.1.34 NTCIPCameraStatusEventInfo (Class)

This struct is used for passing event data related to a NTCIP camera status. This is used

when a NTCIP video camera undergoes a status change.

9.1.35 PresetUndefinedException (Class)

This exception is used to indicate a moveToPreset request has specified an undefined

preset.

9.1.36 TempCameraPreset (Class)

This structure defines a temporary preset for a controllable camera.

9.1.37 TempPresetCreationResult (Class)

This structure contains the data that is returned to the caller when a new temporary preset is

created.

9.1.38 TmddCctvImageType (Class)

This enum lists the values that can be used to describe a type of camera image using the

specific TMDD-prescribed values for cctv_image (Reference TMDD Vol II Annex June

2004).

CHART R10 Detailed Design – Rev 3 9-6 08/14/2012

9.1.39 TransferableSharedResource (Class)

The TransferrableSharedResource interface extends the SharedResource interface, which is

implemented by SharedResource objects whose control can be transferred from one

operations center to another.

9.1.40 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

9.1.41 ViconSVFTCamera (Class)

This interface is used to represent a Vicon Surveyor VFT model video camera in the field.

The system contains an instance of this interface for each Vicon SVFT video camera.

9.1.42 ViconSVFTCameraConfig (Class)

This structure defines configuration data for the Vicon Surveyor VFT model video camera.

At present time, this structure adds nothing to the "base class"

ControllableVideoCameraConfig structure.

9.1.43 ViconSVFTCameraConfigEventInfo (Class)

This struct is used for passing event data related to a Vicon SVFT camera configuration.

This is used when a Vicon SVFT camera is added to the system or undergoes a

configuration change. NOTE: The current configuration is passed along with object on

adds as well as configuration changes, otherwise clients would immediately need to

immediately query a new object for its configuration data after notification of the camera

being added.

9.1.44 ViconSVFTCameraStatus (Class)

The ViconSVFTCameraStatus class is used to hold camera status information at the

ViconSVFTCamera level. Only ViconSVFTCamera specific information is stored.

9.1.45 ViconSVFTCameraStatusEventInfo (Class)

This struct is used for passing event data related to a Vicon SVFT camera status. This is

used when a Vicon SVFT video source undergoes a status change.

9.1.46 ViconSVFTPgmCmd (Class)

This enumeration defines the program commands that can be sent to the Vicon SVFT

camera while it is in program mode. (Some of these commands can also be sent while in

various SVFT color gain menu layers.)

9.1.47 VideoCamera (Class)

The VideoCamera interface is implemented by objects representing controllable video

cameras within the CHART II system. The VideoCamera interface represents a

CHART R10 Detailed Design – Rev 3 9-7 08/14/2012

controllable video camera as opposed to the uncontrollable, immovable

FixedVideoCamera, the other type of GenericVideoCamera. (The VideoCamera class

could have been called the ControllableVideoCamera interface, but since the CHART II

video system exists primarily to control controllable video cameras, the camera hierarchy

has been arranged to avoid the longish name ControllableVideoCamera.) Current plans call

for classes to represent a COHU MPC camera, COHU 3955 camera, Vicon SVFT camera,

and NTCIP-compliant camera, and there are interfaces defined for each of these subtypes of

VideoCamera. The VideoCamera interface includes the GeoLocatable interface, to

someday allow for advanced features such as automatic identification of cameras near

traffic events, automatic pointing of cameras to traffic events, etc.

The VideoCamera interface includes all methods common to the three known types of

video cameras currently in use by MDSHA, although it is likely to contain a superset of

methods which would be implemented by the entire universe of all video cameras which

could someday be used. This interface may have to be refined in the event that future

brands or models of video cameras might be incorporated under CHART II, but it is an

appropriate set of methods for the present day.

9.1.48 VideoCameraConfig (Class)

The VideoCameraConfig structure is used to hold configuration information about

VideoCamera objects at the VideoCamera level. Further details about lower-level

VideoCamera subclasses are provided by subclasses of VideoCameraConfig.

9.1.49 VideoCameraConfigEventInfo (Class)

This struct is used for passing event data related to a video camera configuration. This is

used when a fixed video camera is added to the system or undergoes a configuration

change. The video camera in this struct is nothing more than a video camera. NOTE: The

current configuration is passed along with object on adds as well as configuration changes,

otherwise clients would immediately need to immediately query a new object for its

configuration data after notification of the camerabeing added.

9.1.50 VideoCameraFactory (Class)

The VideoCameraFactory interface is implemented by factory classes responsible for

creating, maintaining, and controlling a collection of VideoCamera objects.

9.1.51 VideoCameraStatus (Class)

The VideoCameraStatus structure is used to hold status information about VideoCamera

objects at the VideoCamera level. Further details about lower-level VideoCamera

subclasses are provided by subclasses of VideoCameraStatus.

9.1.52 VideoCameraStatusEventInfo (Class)

This struct is used for passing event data related to a video source status. This is used when

a fixed video camera undergoes a status change.

CHART R10 Detailed Design – Rev 3 9-8 08/14/2012

9.1.53 VideoComponentType (Class)

This enum lists the video compnent types supported by the software.

9.1.54 VideoControlDeviceConfig (Class)

This structure stores configuration information used to find and use the video control device

used to send/receive camera control commands/responses to/from a camera.

9.1.55 VideoControlFlashConfig (Class)

This structure stores configuration information about a flash streaming server configuration

that is displaying a camera's image.

9.1.56 VideoControlFlashStatus (Class)

This structure contains information about the existence and blocked status of a video

source's stream within a Streaming Flash Server (SFS).

9.1.57 VideoProvider (Class)

The VideoProvider interface is a generic abstract interface including VideoSource objects

(e.g. video cameras) and BridgeCircuit objects. Both VideoSource and BridgeCircuit

objects provide video to a VideoCollector, but only VideoSource objects are true origins of

video which a typical user would have direct interaction with. BridgeCircuit VideoProvider

objects merely pass on video provided from elsewhere in a VideoRoute.

9.1.58 VideoProviderConfig (Class)

This structure defines configuration data common to all video sources.

9.1.59 VideoProviderFactory (Class)

This interface defines an object that is used to manage video provider objects in the system.

There is no create operation because VideoProvider is an abstract interface.

9.1.60 VideoProviderStatus (Class)

The VideoProviderStatus structure is used to hold and transmit status information about

VideoProvider objects at the VideoProvider level. Further details about lower-level

VideoProvider subclasses are provided by subclasses of VideoProviderStatus.

9.1.61 VideoProviderType (Class)

This enum lists the different types of VideoProvider in the system.

9.1.62 VideoSource (Class)

The VideoSource interface is implemented by objects which originate video signals, such

as video cameras and image generators. Within the user interface, the VideoSource

interface represents all video sources which can be put on monitors (i.e., VideoSink

objects).

CHART R10 Detailed Design – Rev 3 9-9 08/14/2012

The VideoSource interface includes the SharedResource interface. A VideoSource is

controlled by an Operations Center if the VideoSource is in maintenance mode, or if the

VideoSource is a camera which has an active control session up.

9.1.63 VideoSourceConfig (Class)

This structure defines configuration data common to all video sources.

9.1.64 VideoSourceConfigEventInfo (Class)

This struct is used for passing event data related to a video source configuration. This is

used when a generic video source is added to the system or undergoes a configuration

change. The video source in this struct is nothing more than a video source. NOTE: The

current configuration is passed along with object on adds as well as configuration changes,

otherwise clients would immediately need to immediately query a new object for its

configuration data after notification of the source being added.

9.1.65 VideoSourceEvent (Class)

This union identifies the data to be passed with video source events that are pushed through

the event service.

9.1.66 VideoSourceEventType (Class)

This enum lists the events related to camera control that are pushed on a camera event

channel through the CORBA event service. The data pushed with these events is defined in

the VideoSourceEvent union.

9.1.67 VideoSourceFactory (Class)

This interface defines an object that is used to manage the creation of source objects in the

system.

9.1.68 VideoSourceInfo (Class)

A struct of related information about a single VideoSource.

9.1.69 VideoSourceStatus (Class)

The VideoSourceStatus structure is used to hold and transmit status information about

VideoSource objects at the VideoSource level. Further details about lower-level

VideoSource subclasses are provided by subclasses of VideoSourceStatus.

9.1.70 VideoSourceStatusEventInfo (Class)

This struct is used for passing event data related to a video source status. This is used when

a generic video source undergoes a status change.

9.1.71 VideoTransmissionDeviceConfig (Class)

This structure defines configuration data common to all video transmission devices.

CHART R10 Detailed Design – Rev 3 9-10 08/14/2012

9.2 CameraControlIDLR10 (Class Diagram)

This class diagram show the changes to CamerControl IDL for R10. Modified to support

Camera Temp Presets.

Figure 9-2. CameraControlIDLR10 (Class Diagram)

9.2.1 ControllableVideoCamera (Class)

The ControllableVideoCamera interface is implemented by objects representing

controllable video cameras within the CHART II system. The ControllableVideoCamera

interface represents a controllable video camera as opposed to the uncontrollable,

immovable VideoCamera. Current plans call for classes to represent a COHU MPC

camera, COHU 3955 camera, Vicon SVFT camera, and NTCIP-compliant camera, and

there are interfaces defined for each of these subtypes of ControllableVideoCamera. The

ControllableVideoCamera interface includes all methods common to the three known types

of video cameras currently in use by MDSHA, although it is likely to contain a superset of

methods which would be implemented by the entire universe of all video cameras which

could someday be used. This interface may have to be refined in the event that future

brands or models of video cameras might be incorporated under CHART II, but it is an

appropriate set of methods for the present day. Current plans call for classes to represent a

COHU MPC camera, COHU 3955 camera, Vicon SVFT camera, and NTCIP-compliant

camera.

9.2.2 ControllableVideoCameraStatus (Class)

The ControllableVideoCameraStatus is used to hold and transmit status information about

ControllableVideoCameraStatus objects at the ControllableVideoCamera level.

Updated for R 10. Added:
m_tempPreset: TempCameraPreset[]

TempPresetCreationResult

«datatype»

Updated for R10. Added:
moveToTempPreset(),
saveTempPreset()
deleteTempPreset()
removeTempPresestForOwner()

New for R10

*

1

ControllableVideoCameraStatus

«struct»

ControllableVideoCamera

«interface»

TempCameraPreset

«struct»

+getControllableCameraStatus():ControllableVideoCameraStatus
+getControllableCameraConfig(token):ControllableVideoCameraConfig
+setControllableCameraConfig(token, config, cmdStat)
+setUserControlStatus(token, state)
+requestControl(token,overrideRequested:boolean,info:ControllingInfo,cmdStat:CommandStatus)
+terminateControl(token)
+setRevokeControlOrgs(token, revokedOrgIDs, cmdStat)
+isControlled():boolean
+getValidTitleChars():string
+adjpan(token, direction:int)
+adjTilt(token, direction:int)
+adjZoom(token, direction:int)
+adjFocus(token, where:int)
+adjIris(token, direction:int)
+setAutoIris(token, boolean)
+adjRed(token, direction)
+adjBlue(token, direction)
+setActiveTitle(token,title,lineNum:in,cmdStat:CommandStatust)
+resetCamera(token)
+pollCarmera(token)
+moveToPreset(token, preset, forTour)
+savePreset(token, camPreset, cmdStat)
+deletePreset(token, presetNum, cmdStat)
+moveToTempPreset(token, pempPresetID, cmdStat)
+saveTempPreset(token,presetOwner,cmdStat) : TempPresetCreationResult
+deleteTempPreset(token,tempPresetID, cmdStat)
+removeTempPresetListForOwner(token,ownerId)

+m_cameraStatus:VideoCameraStatus
+m_controlled:boolean
+m_controllingUserInfo:ControllingUserInfo
+m_actionState:CameraActionState
+m_inAutoFocusMode:boolean
+m_inAutoIrisMode:boolean
+m_currentTitle:string
+m_atPresetNum:short
+m_definedPresets : CameraPreset[]
+m_tempPreset: TempCameraPreset[]
+m_lastControlCmdTimeSecs:long
+m_userControlStatus:boolean

tempPresetId: Identifier
presetNum: short
description: string

m_tempPresetID: Identifier
m_tempPresetEntryOwnerInfo: TempPresetOwnerInfo
m_number: short
m_description: string

CHART R10 Detailed Design – Rev 3 9-11 08/14/2012

9.2.3 TempCameraPreset (Class)

This structure defines a temporary preset for a controllable camera.

9.2.4 TempPresetCreationResult (Class)

This structure contains the data that is returned to the caller when a new temporary preset is

created.

9.3 Common (Class Diagram)

This class diagram shows classes used by multiple modules.

Figure 9-3. Common (Class Diagram)

9.3.1 AbsoluteOrRelativeTime (Class)

This union stores a time, in either absolute or relative terms.

1

1

1

UniquelyIdentifiable

«interface»

Service

«interface»

TrafficParameters

«struct»

1

ComponentVersion

«typedef»

ProximityDirectionType

«enumeration»

ProximityInfo

«typedef»

New in R9

GetPortTimeout

«exception»

PortEventType

«enumeration»

PortStatusChangedEventInfo

«typedef»

PortStatusInfo

«typedef»

All these port related
classes are moved
from FMS for R3B3.

PortType

«enumeration»

Prior ity

«enumeration»

EVENT_CHANNEL_PORT_STATUS

«type»

ConnectFailure

«exception»

PortOpenFailure

«exception»

DataPortIOException

«exception»
PortStatus

«enumeration»

Password

«type»

UnsupportedOperation

«exception»

GeoLocatable

«interface»

AbsoluteOrRelativeTime

«union»

CHART2Exception

«exception»

SpecifiedObjectNotFound

«exception»

TimeStamp2

«typedef»

1

1

1

DistanceType

«enumeration»

CommandStatus

«interface»

DuplicateData

«exception»

TimeStamp

«typedef»

Direction

«typedef»

TimeSpecificationType

«enumeration»

AccessDenied

«exception»

ApplicationVersion

«typedef»

NetworkConnectionSite

«type»

1

InvalidState

«exception»

UserName

«type»

SourceTypeValues

«interface»

DirectionValues

«interface»

Source

«typedef»

Note: Timestamp2 is a new
typedef which defines a
"long long" timestamp. It is
to be used in all new code
instead of Timestamp (a
long). (The long long
datatype maps to a Java
long.)

ProximityDistance

«typedef»

getID()
getName()

getLocationDesc():string
getLocationProfileles()
LocationProfile[] ()

timestamp : long

timestamp : long long

ping():void
getName():string;
getVersion():ApplicationVersion
getNetConnectionSite():string;
oneway shutdown(AccessToken token):void

TIME_ABSOLUTE
TIME_RELATIVE

SourceType theSourceType
string otherDescription

string

string reason
string debug

string reason
string requiredRights

discriminator TimeSpecificationType
Timestamp2 absTime if TIME_ABSOLUTE
long relTimeSecs relTimeSecs if TIME_RELATIVE

int m_speedData;
int m_volumeData;
int m_percentOccupancy
SpeedRange m_speedRange;

STATUS_OK
STATUS_MARGINAL
STATUS_FAILED
STATUS_DISABLED-future

string reason

const short OTHER_NO_ADDITIONAL_INFO
const short OTHER_ADDITIONAL_INFO
const short NORTH
const short NORTH_EAST
const short EAST
const short SOUTH_EAST
const short SOUTH
const short SOUTH_WEST
const short WEST
const short NORTH_WEST
const short INNER_LOOP
const short OUTER_LOOP

PortStatusChanged

string reason

short

string reason

string name
string version

string reason

PortStatusInfo[] info

const short SOURCE_OTHER_NO_ADDL_INFO
const short SOURCE_OTHER_WITH_INFO
const short CCTV
const short SYSTEM_ALARM
const short STATE_POLICE
const short LOCAL_POLICE
const short CHART_UNIT
const short CITIZEN
const short MCTMC
const short MEDIA

string reason

string reason

string reason

ISDN_MODEM
POTS_MODEM
DIRECT_RS232
TELEPHONY
TCPIP

string applicationName
ComponentVersionList componentVersions

update(String status):void
completed(boolean commandSuccessful,
 String finalStatus):void
completedSameStatus(boolean commandSuccessful):void

long timeoutMillis

PRIORITY_POLLING
PRIORITY_ON_DEMAND

Identifier id
string name
PortType type
PortStatus status

SAME_DIR
OPPOSITE_DIR
UNKNOWN_DIR

DistanceType distType
float distanceMiles
ProximityInfo proxInfo

ROADWAY_MILES
STRAIGHT_LINE_MILES

boolean sameRoute
ProximityDirectionType dirType
boolean upstream

CHART R10 Detailed Design – Rev 3 9-12 08/14/2012

9.3.2 AccessDenied (Class)

This class represents an access denied, or "no rights" failure.

9.3.3 ApplicationVersion (Class)

This structure contains the name of the application and information about the versions of its

components.

9.3.4 CHART2Exception (Class)

Generic exception class for the CHART2 system. This class can be used for throwing very

generic exceptions which require no special processing by the client. It supports a reason

string which may be shown to any user and a debug string which will contain detailed

information useful in determining the cause of the problem.

9.3.5 CommandStatus (Class)

The CommandStatus CORBA interface is used to allow a calling process to be notified of

the progress of a long-running asynchronous operation. This is normally used when field

communications are involved to complete a method call. The most common use is to allow

a GUI to show the user the progress of an operation. It can also be used and watched by a

server process when it needs to call on another server process to complete an operation.

The long running operation typically calls back to the CommandStatus object periodically

as the command is being executed, to provide in-progress status information, and it always

makes a final call to the CommandStatus when the operation has completed. The final call

to the CommandStatus from the long running operation indicates the success or failure of

the command.

9.3.6 ComponentVersion (Class)

This structure contains the name and version number of the software component.

9.3.7 ConnectFailure (Class)

This exception is a catch-all for exceptions that do not fit in a more specific exception that

can be thrown during a connection attempt.

9.3.8 DataPortIOException (Class)

This exception is used to indicate an Input/Output error has occurred.

9.3.9 Direction (Class)

This type defines a short value that is used to indicate a direction of travel as defined in

DirectionValues.

9.3.10 DirectionValues (Class)

This interface contains constants for directions as defined in the TMDD.

CHART R10 Detailed Design – Rev 3 9-13 08/14/2012

9.3.11 DistanceType (Class)

This enumeration represents different values for types of distance stated in miles (roadway

miles, straight line miles).

9.3.12 DuplicateData (Class)

This exception is thrown when an object is to be added to the system, but the system

already contains an object with equivalent data.

9.3.13 EVENT_CHANNEL_PORT_STATUS (Class)

This is a static string that contains the name of the event channel used to push events

relating to the change in Port status. The following PortEventTypes are pushed on

EVENT_CHANNEL_PORT_STATUS channel: PortStatusChanged

9.3.14 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their

users.

9.3.15 GetPortTimeout (Class)

This class is an exception that is thown by a PortManager when a request to acquire a port

of a given type cannot be fulfilled within the timeout specified.

9.3.16 InvalidState (Class)

This exception is thrown when an operation is attempted on an object that is not in a valid

state to perform the operation.

9.3.17 NetworkConnectionSite (Class)

The NetworkConnectionSite class contains a string that is used to specify where a service is

running. This field is useful for administrators in debugging problems should an object

become "software comm failed".. It is included in the Chart2DMSStatus.

9.3.18 Password (Class)

Typedef used to define the type of a Password.

9.3.19 PortEventType (Class)

This enum defines the types of CORBA events that are pushed on a Field Communications

event channel.

9.3.20 PortOpenFailure (Class)

This exception is thrown if there is an error opening the port while attempting a connection.

This exception would most likely only occur if there is another application accessing the

physical com port, which would be true if debugging activities were being done on a port

while the FieldCommunications service is still running.

CHART R10 Detailed Design – Rev 3 9-14 08/14/2012

9.3.21 PortStatus (Class)

This enumeration specifies the values used to represent a Port's status. OK signifies the

port is working properly. MARGINAL signifies errors have been experienced during

recent use of the port. FAILED indicates the port is not working at all.

9.3.22 PortStatusChangedEventInfo (Class)

This class contains data that is pushed on a Field Communications event channel with a

PortStatusChanged event.

9.3.23 PortStatusInfo (Class)

This class contains the data of status of a particular port.

9.3.24 PortType (Class)

This enumeration defines the types of ports that may be requested from a PortManager.

9.3.25 Priority (Class)

This enumeration specifies the priority levels used when requesting a port from a

PortManager. ON_DEMAND is given higher priority than POLLING.

9.3.26 ProximityDirectionType (Class)

This enumeration defines direction types used when comparing locations for proximity.

Values for specifying same direction, opposite direction, and unknown direction are

supported.

9.3.27 ProximityDistance (Class)

This struct defines members that represent proximity and distance information used when

comparing locations based on position.

9.3.28 ProximityInfo (Class)

This struct defines members that represent proximity information used when comparing

locations based on position.

9.3.29 Service (Class)

This interface is implemented by all services in the system that allow themselves to be

shutdown externally. All implementing classes provide a means to be cleanly shutdown

and can be pinged to detect if they are alive.

9.3.30 Source (Class)

This structure contains information about the source of the data being added to the system.

9.3.31 SourceTypeValues (Class)

This enumeration contains the possible sources of information that can be used for adding

CHART R10 Detailed Design – Rev 3 9-15 08/14/2012

CommLog entries and/or traffic event data.

9.3.32 SpecifiedObjectNotFound (Class)

Exception used to indicate that an operation was attempted that involves a secondary object

that cannot be found by the invoked object.

9.3.33 TimeSpecificationType (Class)

This enumeration lists the types of times which can be stored in the

AbsoluteOrRelativeTime union.

9.3.34 TimeStamp (Class)

This typedef defines the type of TimeStamp fields.

9.3.35 TimeStamp2 (Class)

This data type offers extended date range beyond the year 2038 limititation implicit in the

TimeStamp data type.

9.3.36 TrafficParameters (Class)

This struct contains traffic parameters that are sensed and reported by a Traffic Sensor

System such as the RTMS.

m_speedData - The arithmetic mean of the speeds collected over a sample period in miles

per hour in tenths. (thus 550 == 55.0 MPH) Valid values are 0 to 2550. A value of 65535

is used to indicate a missing or invalid value (such as when the volume for the sample

period is zero).

m_volumeData - The count of vehicles for the sample period. Valid values 0 to 65535. A

value of 65535 represents a missing value.

m_percentOccupancy - The percentage of occupancy of the roadway in tenths of a percent.

(thus 1000 = 100.0 percent). Valid values are 0 to 1000. A value of 65535 represents a

missing or invalid value.

9.3.37 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

9.3.38 UnsupportedOperation (Class)

This exception is used to indicate that an operation is not supported by the object on which

it is called.

9.3.39 UserName (Class)

This typedef defines the type of UserName fields used in system interfaces.

CHART R10 Detailed Design – Rev 3 9-16 08/14/2012

9.4 Common2 (Class Diagram)

This class diagram shows classes used by many other modules within the CHART System.

This diagram supplements the “Common” Class Diagram, showing additional classes

which cannot fit on the original “Common” Class Diagram.

Figure 9-4. Common2 (Class Diagram)

9.4.1 <<enumeration>> PointLocationProfile (Class)

9.4.2 <<struct>> RoadwayLocation (Class)

This structure has the information to define the roadway location of CHART objects like

devices and traffic events.

9.4.3 CountyInfo (Class)

This structure contains information about a county.

9.4.4 ExternalObjectIdentificationData (Class)

This structure is used to hold data which identifies the external source of an external object

MilePostType

«enumeration»

SimpleStatus

«enumeration»

RoadwayLocationAliasInfo

«struct»

StateInfo

«struct» <<struct>>
RoadwayLocation

<<enumeration>>
PointLocationProfile

«enumeration»

RouteType

«enumeration»

RouteTypeInfo

«struct»

*

LRMSVerticalDatumType

«enumeration»

RouteSpecificationType

«enumeration»

PointLocationProfile

«struct»

IntersectingFeatureType

«enumeration»

ObjectLocation

«typedef»

RoadwayLocationAliasNameInfo

«struct»

RegionInfo

«struct»

Revised for R6

StateInfo is required for a Traffic Event, but it is optional for all devices.
CountyInfo, RegionInfo, RoadwayLocation, RoadwayLocationAliasNameInfo,
and GeoLocationInfo are all optional.

LRMSGeomLocationProfile

«struct»LocationProfile

«union»

MilePostIntersectingFeatureData

«struct»

The RoadwayLocation class was revised to allow
multiple (2) intersecting features. As a result, the
IntersectingFeatureLocationInfo class was removed for R6.

0

Revised for R6

Based on RouteSpecificationType
it is one of the two values.

LRMSHorizontalDatumType

«enumeration»

RouteSpecification

«union»

FreeformRouteInfo

«struct»

IntersectingFeatureProximityType

«enumeration»
IntersectingFeatureInfo

«union»

ExternalObjectIdentificationData

«struct»

CountyInfo

«struct»

RouteNumber

«struct»

ObjectGeoLocationSourceType

«enumeration»

LocationProfileType

«enumeration»

RouteInfo

«struct»

HHMMRange

«typedef»

ObjectGeoLocationInfo

«typedef»

typeOfRoute:routeType
nameOfRouteType:string

lrmsGeomProfile:LRMSGeomLocationProfile
pointProfile:PointLocationProfile

I
STATE
US
COUNTY
MUNICIPAL
OTHER_PUBLIC
OTHER_STATE
UNKNOWN
OTHER

ROAD
MILEPOST

prefix:string
number:string
suffix:string

countyCode:string
countyName:string
fipsCode:string

STATE_MILEPOST
COUNTY_MILEPOST

rteType:RouteType
rteDesc:string

LRMS_GEOMETRY
POINT

regionName:string

InternalName:string
publicName:string

milePostUnitsType:MilePostType
milePostMilliMiles:long

FORMAL
FREEFORM

stateCode:string
stateName:string
fipsCode:string

HD_WGS_84
HD_84EGM_96
HD_NAD83
HD_UNUSED
HD_NAD27

locationDesc:string
locationDescOverridden:string
state:StateInfo
county:CountyInfo
region:RegionInfo
optionalRoadwayLocation:RoadwayLocation[]
roadwayLocationAliasNameInfo:RoadwayLocationAliasNameInfo[]
optGeoLocationInfo:GeoLocationInfo[]

aliasname:RoadwayLocationAliasNameInfo
stateData:Stateinfo
countyData:countyInfo
regionData:RegionInfo
optionalRouteInfo:RoadwayLocation []

routeSpecification:RouteSpecification
nominalrouteDirection:Direction
proximityType:IntersectingFeatureProximityType
intersectingFeatures:IntersectingFeatureInfo[]

rteInfo:routeInfo
freeformRteInfo:FreeformRouteInfo

milePostData:MilePostIntersectingFeatureData
rteSpecification:RouteSpecification
theExit : ExitInfo

VD_WGS_84
VD_NAVD

m_horizDatum:LRMSHorizontalDatumType
m_latitudeUDeg:long
m_longitudeUDeg
m_vertDatum:LRMSVerticalDatumType
m_height:long
m_vertLevel:long

extSystemIdentificationString:string
extAgencyIdentificationString:string
extObjectIdentificationString:string

geoLocation:PointLocationProfile
sourceType:ObjectGeoLocationSourceType
sourceDesc:string

AT
PAST
PRIOR
NORTH_OF
EAST_OF
SOUTH_OF
WEST_OF
BETWEEN
FROM_TO
NONE

OK
FAILED
WARNING

OPERATOR
ROUTE_INTERSECTION_DATA
EXTERNAL_SYSTEM

rtetype:routeType
roadName:string
rteNumber:routeNumber
showRouteName : boolean

m_latitudeUDeg : int
m_longitudeUDeg : int

m_startHour:byte
m_startMin:byte
m_endHour:byte
m_endMin:byte

CHART R10 Detailed Design – Rev 3 9-17 08/14/2012

which has been imported into CHART.

9.4.5 FreeformRouteInfo (Class)

Information specifying a route when only the route type and route description are known,

such as may be the case when a route is entered by the user.

9.4.6 HHMMRange (Class)

This structure defines a time duration.

9.4.7 IntersectingFeatureInfo (Class)

This union provides auxiliary data for identifying an intersecting feature along a given

roadway.

9.4.8 IntersectingFeatureProximityType (Class)

This enumeration represents a direction relative to an intersecting feature on a roadway for

defining a location on the roadway. If no intersecting feature has been defined, the direction

is NONE.

9.4.9 IntersectingFeatureType (Class)

The type of intersecting feature which is used to define a point along a given roadway.

9.4.10 LocationProfile (Class)

Data included in an LRMS geometry location profile.

9.4.11 LocationProfileType (Class)

Defines all supported location profiles for GeoLocatable objects in the system.

9.4.12 LRMSGeomLocationProfile (Class)

Data included in an LRMS geometry location profile.

9.4.13 LRMSHorizontalDatumType (Class)

This enum lists the values that can be used for horizontal datum for the LRMS (Location

Referencing Message Specification) Geometry profile using TMDD proscribed values for

loc_ext_horizontal_datum. (Reference TMDD Vol II Annex June 2004).

9.4.14 LRMSVerticalDatumType (Class)

This enum lists the values that can be used for vertical datum for the LRMS (Location

Referencing Message Specification) Geometry profile using TMDD proscribed values for

loc_ext_vertical_datum. (Reference TMDD Vol II Annex June 2004).

9.4.15 MilePostIntersectingFeatureData (Class)

This structure defines a milepost location along a given roadway, with a milepost

CHART R10 Detailed Design – Rev 3 9-18 08/14/2012

measurement in terms of the specified milepost type.

9.4.16 MilePostType (Class)

This enumeration lists the type of milepost units.

9.4.17 ObjectGeoLocationInfo (Class)

This structure defines the geographical location of a CHART object.

9.4.18 ObjectGeoLocationSourceType (Class)

This structure defines the source of geolocaiton information of an object(a CHART

entity).

9.4.19 ObjectLocation (Class)

This structure defines the location of CHART objects like devices and traffic events.

StateInfo, CountyInfo, RegionInfo, RoadwayLocation, RoadwayLocationAliasNameInfo

and GeoLocationInfo fields are optional.

9.4.20 PointLocationProfile (Class)

This struct represents a geographical point defined as a latitude / longitude pair. The

latitude and longitude are defined in microdegrees.

9.4.21 RegionInfo (Class)

This structure contains information about a region.

9.4.22 RoadwayLocationAliasInfo (Class)

This structure contains the aliases for locations. For example, an alias can describe the

Fort McHenry Tunnel where the alias would be FMT.

9.4.23 RoadwayLocationAliasNameInfo (Class)

This structure contains information on the two names of an alias for a roadway location.

9.4.24 RouteInfo (Class)

Information for specifying a route when the components of the route number information

(and optionally the route name) are known. The showRouteName flag indicates whether to

show the route name (instead of the route number) when displaying the description of the

route.

9.4.25 RouteNumber (Class)

A route number, which may consist of an alphanumeric prefix, a number, and an

alphanumeric suffix.

CHART R10 Detailed Design – Rev 3 9-19 08/14/2012

9.4.26 RouteSpecification (Class)

This union specifies a route using either a formal definition or a freeform text definition.

9.4.27 RouteSpecificationType (Class)

 This enum indicates whether a route is specified using the formal definition (as is the case

when the route number components are known), or whether the route was entered as

freeform text.

9.4.28 RouteType (Class)

This enumeration is used to specify the classification of a road (interstate, MD, etc.)

9.4.29 RouteTypeInfo (Class)

This structure contains information about the classification type of a road.

9.4.30 SimpleStatus (Class)

This enum defines simple status values.

9.4.31 StateInfo (Class)

This structure contains information about a State.

9.5 DMSControl (Class Diagram)

This Class Diagram shows the CORBA system interface classes and methods used to

manipulate DMS services within the CHART system.

DM SEvent Type is
DM SDisplayConf igAdded
or
DM SDisplayConf igChanged

DM SEvent Type is
DM SM odelChanged

DM SEvent Type is
DM STr avI nf oM sgCf gChanged

DM SEvent Type is
DM SAdded or

DM SConf igChanged

DM SEvent Type is
Cur r ent DM SSt at us

Added f or R10:

m _dm sDisplayConf igI D

For R10, added NTCI PDM SFont Q uer yPar am s.

Also added quer yNTCI PDM SFont () t o Char t 2DM SFact or y.

(For now, t his oper at ion is being m odelled as a
synchr onous call f or sim plicit y. I t m ay need t o be
m ade asynchr onous lat er .)

NTCI PDM SFont Q ueryParams

*

1

M odif ied f or R10
Added event s f or DM SDisplayConf ig

DM SDi spl ayConf i gI nf o
«t ypedef »

DM SEvent Type is
DM SDisplayConf igAdded
or
DM SDisplayConf igChanged

1

NTCI PDevi ceComponent I nf ormat i on
«st r uct »

NTCI PDM S
«int er f ace»

Ext ernal DM SFact ory
«int er f ace»

DM SI nf o
«st r uct »

DM SType
«st r uct »

1

1

DM SEvent Type is
DM SM odelChanged

1 1

1
1

DM STravI nf oM sgConf i gEvent I nf o
«st r uct »

DM SEvent Type is
DM STr avI nf oM sgCf gChanged

1

1

I PPor t Locat i onDat a
«st r uct »

1

1

HHM M Range
«t ypedef »

0. . *

1

Ext ernal DM S
«int er f ace»

1
1

1

DM STravI nf oM sgSt at e
«enumer at ion»

DM STravI nf oM sgSt at us
«st r uct »

1

Travel Rout eConsumer
«int er f ace»

DM STravI nf oM sgConf i g

1

0. . *

Uni quel yI dent i f i abl e
«int er f ace»

ArbQ ueueEnt ry
«valuet ype»

DM SArbQ ueueEnt ry
«valuet ype»

Communi cat i onM ode
«enumer at ion»

Short ErrorSt at us
«t ype»

M ULTI St r i ng
«t ype»

DM SConf i gurat i on
«valuet ype»

Char t 2DM SConf i gurat i on
«valuet ype»

DM SSt at us
«valuet ype»

Char t 2DM SSt at us
«valuet ype»

DM S
«int er f ace»

Char t 2DM S
«int er f ace»

Char t 2DM SFact ory
«int er f ace»

SharedResourceM anager
«int er f ace»

HARM essageNot i f i er
«int er f ace»

SharedResource
«int er f ace»

DM SFact ory
«int er f ace»

DM SLi st
«t ype»

DM SM essage
«valuet ype»

DM SSt at usEvent I nf o
«st r uct »

DM SConf i gurat i onEvent I nf o
«st r uct »

1

ResponsePl anI t emDat a

DM SRPI Dat a

HARNot i f i erArbQ ueueEnt ry
«valuet ype»

M essage
«int er f ace»

Uni quel yI dent i f i abl e
«int er f ace»

G eoLocat abl e
«int er f ace»

FP9500DM S
«int er f ace»

FP9500DM SSt at us
«valuet ype»

M essageQ ueue

Net w orkConnect i onSi t e
«t ype»

M ULTI ParseFai l ure
«except ion»

DM SEvent
«t ypedef »

DM SEvent Type
«enumer at ion»

Arbi t rat i onQ ueue
«int er f ace»

CommEnabl ed
«int er f ace»

DM SM odel I D
«enumer at ion»

1 1

11

1 DM SEvent Type is
DM SAdded or

DM SConf igChanged

1

1

1

1

1

1

1

1

1

1

1

*

1

1

1

1

DM SEvent Type is
Cur r ent DM SSt at us

*

*

1

1

*

1

1

1

1

1

1

ResponsePl anI t emTarget
«int er f ace»

NTCI PDM SSt at us
«valuet ype»

O perat i onal St at us
«enumer at ion»

Pl anI t emDat a

DM SPl anI t emDat a

1

1

1 1

1

Ent ryO w ner
«int er f ace»

Rem oved f or R10:

m _f ont M et r ics: Font M et r ics
m _def ault Just if icat ionLine: long
m _def ault PageO nTim e: long
m _def ault PageO f f Tim e: long
m _def ault LineSpacing: shor t
m _def ault Just if icat ionPage: shor t
m _int er Char act er Spacing: shor t

Also, m oved t hese f ields down t o
Ext er nalDM SConf igur at ion:

m _dm sSignType: SignType
m _signM et r ics : SignM et r ics
m _pages : long
m _dm sBeaconType: BeaconType

1

NTCI PDM SConf i gurat i on

1

1

1

*

1

*

1

1

DM STravI nf oM sg
«st r uct »

Rem oved f or R10:

m _def ault Just if icat ionPage : shor t
m _int er Char act er Spacing : shor t
m _lineSpacing : shor t
m _f ont Num ber : shor t

(The f ont num ber value is now specif ied in t he
I DL, t o ensur e consist ency acr oss m ult iple DM Ss
if or when m ult iple f ont s ar e used in a m essage.
See DM SFont Num ber Values. DEFAULT_FO NT)

t heDM S: DM S
dm sI D: I dent if ier
dm sFact or yI D : I dent if ier
dm sType: DM SType
conf ig: DM SConf igur at ion
st at us: DM SSt at us

CHART_DM S
EXTERNAL_DM S

DM SEvent Type <discr im inat or >
I dent if ier dm sI D - f or DM SDelet ed
or
DM SConf igur at ionEvent I nf o dm sConf igI nf o
or
DM SSt at usEvent I nf o st at usI nf o
or
DM SDisplayConf igI nf o dm sDisplayConf igI nf o
or
I dent if ier dm sDisplayConf igI D

t heDM S: DM S
dm sI D: I dent if ier
conf ig: DM SConf igur at ion dm sI D: I dent if ier

st at us: DM SSt at us

DM SAdded
DM SDelet ed
Cur r ent DM SSt at us
DM SConf igChanged
DM STr avI nf oM sgCf gChanged
DM SDisplayConf igAdded
DM SDisplayConf igChanged
DM SDisplayConf igRem oved

dm sI D: I dent if ier
conf ig: DM STr avI nf oM sgConf ig

m _ipAddr ess: st r ing
m _t cpPor t Num ber : int

id : I dent if ier
conf igDat a : DM SDisplayConf igDat a

DM S_ADDCO
DM S_FP1001
DM S_FP2001
DM S_FP9500
DM S_PCM S
DM S_SYLVI A
DM S_TS3001
DM S_NTCI P

f act or y cr eat eDM SConf igur at ion() :
 DM SConf igur at ion

m _nam e: st r ing
m _deviceLocat ion: O bject Locat ion
m _dm sTim eCom m Loss: long

get Net wor kConnect ionSit e() : Net wor kConnect ionSit e
f act or y cr eat eChar t 2DM SConf igur at ion() :
 Char t 2DM SConf igur at ion

m _dm sDisplayConf igI D: I dent if ier
m _dm sM odelI D: DM SM odelI D
m _owningO r gI D: I dent if ier
m _m aint ainingO r gI D : I dent if ier
m _net wor kConnect ionSit e: Net wor kConnect ionSit e
m _pollingEnabled: boolean
m _pollI nt er valM inut es: long
m _por t Locat ionDat a: Por t Locat ionDat a[]
m _ipPor t Locat ionDat a: I PPor t Locat ionDat a[]
m _com m Por t Conf ig: Com m Por t Conf ig
m _devicePhoneNum ber : st r ing
m _deviceDr opAddr ess: long
m _deviceResponseTim eout : long
m _shazam M essage: DM SM essage
m _associat edHARI D: I dent if ier
m _enableDeviceLog: boolean
m _dm sTr avI nf oM sgConf ig : DM STr avI nf oM sgConf ig
m _am gToNot if y : O pCent er I nf o
m _com m FailAler t O pcent er : O pCent er I nf o
m _com m Failur eNot if yG r oupI nf o : Not if icat ionG r oupEvent Dat a
m _hwFailur eNot if yG r oupI nf o: Not if icat ionG r oupEvent Dat a

t akeO f f line(AccessToken, Com m andSt at us) : void
put O nline(AccessToken, Com m andSt at us) : void
put I nM aint enanceM ode(AccessToken, Com m andSt at us) : void
get Com m M ode() : Com m unicat ionM ode

r out eTr avTim eSt at sUpdat ed(r out eI d: I dent if ier ,
 t im eDat a: Rout eTr avTim eSt at s) : void
r out eTollRout eSt at sUpdat ed(r out eI d: I dent if ier ,
 t ollDat a: Rout eTollRat eSt at s) : void
r out eUpdat esCom plet ed() : void
r out eDisplayConf igUpdat ed(r out eI d: I dent if ier ,
 conf ig: Tr avelRout eDisplayConf ig) : void
r out eDelet ed(r out eI d: I dent if ier) : void

blankSign(AccessToken t oken, Com m andSt at us st at us) : void
get Conf igur at ion(AccessToken t oken) : DM SConf igur at ion
get St at us() : DM SSt at us
isBlank() : boolean
pollNow(AccessToken t oken, Com m andSt at us st at us) : void
r em ove(AccessToken t oken) : void
r eset Cont r oller (AccessToken t oken, Com m andSt at us st at us) : void
set Conf igur at ion(AccessToken t oken, DM SConf igur at ion conf ig,
 Com m andSt at us st at us) : void
set M essage(AccessToken t oken, DM SM essage m essage,
 Com m andSt at us st at us) : void
set Locat ion(t oken: Accesst oken, locat ion: O bject Locat ion) : void

addEnt r y(t oken: AccessToken, level: Ar bQ ueuePr ior it yLevel,
 ent r y: Ar bQ ueueEnt r y) : void
r em oveEnt r iesFor O wner (t oken: AccessToken, owner I D: I dent if ier) : void
r em oveEnt r ies(t oken: AccessToken, keys: Ar bQ ueueEnt r yKeyList) : void
changePr ior it y(t oken: AccessToken, owner Nam e: st r ing,
 key: Ar bQ ueueEnt r yKey, pr ior it y: double) : void
get Ent r ies() : Ar bQ ueueEnt r yList
get Ent r y(key: Ar bQ ueueEnt r yKey) : Ar bQ ueueEnt r y
get Ent r yDescr ipt ions() : Ar bQ ueueEnt r yDescList
f or ceEvaluat ion(t oken: AccessToken) : void

m _com m unit ySt r ing : St r ing
m _hdlcFr am eRequir ed : boolean

validat e(Ar bQ ueueEnt r yKey ent r yKey) : boolean

get DM SI D() : I dent if ier
set DM S(DM S, I dent if ier) : void
get M essageI D() : I dent if ier
set M essage (St or edM essage, I dent if ier) : void
f act or y cr eat eDM SPlanI t em Dat a() : DM SPlanI t em Dat a

DM S m _dm s
I dent if ier m _dm sI D
St or edM essage m _st or edM sg
I dent if ier m _st or edM sgI D

m _t r avelTim eQ ueueLevel: Ar bQ ueuePr ior it yLevel
m _t ollRat eQ ueueLevel: Ar bQ ueuePr ior it yLevel
m _r elat edRout es: I dent if ier []
m _t r avI nf oM sgList : Tr aveler I nf oM sg[]
m _over r ideDef ault Schedule: boolean
m _enabledSpecif icTim es: boolean
m _cust om Schedule: HHM M Range[]

r em oveCHART2DM S(t oken: AccessToken) : void
changeM odelType(t oken: AccessToken, newM odelI D: DM SM odelI D, cm dSt at : Com m andSt at us) : void
set Tr avI nf oM sgConf ig(t oken: AccessToken, m sgConf ig: DM STr avI nf oM sgConf ig) : void
set Tr avI nf oM sgEnabledFlag(t r avI nf oM sgI d: I dent if ier , enableFlag: boolean) : void
set Q ueueLevels(AccessToken, t r avelTim eQ ueueLevel: Ar bQ ueuePr ior it yLevel,
 t ollRat eQ ueueLevel: Ar bQ ueuePr ior t yLevel) : void
set Tr avelTim eShcedule(AccessToken, useCust om Schedule: boolean, useSpecif icTim e: boolean,
 r anges: HHM M RangeList) : void
set Relat edRout es(AccessToken, I dent if ier) : void
addDM STr avI nf oM sg(AccessToken, DM STr avI nf oM sg) : void
m odif yDM STr avI nf oM sg(AccessToken, DM STr avI nf oM sg) : void
r em oveDM STr avI nf oM sg(AccessToken, I dent if ier) : void

act ivat eHARNot ice(AccessToken, Ar bQ ueueEnt r yI ndicat or ,
 Tr af f icEvent List , Com m andSt at us) : void
deact ivat eHARNot ice(AccessToken, boolean onlineFlag,
 Com m andSt at us) : void
m odif yHARNot ice(AccessToken, Tr af f icEvent List) : void
isHARNot iceAct ive() : boolean
set Associat edHAR(AccessToken, HAR, I dent if ier har I D) : void
get Associat edHAR() : HAR
get Dir ect ion() : Dir ect ionValues
set Dir ect ion(Dir ect ion) : void

m _st ar t Hour : byt e
m _st ar t M in: byt e
m _endHour : byt e
m _endM in: byt e

O K
CO M M _FAI LURE
HARDWARE_FAI LURE

sequence DM S

get ResponsePlanI t em () : ResponsePlanI t em
f act or y cr eat eDM SAr bQ ueueEnt r y(Tr af f icEvent t r af f icEvt ,
 ResponsePlanI t em r pi,
 DM SM essage m essage) : DM SAr bQ ueueEnt r y

ResponsePlanI t em m _r esponsePlanI t em

t r avI nf oM sgI d: I dent if ier
t em plat eI d: I dent if ier
r out eI dList : I dent if ier []
aut oRowPosit ioning: boolean

O NLI NE
O FFLI NE
M AI NT_M O DE

get DeviceI Ds() : I dent if ier []
get O wner () : Ent r yO wner
get O wner I D() : I dent if ier
get Key() : Ar bQ ueueEnt r yKey
get O pCent er I D() : I dent if ier
get O pCent er Nam e() : st r ing
get Host Nam e() : st r ing
get UseAllDevices() : boolean
get User Nam e() : st r ing
get M essage() : M essage
get Pr ior it y() : double
set DeviceI Ds(I dent if ier []) : void
set Host Nam e(st r ing host Nam e) : void
set I ndicat or (Ar bQ ueueEnt r yI ndicat or dat a) : void
set O pCent er I D(I dent if ier opCent er I D) : void
set O pCent er Nam e(st r ing opCent er Nam e) : void
set Pr ior it y(double newpr ior it y) : void
set UseAllDevices(boolean) : void
set User Nam e(st r ing user Nam e) : void
validat e() : Ent r yValidSt at us

m _ent r yO wner : Ent r yO wner
m _indicat or : Ar bQ ueueEnt r yI ndicat or
m _useAllDevices: boolean
m _deviceI Ds: I dent if ier []
m _m essage: M essage
m _pr ior it y: double
m _host Nam e: st r ing
m _opCent er I D: I dent if ier
m _opCent er Nam e: st r ing
m _user Nam e: st r ing

cr eat eDM S(AccessToken t oken, DM SConf igur at ion conf ig) : DM SI nf o
get DM SList () : DM S[]
get DM SI nf oList () : DM SI nf o[]

f act or y cr eat eDM SSt at us() : DM SSt at us

m _per f or m ingPixelTest : boolean
m _cur r ent M essage: DM SM essage
m _com m M ode: Com m unicat ionsM ode
m _opSt at us: O per at ionalSt at us
m _shor t Er r or St at us: Shor t Er r or St at us
m _st at usChangeTim e: long

enabledTr avI nf oM sgI d: I dent if ier
m sgSt at e: DM STr avI nf oM sgSt at e
m sgReason: st r ing

get BeaconSt at e() : boolean
get M essageText () : st r ing
isM essageText M ult i() : boolean
f act or y cr eat eDM SM essage(M ULTI St r ing m ult iSt r ingM essage,
 boolean beaconSt at e,
 boolean isM essageText M ult i) : DM SM essage

m _dm sM essageSt r ing: st r ing
m _dm sM essageBeacon: boolean
m _isM essageText M ult i: boolean

f act or y cr eat eChar t 2DM SSt at us() : Char t 2DM SSt at us

m _cont r ollingO pCent er : O pCent er I nf o
m _t r avI nf oM sgSt at : DM STr avI nf oM sgSt at us

DI SPLAYED_NO RM ALLY
TO LL_RATE_EXPI RED
M I SSI NG _DATA
BAD_Q UALI TY
BAD_FO RM AT
TEM PLATE_SI ZE_M I SM ATCH
PRE_EM PTED
NO _M SG _ENABLED
NO T_SCHEDULED
DM S_NO T_O NLI NE

get Com m andSt at us() : Com m andSt at us
f act or y cr eat eHARNot if ier Ar bQ ueueEnt r y(Ar bQ ueueEnt r yI ndicat or ,
 Tr af f icEvent [] ,
 DM SM essage,
 Com m andSt at us) : HARNot if ier Ar bQ ueueEnt r y

Tr af f icEvent [] m _t r af f icEvent List

f act or y cr eat eFP9500St at us() : FP9500DM SSt at us

oct et m _cur r ent M sgNum
oct et m _cur r ent M sgSour ce

per f or m PixelTest (AccessToken t oken,
 Com m andSt at us st at us) : void
get Ext endedSt at us(AccessToken t oken,
 Com m andSt at us st at us) : FP9500DM SSt at us

get DM S() : Char t 2DM S
get M essage() : DM SM essage
set DM S(Char t 2DM S) : void
set M essage(DM SM essage) : void
f act or y cr eat e DM SRPI Dat a() :
 DM SRPI Dat a

Char t 2DM S m _dm s
DM SM essage m _m essage

quer yNTCI PDM SFont (AccessToken, NTCI PDM SFont Q uer yPar am s) : DM SFont I nf o

ipAddr ess : st r ing
t cpPor t : long
f ont Slot Num ber : long
nt cipCom m unit y : st r ing
hdlcFr am ingRequir ed : boolean

get Ext endedSt at us(AccessToken, Com m andSt at us) : NTCI PDM SSt at us
per f or m PixelTest (AccessToken, Com m andSt at us) : void
set Cent r alCont r olM ode(AccessToken, int , Com m andSt at us) : void

st r ing r eason

f act or y cr eat eNTCI PDM SSt at us() : NTCI PDM SSt at us

m _cont r olM ode : long
m _dm sM sgSour ceM ode : long
m _power Sour ce : long
m _m oduleCom ponent I nf or m at ion : NTCI PDeviceCom ponent I nf or m at ionList
m _displayWidt hPixels : long
m _displayHeight Pixels : long

m oduleNode : st r ing
m oduleM ake : st r ing
m oduleM odel : st r ing
m oduleVer sion : st r ing
m oduleCom ponent Type : st r ing

CHART R10 Detailed Design – Rev 3 9-20 08/14/2012

Figure 9-5. DMSControl (Class Diagram)

9.5.1 ArbitrationQueue (Class)

An ArbitrationQueue is a queue that arbitrates the usage of a device. The evaluation of the

queue determines which message(s) should be on the device, based upon the priority of the

queue entries. When entries are added to the queue, they are assigned a priority level based

on the type of traffic event with which they are associated, and also upon the current

contents of the queue. The priority of the queue entries can be modified after they are

added to the queue. The queue is evaluated when the device is online and queue entries are

added or removed, when an entry's priority is modified, or when the device is put online.

9.5.2 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue, for a single message, and for a

single traffic event. (It is possible, in the case of HARNotifierArbQueueEntry objects, that

certain ArbQueueEntries can be on behalf of multiple TrafficEvents. In such cases, one

TrafficEvent among all those involved is picked to be the responsible TrafficEvent stored in

m_indicator, the ArbQueueEntryIndicator for the entry.)

9.5.3 Chart2DMS (Class)

The Chart2DMS class extends the DMS interface and defines a more detailed interface to

be used in manipulating the CHART-specific DMS objects within CHART. It provides an

interface for traffic events to provide input as to what each traffic event desires to be on the

sign via the ArbitrationQueue interface. Through the HARMessageNotifier interface, a

HAR can use a DMS to notify travelers to tune in to a radio station to hear a traffic

message. CHART business rules include concepts such as shared resources, arbitration

queues, and linking device usage to traffic events. These concepts go beyond industry-

standard DMS control. This includes an ability to enable and disable CHART traveler

information messages, which were added in R3B3.

9.5.4 Chart2DMSConfiguration (Class)

The Chart2DMSConfiguration class is an abstract class which extends the

DMSConfiguration class to provide configuration information specific to Chart II

processing. Such information includes how to contact the sign under Chart II software

control, the default SHAZAM message for using the sign as a HAR Notifier, and the

owning organization. Such data extends beyond what would be industry-standard

configuration information for a DMS. Parameters to support TCP/IP communications,

notifications and more alerts, and traveler information messages were added for R3B3.

9.5.5 Chart2DMSFactory (Class)

The Chart2DMSFactory interface extends the DMSFactory interface to provide additional

Chart II specific capability. This factory creates Chart2DMS objects (extensions of DMS

objects). It implements the SharedResourceManager capability to control DMS objects as

CHART R10 Detailed Design – Rev 3 9-21 08/14/2012

shared resources.

9.5.6 Chart2DMSStatus (Class)

The Chart2DMSStatus class is an abstract class which extends the DMSStatus class to

provide status information specific to CHART processing, such as information on the

controlling operations center for the sign. This data extends beyond what would be

industry-standard status information for a DMS. Status information for traveler information

messages was added in R3B3.

9.5.7 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put

online, or put in maintenance mode through a standard interface. These states typically

apply only to field devices. When a device is taken offline, it is no longer available for use

through the system and automated polling (if any) is halted. When put online, a device is

again available for use by TrafficEvents within the system and automated polling is enabled

(if applicable). When put in maintenance mode a device is offline (i.e., cannot be used by

TrafficEvents), and maintenance commands appropriate for the particular type of device are

allowed to help in troubleshooting.

9.5.8 CommunicationMode (Class)

The CommunicationMode class enumerates the modes of operation for a device: ONLINE,

OFFLINE, and MAINT_MODE. ONLINE is used to indicate the device is available to the

operational system. OFFLINE is used to indicate the device is not available to the online

system and communications to the device have been disabled. MAINT_MODE is used to

indicate that the device is available only for maintenance / repair activities and testing.

9.5.9 DMS (Class)

The DMS class defines an interface to be used in manipulating Dynamic Message Sign

(DMS) objects within Chart II. It specifies methods for setting messages and clearing

messages from a sign (in maintenance mode), polling a sign, changing the configuration of

a sign, and resetting a sign. (Setting messages on a sign in online mode are not

accomplished by manipulating a DMS directly; that is accomplished by manipulating traffic

events, which use an ArbitrationQueue interface or by manipulating HARs, which use a

HARMessageNotifier interface. This activity involves the DMS extension, Chart2DMS,

which defines interactions with signs under Chart II business rules.)

9.5.10 DMSArbQueueEntry (Class)

The DMSArbQueueEntry class provides an implementation of ArbQueueEntry that is used

for most standard entries placed on the arbitration queue. When its setActive, setInactive,

and setFailed methods are called, it adds a log entry to its traffic event and calls the

appropriate method on its response plan item (setActive, setInactive, or update).

9.5.11 DMSConfiguration (Class)

The DMSConfiguration class is an abstract valuetype class which describes the

CHART R10 Detailed Design – Rev 3 9-22 08/14/2012

configuration of a DMS device. This configuration information is normally fairly static:

things like its name and location, and how to contact the sign (as opposed to dynamic

information like the current message on the sign, which is defined in an analogous Status

object). All parameters associated with the display of the message are obtained via the ID of

a Display Configuration object. It contains fields such as the size of the sign in characters

and pixels, the font, line spacing, default page justification, and inter-character spacing.

9.5.12 DMSConfigurationEventInfo (Class)

The DMSConfigurationEventInfo class is the type of DMSEvent used for DMSEventType

DMSConfigChanged. It contains a DMSConfiguration object which details the new

configuration for a Chart II DMS object.

9.5.13 DMSDisplayConfigInfo (Class)

This struct contains information about a DMS display configuration that may be used by

one or more DMSs, and an identifier for identifying the configuration.

9.5.14 DMSEvent (Class)

The DMSEvent class is a union which can be any one of four events relating to DMS

operations which can be pushed on an Event Channel to update event consumers on DMS-

related activities. The four types of events, defined by the enumeration DMSEventType,

are: DMSAdded, DMSDeleted, CurrentDMSStatus, and DMSConfigChanged.

9.5.15 DMSEventType (Class)

The DMSEventType is an enumeration which defines the five types of events relating to

DMS operations which can be pushed on an Event Channel to update event consumers on

DMS-related activities. The five types of events are: DMSAdded, DMSDeleted,

CurrentDMSStatus, DMSConfigChanged, and DMSTravInfoMsgCfgChanged.

9.5.16 DMSFactory (Class)

The DMSFactory class specifies the interface to be used to create DMS objects within the

Chart II system. It also provides a method to get a list of DMS devices currently in the

system.

9.5.17 DMSInfo (Class)

This is a structure which contains all information about a DMS: its ID, its configuration and

status, the DMS type (internal or external), and a CORBA refrence to the DMS.

9.5.18 DMSList (Class)

The DMSList class is simply a list of DMS devices which can be used by the DMS Factory

and other classes for maintaining the list or other lists of DMS objects.

9.5.19 DMSMessage (Class)

The DMSMessage class is an abstract class which describes a message for a DMS. It

CHART R10 Detailed Design – Rev 3 9-23 08/14/2012

consists of two elements: a MULTI-formatted message and beacon state information

(whether the message requires that the beacons be on). The DMSMessage is contained

within a DMSStatus object, used to communicate the current message on a sign, and is

stored within a DMSRPIData object, used to specify the message which should be on a sign

when the response plan item is executed.

9.5.20 DMSModelID (Class)

The DMSModelID class enumerates the models of DMSs that are in the system.

9.5.21 DMSPlanItemData (Class)

The DMSPlanItemData class is a valuetype that contains data stored in a plan item for a

DMS. It is derived from PlanItemData.

9.5.22 DMSRPIData (Class)

The DMSRPIData class is an abstract class which describes a response plan item for a

DMS. It contains the unique identifier of the DMS to contain the DMSMessage, and the

DMSMessage itself.

9.5.23 DMSStatus (Class)

The DMSStatus class is an abstract value-type class which provides status information for a

DMS. This status information is relatively dynamic: things like the current message on the

sign, its beacon state, its current operational mode (online, offline, maintenance mode), and

current operational status (OK, COMM_FAILURE, or HARDWARE_FAILURE). (More

static information about the sign, such as its size and location, is defined in an analogous

Configuration object.)

9.5.24 DMSStatusEventInfo (Class)

The DMSStatusEventInfo class is the type of DMSEvent used for DMSEventType

CurrentDMSStatus. It contains a DMSStatus object which details the new status for a

Chart II DMS object.

9.5.25 DMSTravInfoMsg (Class)

This class holds information necessary to put traveler information messages (containing

travel times and/or toll rates) on DMSs. Each TravelerInfoMsg contains the ID for the

template, and the IDs of the routes to use, as configured for its specific DMS. Each

TravelerInfoMsg can be enabled or disabled. The DMSControlModule will ensure that a

maxiumum of one TravelerInfoMsg is enabled at a time.

9.5.26 DMSTravInfoMsgConfig (Class)

This class is a part of Chart2DMSConfiguration. This class holds information necessary to

put traveler information messages (containing travel times and/or toll rates) on DMSs.

Each DMSTravelerInfoMsgConfig contains travelTimeQueueLevel, tollRateQueueLevel,

array of relatedRoutes,arra of TravInfoMsd, overrideDefaultSchedule,

CHART R10 Detailed Design – Rev 3 9-24 08/14/2012

enabledSpecificTime, and array of customSchedule.

9.5.27 DMSTravInfoMsgConfigEventInfo (Class)

The DMSTravInfoMsgConfigEventInfo class is the type of DMSEvent used for

DMSEventType DMSTravInfoMsgCfgChange. It contains a DMSCTravInfoMsgConfig

and Identifier of DMS object.

9.5.28 DMSTravInfoMsgState (Class)

This enumeration lists possible states for traveler information messages. The first state is

the normal case -- all others are reasons why a traveler information message may be not

displayed (or not displayed correctly). It is possible that some of these states could occur at

the same time, but since this is not expected to occur too often, only one state will be

provided in the status. When one problem state is corrected, the next problem state (if any)

would bubble up into the status. The problem states are listed in roughly priority order

(although the implementation is not obliged to abide by this order if another ordering is

determined to be better).

9.5.29 DMSTravInfoMsgStatus (Class)

This structure provides a textual and encoded view into what is happening with the traveler

information message for this DMS.

9.5.30 DMSType (Class)

This is an enumeration which lists the possible types of DMS: CHART (internal to

CHART) or External (imported).

9.5.31 EntryOwner (Class)

Interface which must be implemented by any class which is responsible for putting an

ArbQueueEntry on a device's arbitration queue. This validate method of this interface can

be called by the device to determine continued validity of the entry (either during recovery

or as a final check of the validity of an entry before putting its message on the device).

9.5.32 ExternalDMS (Class)

The ExternalDMS class extends the DMS interface and defines a more detailed interface to

be used in manipulating the External DMS objects within CHART.

9.5.33 ExternalDMSFactory (Class)

The ExternalDMSFactory interface extends the DMSFactory interface.. This factory

creates ExternalDMS objects (extensions of DMS objects).

9.5.34 FP9500DMS (Class)

The FP9500DMS class extends the Chart2DMS interface and defines a more detailed

interface to be used in manipulating FP9500 models of DMS signs. It is exemplary of

potentially a whole suite of subclasses specific to a specific brand and model of sign for

CHART R10 Detailed Design – Rev 3 9-25 08/14/2012

manufacturer-specific DMS control. For instance, the FP9500DMS has a performPixelTest

method, which knows how to invoke and interpret a pixel test as supported by the FP9500

model DMS.

9.5.35 FP9500DMSStatus (Class)

The FP9500DMSStatus class provides additional storage for status information unique to

the FP9500 model of sign. It is exemplary of potentially a whole suite of Chart2DMSStatus

subclasses specific to a specific brand and model of sign.

9.5.36 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their

users.

9.5.37 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that

can be used to notify the traveler to tune in to a radio station to hear a traffic message being

broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device

to better determine if activation of the device is warranted for the message being broadcast

by the HAR. This interface can be implemented by SHAZAM devices and by DMS

devices which are allowed to provide a SHAZAM-like message.

9.5.38 HARNotifierArbQueueEntry (Class)

The HarNotifierArbQueueEntry class provides an implementation of the ArbQueueEntry

used for entries that are placed on the arbitration queue to put a "SHAZAM" message on a

DMS. These types of messages have a low priority and are not allowed to overwrite any

standard message (from a DMSArbQueueEntry) that is currently displayed on a device.

These types of messages are also different in that they are not added to the queue directly

by a response plan item and are instead included as a sub-task of activating a message on a

HAR. The HAR uses a command status object to track the progress of the HAR notifier

message.

9.5.39 HHMMRange (Class)

This structure defines a time duration.

9.5.40 IPPortLocationData (Class)

this structure defines the connection information of a tcp/ip port.

9.5.41 Message (Class)

This class represents a message that will be used while activating devices. This class

provides a means to check if the message contains any banned words given a Dictionary

object. Derived classes extend this class to provide device specific message data.

CHART R10 Detailed Design – Rev 3 9-26 08/14/2012

9.5.42 MessageQueue (Class)

This class represents a message queue object. It will provide the ability to add, remove, and

reprioritize traffic event entries in a prioritized list.

9.5.43 MULTIParseFailure (Class)

The MULTIParseFailure class is an exception to be thrown when a MULTI-formatted DMS

message cannot be correctly parsed.

9.5.44 MULTIString (Class)

The MULTIString class is a MULTI-formatted DMS message. The DMSMessage class

contains a MULTIString value to specify the content of the sign, in addition to the beacon

state value.

9.5.45 NetworkConnectionSite (Class)

The NetworkConnectionSite class contains a string that is used to specify where a service is

running. This field is useful for administrators in debugging problems should an object

become "software comm failed".. It is included in the Chart2DMSStatus.

9.5.46 NTCIPDeviceComponentInformation (Class)

This class holds information regarding device component information for an NTCIP device.

9.5.47 NTCIPDMS (Class)

The NTCIPDMS class extends the Chart2DMS interface and defines a more detailed

interface to be used in manipulating the NTCIP DMS objects within CHART. It provides

an interface to get extended status for the NTCIPDMS. It also provides interfaces to

perform a pixel test and to set the control mode to central on a NTCIP compliant DMS.

9.5.48 NTCIPDMSConfiguration (Class)

This class contains configuration settings specific to NTCIP DMSs.

9.5.49 NTCIPDMSFontQueryParams (Class)

This structure contains all of the information needed to query a font from an NTCIP DMS

that is NOT necessarily defined in CHART.

9.5.50 NTCIPDMSStatus (Class)

The NTCIPDMSStatus class provides additional storage for status information unique to

the NTCIP compliant model of sign. It contains members for control mode, message

source, power source, module component info, sigh height in pixels and sign width in

pixels.

9.5.51 OperationalStatus (Class)

The OperationalStatus class enumerates the types of operational status a device can have:

CHART R10 Detailed Design – Rev 3 9-27 08/14/2012

OK (normal mode), COMM_FAILURE (no communications to the device), or

HARDWARE_FAILURE (device is reachable but is reporting a hardware failure).

9.5.52 PlanItemData (Class)

This class is a valuetype that is the base class for data stored in a plan item. Derived classes

contain specific data that map a device to an operation and the data needed for the

operation. For example a derived class provides a mapping between a specific DMS and a

DMSMessage.

9.5.53 ResponsePlanItemData (Class)

This class is a delegate used to perform the execute and remove tasks for the response plan

item. Derived classes of this base class have specific implementations for the type of

device the response plan item is used to control.

9.5.54 ResponsePlanItemTarget (Class)

This interface represents an object that can be a target of a response plan item.

9.5.55 SharedResource (Class)

The SharedResource interface is implemented by any object that may have an operations

center responsible for the disposition of the resource while the resource is in use.

9.5.56 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared

resources. Implementing classes must be able to provide a list of all shared resources under

their management. Implementing classes must also be able to tell others if there are any

resources under its management that are controlled by a given operations center. The

shared resource manager is also responsible for periodically monitoring its shared resources

to detect if the operations center controlling a resource doesn't have at least one user logged

into the system. When this condition is detected, the shared resource manager must push an

event on the ResourceManagement event channel to notify others of this condition.

9.5.57 ShortErrorStatus (Class)

The ShortErrorStatus class identifies an error condition for a DMS. It is a bit field defined

by the NTCIP center to field standard for DMS that specifies error conditions that may be

present on the device. This class is used to encapsulate the bit mask and provide a user

friendly interface to the error conditions. The DMSStatus class contains a value of this

type. A non-specified error is present. BIT_MASK_OTHER_ERR = 0x0001 A

communications error is present. BIT_MASK_COMM_ERR = 0x0002 A power error is

present. BIT_MASK_POWER_ERR = 0x0004 An attached device error is present.

BIT_MASK_ATTACHED_DEV_ERR = 0x0008 A lamp error is present.

BIT_MASK_LAMP_ERR = 0x0010 A pixel error is present. BIT_MASK_PIXEL_ERR =

0x0020 A photocell error is present. BIT_MASK_PHOTOCELL_ERR = 0x0040 A

message error is present. BIT_MASK_MESSAGE_ERR = 0x0080 A controller error is

present. BIT_MASK_CONTROLLER_ERR = 0x0100 A temperature warning is present.

CHART R10 Detailed Design – Rev 3 9-28 08/14/2012

BIT_MASK_TEMP_WARN = 0x0200 A climate control error is present.

BIT_MASK_CLIMATE_CNTL_ERROR = 0x0400 A critical temperature error is present.

BIT_MASK_CRITICAL_TEMP_ERROR = 0x0800 A drum sign rotor error is present.

BIT_MASK_DRUM_SIGN_ERROR = 0x1000 Any door to any DMS field component

(cabinet or housing) is open. BIT_MASK_OPEN_DOOR_WARN = 0x2000 A humidity

sensor is reporting a humidity warning. BIT_MASK_HUMIDITY_WARNING = 0x4000

9.5.58 TravelRouteConsumer (Class)

This interface allows other CHART objects to register as a direct consumer of travel route

statistical data. It provides operations for the travel route to call when the travel time or toll

rate for the route is updated. A DMS registers as a TravelRouteConsumer when a

TravelerInfoMsg is enabled.

9.5.59 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

9.6 DMSControl2 (Class Diagram)

This Class Diagram shows additional CORBA system interface definitions used for DMS

functionality.

CHART R10 Detailed Design – Rev 3 9-29 08/14/2012

Figure 9-6. DMSControl2 (Class Diagram)

9.6.1 DMSDisplayConfigData (Class)

This struct contains information about a DMS display (geometry, font, etc) that may be

used by one or more DMSs. It also contains the name and the source of the configuration.

9.6.2 DMSDisplayConfigFactory (Class)

This interface provides functionality for managing DMSDisplayConfig objects, each of

which may be used by multiple DMSs.

9.6.3 DMSDisplayConfigInfo (Class)

This struct contains information about a DMS display configuration that may be used by

1

*
DMSDisplayConfigFactory

«interface»

1

This functionality is split
out (rather than being in the DMSFactory)
to allow for potentially independent
publishing / deployment.

getDMSDIsplayConfigInfoList()
should return the same results (i.e., replicated)
if there are multiple instances / nodes,
so that clients can get all display configs
even if one instance/ node is down; otherwise,
some DMSs could be using display configs
that could be unavailiable.

Unchanged for R10
(except changed short to long for the last 2 fields).

This can be used for full, line, and char matrix.
The type of display (full, line, or char matrix)
can be derived from this.

SignMetrics
«typedef»

DMSFontInfo
«typedef»

1

1 DMSDisplayConfigSourceType
«enumeration»

1

DMSFontTableInfo
«typedef»

11

*

1

DMSFontTableEntryInfo
«typedef»

1

1

DMSFontNumberValues
«interface»

DMSFontCharInfo
«typedef»

DMSDisplayInfo
«typedef»

All classes on this
diagram are new for R10
unless noted otherwise.

Line and char spacing may be
part of the font definition, but in CHART
they are also specifed at a higher level
by an administrator, and the ones in the
font are always overridden.

*

1

1

1

DMSFontAndSpacingInfo
«typedef»

1

DMSDisplayConfigInfo
«typedef»

DMSDisplayConfigData
«typedef»

1

1

1

id : Identifier
configData : DMSDisplayConfigData

name : string
sourceType : DMSDisplayConfigSourceType
displayInfo : DMSDisplayInfo

signMetrics : SignMetrics
fontTable : DMSFontTableInfo
defaultJustificationLine : long
defaultJustificationPage : long
defaultPageOnTimeTenths : long
defaultPageOffTimeTenths : long
hasBeacons : boolean
maxRowsPerPageAllowed : long
maxCharsPerRowAllowed : long
maxPagesAllowed : long

getDMSDisplayConfigInfoList() : DMSDisplayConfigInfo[]
addDMSDisplayConfig(AccessToken, DMSDisplayConfigData) : DMSDisplayConfigInfo
setDMSDisplayConfig(AccessToken, Identifier, DMSDisplayConfigData) : void
removeDMSDisplayConfig(AccessToken, Identifier) : void

User
SystemGenerated

vmsSignHeightPixels : long
vmsSignWidthPixels : long
vmsCharacterHeightPixels : long
vmsCharacterWidthPixels : long

fontNumber : long
fontAndSpacing : DMSFontAndSpacingInfo

charSpacingPixels :long
lineSpacingPixels : long
font : DMSFontInfo

DEFAULT_FONT = 1

name : string
heightPixels : long
fontDefaultCharSpacingPixels : long
fontDefaultLineSpacingPixels : long
charInfo : DMSFontCharInfo[]

ch : wchar
widthPixels : long
bitmap : byte[]

CHART R10 Detailed Design – Rev 3 9-30 08/14/2012

one or more DMSs, and an identifier for identifying the configuration.

9.6.4 DMSDisplayConfigSourceType (Class)

This defines the types of sources that can define a DMS display configuration.

9.6.5 DMSDisplayInfo (Class)

This structure contains all of the information related to rendering, fit checking, and layout

of messages for one or more DMSs with similar display attributes and usage restrictions.

9.6.6 DMSFontAndSpacingInfo (Class)

This structure contains the font definition, and inter-char and line spacing values that are

specified when using the font for the given DMS display. (In CHART, the char/line

spacing defined in the font are not used - the spacing is always specified at a higher level).

9.6.7 DMSFontCharInfo (Class)

This structure fully defines a character in a font. It has the font character, the width in

pixels, and the bitmap containing the character shape. The first bit in the bitmap is the

upper left corner pixel. The next widthPixels bits are the first row, the next widthPixels bits

are the second row, etc.. (NOTE this is compatible with NTCIP character definition).

9.6.8 DMSFontInfo (Class)

This structure contains information about a DMS font.

9.6.9 DMSFontNumberValues (Class)

This defines the mapping between font role and font number that will be used in CHART.

When multiple fonts are allowed in the same message, the font numbers will be stored in

the MULTI messages, and this definition ensures consistency in the intent for each font

selection, across multiple DMS display configurations. For example, there might be

"small", "medium", and "large" fonts that are selected in the editor, and the font numbers

for those would be specified here, and encoded into the MULTI. Each applicable

DMSDisplayConfiguration's would have an entry in its font table using the same font

numbers to select the corresponding font. For NTCIP signs, the font table will be

downloaded to the sign and these font numbers will be used as the actual slots.

9.6.10 DMSFontTableEntryInfo (Class)

This structure contains information pertaining to a font that is used in a font table.

9.6.11 DMSFontTableInfo (Class)

This definition contains one or more font table entries. It should contain at least the default

font, and any other fonts that could be specified in CHART messages.

9.6.12 SignMetrics (Class)

The SignMetrics class is a non-behavioral class (structure) which contains information

CHART R10 Detailed Design – Rev 3 9-31 08/14/2012

regarding to the size of a DMS, in pixels and characters. If is used to specify sizes for full,

line, and character matrix signs. For character matrix, the character width and height will

be non-zero. For line matrix, only character height will be non-zero. For full matrix, both

will be zero.

9.7 DecisionSupport (Class Diagram)

This diagram shows interfaces and structures related to decision support.

Figure 9-7. DecisionSupport (Class Diagram)

9.7.1 CommandStatus (Class)

The CommandStatus CORBA interface is used to allow a calling process to be notified of

the progress of a long-running asynchronous operation. This is normally used when field

communications are involved to complete a method call. The most common use is to allow

a GUI to show the user the progress of an operation. It can also be used and watched by a

server process when it needs to call on another server process to complete an operation.

The long running operation typically calls back to the CommandStatus object periodically

as the command is being executed, to provide in-progress status information, and it always

makes a final call to the CommandStatus when the operation has completed. The final call

to the CommandStatus from the long running operation indicates the success or failure of

the command.

1

1 ViewCameraSuggestionData Implemented in R9, but
not added to design until R10

*

1

1

1

SuggestionScoreReason

1

1

SuggestionScoreReasonType

«enumeration»

1

SuggestionScoreInfo

*

1

SuggestionRequest

DMSMessageSuggestion

«typedef»

*

CommandStatus

«interface»

1 1
sends suggestions

back to

DecisionSupportEnabled

«interface»

SuggestionRecipient

«interface»

1

1
SuggestionData

11

SuggestionType

«enumeration»

UseDMSSuggestionData

«typedef»

UseDMSPlanItemSuggestionData

«typedef»

UsePlanSuggestionData

«typedef»

SuggestionTypeData

«typedef»

1

1
11

1

1

SuggestionData is a union that contains exactly one of these, depending
on the type:SuggestionType of the union.

DistanceCategory

«enumeration»

update(String status):void
completed(boolean commandSuccessful,
 String finalStatus):void
completedSameStatus(boolean commandSuccessful):void

suggestionsReady(suggestions:SuggestionData[]):void

SUGGESTION_TYPE_USE_DMS
SUGGESTION_TYPE_USE_DMS_PLAN_ITEM
SUGGESTION_TYPE_USE_PLAN

score:double
typeData:SuggestionTypeData

IMMEDIATE
NEAR
FAR

cameraID:Identifer
proximityAndDistances:ProximityDistance

type:SuggestionType

targetID:Identifier
type:SuggestionType

planID:Identifier
planItemID:Identifier

requestSuggestions(recipient:SuggestionRecipient, targets:SuggestionRequest[]):void
requestSuggestions(recipient:SuggestionRecipient, types:SuggestionType[]):void
disableSuggestionsFor(ids:Identifer[]):void
enableSuggestionsFor(ids:Identifier[]):void
getDisabledSuggestionList():Identifier[]

planID:Identifier

dmsID : Identifier
msgSuggestions : DMSMessageSuggestion[]

SCORE_REASON_TEMPLATE_FILTER
SCORE_REASON_TEMPLATE_TAG

reason:String
reasonType:SuggestionScoreReasonType

scoreInfo : SuggestionScoreInfo
msgMULTI:String
showBeacons : boolean

score:double
scoreReasons:SuggestionScoreReason[]

CHART R10 Detailed Design – Rev 3 9-32 08/14/2012

9.7.2 DecisionSupportEnabled (Class)

This class is a CORBA interface that facilitates requesting suggestions from any server side

component.

9.7.3 DistanceCategory (Class)

This enum represents the different Distance Types used in decision support.

9.7.4 DMSMessageSuggestion (Class)

This class is a CORBA structure that represents a decision support DMS message

suggestion.

9.7.5 SuggestionData (Class)

This class is a CORBA structure that represents a decision support suggestion.

9.7.6 SuggestionRecipient (Class)

This class is a CORBA interface that must be implemented by any component that would

like to request suggestions from a DecisionSupportEnabled component. This class can be

used to provide suggestions back to the requestor either when they are fully formulated or

by streaming them as they become available.

9.7.7 SuggestionRequest (Class)

This class is a CORBA structure that represents a request for decision support suggestions.

9.7.8 SuggestionScoreInfo (Class)

This class is a CORBA structure that represents a collection of suggestion scores/reasons

for a given decision support DMS suggestion.

9.7.9 SuggestionScoreReason (Class)

This class is a CORBA structure that represents a decision support DMS message

suggestion score/reason. Both scores and reasons are contained in this object.

9.7.10 SuggestionScoreReasonType (Class)

This class is an enumeration describing the 2 types of suggestion scores/reasons: template

filters and template tags.

9.7.11 SuggestionType (Class)

This enumeration lists all possible types of decision support suggestions.

9.7.12 SuggestionTypeData (Class)

This class is a CORBA union that will hold a discriminator that indicates the type of data

carried and exactly one of the possible SuggestionData structures.

CHART R10 Detailed Design – Rev 3 9-33 08/14/2012

9.7.13 UseDMSPlanItemSuggestionData (Class)

This class is a CORBA structure that represents a decision support DMS plan item

suggestion.

9.7.14 UseDMSSuggestionData (Class)

This class is a CORBA structure that represents a decision support DMS suggestion.

9.7.15 UsePlanSuggestionData (Class)

This class is a CORBA structure that represents a decision support plan suggestion.

9.7.16 ViewCameraSuggestionData (Class)

This class carries data used for suggesting a camera that should be viewed for a traffic

event.

9.8 ExternalDMS (Class Diagram)

This Class Diagram shows how the external DMS classes relate to the local DMS classes.

Specifically, it shows how external DMS classes leverage the existing DMS class structure

while overriding methods that are specific to external DMSs. Note that because external

systems do not provide enough information to properly render a message for an external

DMS, the values in their ExternalDMSConfiguration will be set based on the largest

parameters needed to render messages seen on that sign (so far).

Figure 9-8. ExternalDMS (Class Diagram)

1

1

1

1

1

SignType

«type»

BeaconType

«type»

BeaconTypeValues

«interface»

SignTypeValues

«interface»

1

1

1

1

1

1

1

GeoLocatable

«interface»

ExternalDMS

«interface»

Chart2DMSConfiguration

«valuetype»

ExternalDMSConfiguration

«valuetype»

1

CommEnabled

«interface»

1

SharedResourceManager

«interface»

Note: This diagram extends the DMSContol class diagram by adding
support for External DMS objects.

DMS

«interface»

UniquelyIdentifiable

«interface»

DMSConfiguration

«valuetype»

Chart2DMS

«interface»

DMSFactory

«interface»

ExternalDMSFactory

«interface»

Chart2DMSStatus

«valuetype»

Added for R10:

m_dmsSignType
m_dmsBeaconType
m_signMetrics
m_pages

Moved these down from DMSConfiguration;
the rest of the Display Configuration fields
were moved to a new struct which isn't needed
by external DMSs as we do not receive that info
from external services.

ExternalObjectIdentificationData

«struct»

See DMSControl
Class Diagram for
details.

1

1

Chart2DMSFactory

«interface»

DMSStatus

«valuetype»

blankSign(AccessToken token, CommandStatus status) : void
getConfiguration(AccessToken token) : DMSConfiguration
getStatus() : DMSStatus
isBlank() : boolean
pollNow(AccessToken token, CommandStatus status) : void
remove(AccessToken token) : void
resetController(AccessToken token, CommandStatus status) : void
setConfiguration(AccessToken token, DMSConfiguration config,
 CommandStatus status) : void
setMessage(AccessToken token, DMSMessage message,
 CommandStatus status) : void
setLocation(token:Accesstoken, location:ObjectLocation):void

factory createDMSConfiguration() :
 DMSConfiguration

m_name: string
m_deviceLocation: ObjectLocation
m_dmsTimeCommLoss: long

updateStatus(token : AccessToken,
 status : DMSStatus) : void
setExternalConfiguration(token : AccessToken,
 extdmsConfig:ExternalDMSConfiguration):void
getExternalConfiguration(token:AccessToken):
 ExternalDMSConfiguration

queryNTCIPDMSFont(AccessToken, NTCIPDMSFontQueryParams) : DMSFontInfo

extSystemIdentificationString:string
extAgencyIdentificationString:string
extObjectIdentificationString:string

factory createExternalDMSConfiguration() :
 ExternalDMSConfiguration

m_extID : ExternalObjectIdentificationData
m_owningOrgID: Identifier
-m_networkConnectionSite: NetworkConnectionSite
m_dmsSignType: SignType
m_dmsBeaconType: BeaconType
m_signMetrics : SignMetrics
m_pages

other = 1
bos = 2
cms = 3
vmsChar = =4
etc.

createExternalDMStoken(token:AccessToken,
 externalDMSconfiguration:ExternalDMSConfiguration)raises(AccessDenied,CHART2Exception)

other = 1
none = 2
oneBeacon = 3
twoBeaconSyncFlash = 4
etc.

factory createDMSStatus() : DMSStatus

m_performingPixelTest: boolean
m_currentMessage: DMSMessage
m_commMode: CommunicationsMode
m_opStatus: OperationalStatus
m_shortErrorStatus: ShortErrorStatus
m_statusChangeTime: long

factory createChart2DMSStatus() : Chart2DMSStatus

m_controllingOpCenter: OpCenterInfo
m_travInfoMsgStat: DMSTravInfoMsgStatus

CHART R10 Detailed Design – Rev 3 9-34 08/14/2012

9.8.1 BeaconType (Class)

The BeaconType class defines the beacon type for a DMS. Its values are defined by the

BeaconTypeValues class. It is a part of an ExternalDMSConfiguration object.

9.8.2 BeaconTypeValues (Class)

The BeaconTypeValues class enumerates the various beacon types used on DMS devices

(number of beacons and whether and in what manner they flash).

9.8.3 Chart2DMS (Class)

The Chart2DMS class extends the DMS interface and defines a more detailed interface to

be used in manipulating the CHART-specific DMS objects within CHART. It provides an

interface for traffic events to provide input as to what each traffic event desires to be on the

sign via the ArbitrationQueue interface. Through the HARMessageNotifier interface, a

HAR can use a DMS to notify travelers to tune in to a radio station to hear a traffic

message. CHART business rules include concepts such as shared resources, arbitration

queues, and linking device usage to traffic events. These concepts go beyond industry-

standard DMS control. This includes an ability to enable and disable CHART traveler

information messages, which were added in R3B3.

9.8.4 Chart2DMSConfiguration (Class)

The Chart2DMSConfiguration class is an abstract class which extends the

DMSConfiguration class to provide configuration information specific to Chart II

processing. Such information includes how to contact the sign under Chart II software

control, the default SHAZAM message for using the sign as a HAR Notifier, and the

owning organization. Such data extends beyond what would be industry-standard

configuration information for a DMS. Parameters to support TCP/IP communications,

notifications and more alerts, and traveler information messages were added for R3B3.

9.8.5 Chart2DMSFactory (Class)

The Chart2DMSFactory interface extends the DMSFactory interface to provide additional

Chart II specific capability. This factory creates Chart2DMS objects (extensions of DMS

objects). It implements the SharedResourceManager capability to control DMS objects as

shared resources.

9.8.6 Chart2DMSStatus (Class)

The Chart2DMSStatus class is an abstract class which extends the DMSStatus class to

provide status information specific to CHART processing, such as information on the

controlling operations center for the sign. This data extends beyond what would be

industry-standard status information for a DMS. Status information for traveler information

messages was added in R3B3.

9.8.7 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put

CHART R10 Detailed Design – Rev 3 9-35 08/14/2012

online, or put in maintenance mode through a standard interface. These states typically

apply only to field devices. When a device is taken offline, it is no longer available for use

through the system and automated polling (if any) is halted. When put online, a device is

again available for use by TrafficEvents within the system and automated polling is enabled

(if applicable). When put in maintenance mode a device is offline (i.e., cannot be used by

TrafficEvents), and maintenance commands appropriate for the particular type of device are

allowed to help in troubleshooting.

9.8.8 DMS (Class)

The DMS class defines an interface to be used in manipulating Dynamic Message Sign

(DMS) objects within Chart II. It specifies methods for setting messages and clearing

messages from a sign (in maintenance mode), polling a sign, changing the configuration of

a sign, and resetting a sign. (Setting messages on a sign in online mode are not

accomplished by manipulating a DMS directly; that is accomplished by manipulating traffic

events, which use an ArbitrationQueue interface or by manipulating HARs, which use a

HARMessageNotifier interface. This activity involves the DMS extension, Chart2DMS,

which defines interactions with signs under Chart II business rules.)

9.8.9 DMSConfiguration (Class)

The DMSConfiguration class is an abstract valuetype class which describes the

configuration of a DMS device. This configuration information is normally fairly static:

things like its name and location, and how to contact the sign (as opposed to dynamic

information like the current message on the sign, which is defined in an analogous Status

object). All parameters associated with the display of the message are obtained via the ID of

a Display Configuration object. It contains fields such as the size of the sign in characters

and pixels, the font, line spacing, default page justification, and inter-character spacing.

9.8.10 DMSFactory (Class)

The DMSFactory class specifies the interface to be used to create DMS objects within the

Chart II system. It also provides a method to get a list of DMS devices currently in the

system.

9.8.11 DMSStatus (Class)

The DMSStatus class is an abstract value-type class which provides status information for a

DMS. This status information is relatively dynamic: things like the current message on the

sign, its beacon state, its current operational mode (online, offline, maintenance mode), and

current operational status (OK, COMM_FAILURE, or HARDWARE_FAILURE). (More

static information about the sign, such as its size and location, is defined in an analogous

Configuration object.)

9.8.12 ExternalDMS (Class)

The ExternalDMS class extends the DMS interface and defines a more detailed interface to

be used in manipulating the External DMS objects within CHART.

CHART R10 Detailed Design – Rev 3 9-36 08/14/2012

9.8.13 ExternalDMSConfiguration (Class)

The ExternalDMSConfiguration class is an abstract class which extends the

DMSConfiguration class to provide configuration information specific to External DMS

objects.

9.8.14 ExternalDMSFactory (Class)

The ExternalDMSFactory interface extends the DMSFactory interface.. This factory

creates ExternalDMS objects (extensions of DMS objects).

9.8.15 ExternalObjectIdentificationData (Class)

This structure is used to hold data which identifies the external source of an external object

which has been imported into CHART.

9.8.16 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their

users.

9.8.17 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared

resources. Implementing classes must be able to provide a list of all shared resources under

their management. Implementing classes must also be able to tell others if there are any

resources under its management that are controlled by a given operations center. The

shared resource manager is also responsible for periodically monitoring its shared resources

to detect if the operations center controlling a resource doesn't have at least one user logged

into the system. When this condition is detected, the shared resource manager must push an

event on the ResourceManagement event channel to notify others of this condition.

9.8.18 SignType (Class)

The SignType class defines the sign type for a DMS. Its values are defined by the

SignTypeValues class. It is a part of an ExternalDMSConfiguration object.

9.8.19 SignTypeValues (Class)

The SignTypeValues class enumerates the various sign types DMS devices. Examples are

bos, cms, vmsChar, etc.

9.8.20 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

CHART R10 Detailed Design – Rev 3 9-37 08/14/2012

9.9 MessageTemplateManagement (Class Diagram)

This class diagram contains classes that define the corba interface used for managing

Message Templates in CHART2.

Figure 9-9. MessageTemplateManagement (Class Diagram)

9.9.1 DistanceFormat (Class)

This object contains the data for a distance format in the CHART DB.

9.9.2 DMSDecSuppMsgTemplate (Class)

The DMSDecSuppMsgTemplate interface is implemented by objects that DMS message

templates used for decision support functionality (dms message suggestion generation).

9.9.3 DMSDecSuppMsgTemplateConfig (Class)

This object contains the configuration data for a message template that represents a

DMSDecSUppMsgTemplate in the CHART DB

9.9.4 DMSMessageTemplate (Class)

This interface is extended by interfaces representing specific types of DMS message

templates (ex. DMSTravInfoMsgTemplater). It contains methods common to all types of

DMS message templates.

9.9.5 DMSMsgTemplateConfig (Class)

This struct represents configuration data that is common to all DMS message template

0..1

1

DM SM sgTemplateInfo

«ty pe»

1

DM S M s g
Tem plate Config

Changed

RouteM issingDataOption

«enumeration»

DM SM essageTemplate

«interfac e»

M essageTemplateEventType

«enumeration»

0..*

1
1

1

1

1

1

1

1

DM S Trav Info
M s g Tem plate

1

DM S Dec Supp
M s g Tem plate

11

1

DM SM sgTemplateConfig

«ty pe»

DM SM sgTemplateTypeConfig

DM SDecSuppM sgTemplateConfig

«ty pe»

IDL Union

1

M essageTemplateFormats

«s truc t»

1

1

0..1

0..1

0..1

1

TollRateFormat

«s truc t»

TollRateTimeFormat

«s truc t»

0..1

0..1

0..1

TravelTimeFormat

«s truc t»

1

1

1

1

DistanceFormat

«s truc t»

M essageTemplateType

«enumeration»

0..*0..*

0..*

M essageTemplateAlignment

«enumeration»

0..1

TravelTimeRangeFormat

«s truc t»

Identifier

1

M essageTemplateFactory

«interfac e»

DM STravInfoM sgTemplateConfig

«s truc t»

DM STravInfoM sgTemplate

«interfac e»

M sgTemplateTagConstants

«interfac e»

UniquelyIdentifiable

«interfac e»

1

0..*

0..1

0..1

1

1

M sgTemplateDSFilterCriteria

«ty pe»

1

1

1

1

M essageTemplateEvent

«union»

0..*

DM SDecSuppM sgTemplate

«interfac e»

R10: No c hanges . The tem plates
m us t s pec i fy thei r s iz e in rows , c ols ,
and pages . The c ols is the m os t c ri tic al
s etting bec aus e when a tem plate has
v ariable width fie lds , the c ols s pec i fied
in the tem plate m us t be us ed to determ ine
how that fie ld is populated. Note we do
not target a s pec i fic DM S dis play c onfig;
as long as a DM S s iz e al lows i t to d is play
the num ber of c harac ters s pec i fied in
the tem plate s iz e, i t c an us e i t.

1
DM S M s g

Tem plate Added

1
M es s ageTem plateRem ov ed

des tTag:s tring "DEST"
tv lTim eTag:s tring "TT"
rangeTag:s tring "TTRANGE"
tol lTag:s tring "TR"
dis tanc eTag:s tring "DISTANCE"
tol lRateTim eTag:s tring "TRTIM E"
ev entTy peTag s tring "EVENT_TYPE"
inc Ty peTag s tring "INC_TYPE"
routeTy peTag s tring "ROUTE_TYPE"
routeNum Tag s tring "ROUTE_NUM "
routeNam eTag s tring "ROUTE_NAM E"
routeFirTag s tring "ROUTE_DIR"
intEx iProx Tagt s tring "INT_EXIT_PROX"
intEx i tNum Tag s tring "INT_EXIT_NUM "
intEx i tRoadNam eTag s tring "INT_EXIT_ROAD_NAM E"
laneClos ureTag s tring "LANE_CLOSURE_TAG"
dis tanc eWholeM i les s tring "DIST_M ILES"
tagOpen:s tring "<"
tagClos e:s tring ">"

id:Identi fier
nam e:s tring
form atString:s tring
ex am ple:s tring
length:int
hours StartIndex :int
hours EndIndex :int
m ins StartIndex :int
m ins EndIndex :int
am PM StartIndex :int
am PM EndIndex :int

c reateDM SM s gTem plate(tok en:(tok en: Ac c es s Tok en,
 c onfig:DM SM s gTem plateConfig) :DM M s gTem plateInfo()
getDM SM s gTem plates (tok en: Ac c es s Tok en):DM SM s gTem plateInfo[]
getTol lRateTim eForm ats (tok en: Ac c es s Tok en):Tol lRateTim eForm at[]
getTrav elTim eForm ats (tok en: Ac c es s Tok en):Trav elTim eForm at[]
getTrav elTim eRangeForm ats (tok en: Ac c es s Tok en):Trav elTim eRangeForm at[]
getTol lRateForm ats (tok en: Ac c es s Tok en):Tol lRateForm at[]
getDis tanc eForm ats (tok en: Ac c es s Tok en):Dis tanc eForm at[]

getConfig(tok en : Ac c es s Tok en) :
 DM SM s gTem plateConfig
s etConfig(tok en : Ac c es s Tok en,
 c onfig : DM SM s gTem plateConfig) : v oid
rem ov e(tok en : Ac c es s Tok en) : v oid

id:Identi fier
nam e:s tring
form atString:s tring
ex am ple:s tring
length:int
hours StartIndex :int
hours EndIndex :int
s uppres s Hrs LeadZeros :boolean
m ins StartIndex :int
m ins EndIndex :int
s uppres s M inLeadZeros :boolean
s tartHRIndex :int
endHRIndex :int
s uppres s HRLi teral :boolean
c olonIndex :int
s uppres s Colon:boolean

id:Identi fier
nam e:s tring
form atString:s tring
ex am ple:s tring
length:int
lowStartIndex :int
lowEndIndex :int
h ighStartIndex :int
h ighEndIndex :int
s uppres s LeadingZeros :boolean

DM S_M SG_TEM PLATE_ADDED
DM S_M SG_TEM PLATE_CONFIG_CHANGED
DM S_M SG_TEM PLATE_REM OVED

tem plateId: Identi fier
tem plateConfig:DM SM s gTem plateConfig
tem plateRef: DM SM s gTem plate

is Tol lRateTem plate() : boolean

id:Identi fier
nam e:s tring
form atString:s tring
ex am ple:s tring
length:int
dol lars StartIndex :int
dol lars EndIndex :int
c ents StartIndex :int
c ents EndIndex :int
dol larSignIndex :int
s uppres s Dol larSign:boolean
s uppres s LeadingZeros InDol lar:
 boolean

tem plateDes c ription:s tring
tem plateM es s age:s tring
m s gTem plateTy pe : M es s ageTem plateTy pe
m s gTem pTy peConfig : DM SM s gTem plateTy peConfig

id:Identi fier
nam e:s tring
form atString:s tring
ex am ple:s tring
length:int
m i les StartIndex :int
m i les EndIndex :int
tenths StartIndex :int
tenths EndIndex :int
s uppres s LeadingZeros IfNoM i les :
 boolean

dis c rim inator :M es s ageTem plateEv entTy pe
m s gTem plateInfo : DM SM s gTem plateInfo
m s gTem plateRem ov edId : Identi fier

d is c rim inator : M es s ageTem plateTy pe
dm s TIM s gTem pCfg : DM STrav InfoM gs Tem plateConfig
dm s DSM s gTem pCfg : DM SDec SuppM s gTem plateConfig

num Rows :int
num Cols :int
num Pages :int
dm s Dis play Config:DM SDis play ConfigInfo
m es s ageTem plateForm ats :M es s ageTem plateForm ats
des tTagAl ignm ent:M es s ageTem plateAl ignm ent
m is s ingDataOption:RouteM is s ingDataOption

trav elTim eForm at:Trav elTim eForm at
trav elTim eRangeForm at:Trav elTim eRangeForm at
to l lRateForm at:Tol lRateForm at
to l lRateTim eForm at:Tol lRateTim eForm at
routeLengthForm at:Dis tanc eForm at

Identi fier(by te[] c hartID)
equals (Objec t obj)
has hCode()
by te[] getID()

m _id

DM S_TRAV_INFO_M SG_TEM PLATE
DM S_DEC_SUPP_M SG_TEM PLATE

m ax Colum ns Supported : s hort
fi l terCri teria : M s gTem plateDSFi l terCri teria
s howBeac ons : boolean

traffic Ev entTy pes Supported : Traffic Ev entTy pe[]
d is tanc eTy pes Supported : Dis tanc eTy pes []
prox im i ties Supported : Prox im i ty InfoLis t[]

M SG_TEM P_ALIGN_LEFT
M SG_TEM P_ALIGN_CENTER
M SG_TEM P_ALIGN_RIGHT

RTE_M ISSING_DATA_DISGARD_M SG
RTE_M ISSING_DATA_DISGARD_PAGE
RTE_M ISSING_DATA_DISGARD_ROW

CHART R10 Detailed Design – Rev 3 9-38 08/14/2012

types. It contains a union that is used specify DMS message type specific configuration

data.

9.9.6 DMSMsgTemplateInfo (Class)

This struct contains a DMS message configuration and a CORBA reference to the DMS

message template object along with the templates unique ID.

9.9.7 DMSMsgTemplateTypeConfig (Class)

This union is used to represent DMS message template type specific configuration data in

the DMSMsgTemplateConfig IDL struct.

9.9.8 DMSTravInfoMsgTemplate (Class)

The DMSTravlInfoMsgTemplate interface is implemented by objects that allow execution

of tasks associated with DMS travel information message templates.

9.9.9 DMSTravInfoMsgTemplateConfig (Class)

This object contains the configuration data for a message template that represents a

DMSTravlInfoMsgTemplate in the CHART DB

9.9.10 Identifier (Class)

Wrapper class for a CHART2 identifier byte sequence. This class will be used to add

identifiable objects to hash tables and perform subsequent lookup operations.

9.9.11 MessageTemplateAlignment (Class)

This IDL enumeration defines the message template alignment options supported in the

DMSTravlInfoMsgTemplateConfig. These can either be align left, align center or align

right.

9.9.12 MessageTemplateEvent (Class)

This union identifies the data to be passed with events that are pushed through the CORBA

event service in relation to message templates.

9.9.13 MessageTemplateEventType (Class)

This IDL enumeration defines the types of CORBA Events supported in the

MessageTemplateModule. These can either be DMS message Created, Changed, or

Removed.

9.9.14 MessageTemplateFactory (Class)

Interface whose implementation is used to create message templates, retrieve message

templates and retrieve travel time and toll rate formats.

CHART R10 Detailed Design – Rev 3 9-39 08/14/2012

9.9.15 MessageTemplateFormats (Class)

This structure contains all travel time and toll rate format that are specified within a given

DMSTravInfoMsgTemplate.

9.9.16 MessageTemplateType (Class)

This enum represents the currently supported message template types.

9.9.17 MsgTemplateDSFilterCriteria (Class)

This IDL struct contains criteria used for filtering when finding applicable devices to use

with a message template in decision support.

9.9.18 MsgTemplateTagConstants (Class)

The MesssageTemplateTagConstants interface contains constants that are used to define

tags used to create DMS travel information message templates.

9.9.19 RouteMissingDataOption (Class)

This IDL enumeration defines the route missing data options supported in the

DMSTravlInfoMsgTemplateConfig. These can either be discard row, discard page or

discard row.

9.9.20 TollRateFormat (Class)

This object contains the data for a toll rate format in the CHART DB.

9.9.21 TollRateTimeFormat (Class)

This object contains the data for a toll rate time format in the CHART DB.

9.9.22 TravelTimeFormat (Class)

This object contains the data for a travel time format in the CHART DB.

9.9.23 TravelTimeRangeFormat (Class)

This object contains the data for a travel time range format in the CHART DB.

9.9.24 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

9.10 MonitorControl (Class Diagram)

This class diagram contains the interfaces pertaining to video monitors.

CHART R10 Detailed Design – Rev 3 9-40 08/14/2012

Figure 9-10. MonitorControl (Class Diagram)

9.10.1 AutoModeTourEntryInfo (Class)

This struct contain information describing an AutoModeTourEntry.

9.10.2 AutoModeTourEntryOwnerInfo (Class)

This struct contains data that defines an AutoModeTour owner.

9.10.3 Monitor (Class)

The Monitor interface is implemented by objects which represent a video monitor, e.g., a

real, physical "television set" on which a video image can be displayed. This is the most

common type of VideoSink (the other being a SWMonitor, part of a future requirement to

stream video directly to user's workstations (or potentially other nearby computers).

9.10.4 MonitorConfig (Class)

This struct contains configuration information for a monitor. It contains a reference to a

VideoSinkConfig (a monitor is a video sink) and also information for monitor auto mode

processing such as the auto mode enabled flag and auto mode dwell time.

9.10.5 MonitorStatus (Class)

This class (struct) contains data that indicates the current status of a Monitor device specific

to Chart II processing, such as information on the particular controlling operation centers.

The data contained in this class is that status information which can be transmitted from the

local monitors to remote monitors . This struct is also used within the Monitor Service to

transmit data to/from the MonitorControlDB database interface class.

9.10.6 ResponsePlanItemData (Class)

This class is a delegate used to perform the execute and remove tasks for the response plan

New For R10
Decision support video

Added associated
AORs for R10.

VideoTourRPIData

*

1

MonitorStatus

«type»

1

AutoModeTourEntryInfo

«type» 1

AutoModeTourEntryOwnerInfo

«type»

ResponsePlanItemData

Updated for R10
Auto Mode processing.

Monitor

«interface»

VideoSink

«interface»

UniquelyIdentifiable

«interface»

MonitorConfig

«type»

VideoSinkConfig

«struct»

1

1

New in R10

VideoSinkStatus

«struct»

1

1

m_sinkStatus : VideoSinkStatus
m_autoModeTourList : AutoModeTourEntry[]

+m_collectorConfig:VideoCollectorConfig
+m_monitorGroupIDs:Identifier[]
+m_public:boolean
+m_associatedAORs: Identifier[]

m_videoSrcInfo :
 AutoModeVideoSourceInfo
m_ownerInfo :
 AutoModeTourEntryOwnerInfo

m_sinkConfig : VideoSinkConfig
m_autoModeFlag : boolean
m_autoModeDwellTime : long

getMonitorStatus() : MonitorStatus
getMonitorConfig(byte[] token) : MonitorConfig
setMonitorConfig(byte[] : token, MonitorConfig : cfg,
 CommandStatus : cmdStat)
setAutoMode(byte[] : token, boolean enabled)
addAutoModeTourListEntries(byte[] : token,
 AutoModeTourVideoSourceInfo[] : entries,
 AutoModeTourEntryOwnerInfo : ownerInfo)
removeAutoModeTourListEntries(byte[] : token,
 AutoModeTourEntryInfo[] : entries)
removeAutoModeTourListEntriesForOwner(byte[] : token,
 Identifiery : ownerId)

getTargetID():Identifier
isExecutable() : boolean
execute(AccessToken token,
 TrafficEvent trafficEvt,
 CommandStatus status):void
revokeExecution(AccessTiken token,
 TrafficEvent trafficEvt,
 Identifier itemID):void
isUsingObject(Identifier[] objectIDs):boolean
getVerboseDescription(): string
getTrafficEventType(): int
getTargetOwningOrgID():Identifier

string m_description
Identifier m_targetOwningOrgID
Identifier m_targetID
-int m_trafficEventType

getMonitorList():MonitorInfo[]
setMonitorList(monitorList:MonitorInfo[]):void
getTourEntryList():AutoModeTourEntrySourceInfo[]
setTourEntryLIst(entries:AutoModeTourEntrySourceInfo[]):void
getActiveTourEntryList():AutoModeTourEntrySourceInfo[]

m_monitorList:MonitorInfo[]
m_tourEntries:AutoModeTourEntrySourceInfo[]

CHART R10 Detailed Design – Rev 3 9-41 08/14/2012

item. Derived classes of this base class have specific implementations for the type of

device the response plan item is used to control.

9.10.7 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

9.10.8 VideoSink (Class)

The VideoSink interface is implemented by objects which serve as final endpoints for video

signals, such as video monitors and streaming video receivers directly on user workstations.

Within the user interface, the VideoSink interface represents all objects on which a video

source can be placed for viewing by users.

9.10.9 VideoSinkConfig (Class)

This structure contains configuration information about a VideoSink. For R2B1, the only

subtype of VideoSink will be a Monitor. For R10, the list of associated areas of

responsibility was added.

9.10.10 VideoSinkStatus (Class)

This structure contains status information about a VideoSink. For R2B1 the only subtype

of VideoSink will be a Monitor.

9.10.11 VideoTourRPIData (Class)

This class is a ResponsePlanItemData that carries the data pertinent to a response plan

video tour.

9.11 NotificationManagement (Class Diagram)

This class diagram contains the CORBA interfaces used in the management of Notification

Contacts and Notification Groups in CHART2. It also provides means to send notifications

to the specified recipients.

CHART R10 Detailed Design – Rev 3 9-42 08/14/2012

Figure 9-11. NotificationManagement (Class Diagram)

9.11.1 Identifier (Class)

Wrapper class for a CHART2 identifier byte sequence. This class will be used to add

identifiable objects to hash tables and perform subsequent lookup operations.

9.11.2 NoticationRecordIterator (Class)

A NoticationRecordIterator is used to retrieve notification records from a notification server

in chunks.

9.11.3 Notification (Class)

The Notification interface is implemented by objects that allow execution of tasks

associated with active notifications.

9.11.4 NotificationAgencyName (Class)

This data structure contains the name for the Notification Agency.

9.11.5 NotificationChangedEventInfo (Class)

This structure contains the data that is broadcast when the notification status changes.

9.11.6 NotificationContactData (Class)

This data structure defines a Notification Contact in CHART. It includes information such

as notification contact name, email address, last time the information was updated, type

[such as Individual or Agency] and list of notification groups that it belongs to.

1

1

1

1

1

NotificationContactName

«ty pedef»

1

1

1

1

1 1

NotificationStatus

«dataty pe»

1
1

1

Noti fic ationAdded

NotificationIDInfo

«dataty pe»

1

Noti fic ationChanged

NotificationM anager

«interfac e»

1

1

1

1

NotificationChangedEventInfo

«dataty pe»

1

NotificationInfo

«dataty pe»

NotificationRecordFilter

«dataty pe»

NotificationStatusType

NotificationEvent

NotificationRecord

«dataty pe»

NotificationTargetType

«enumeration»

Notification

«interfac e»

NotificationCreationInfo

«dataty pe»

NotificationRecordQueryResults

«dataty pe»

noti fic ationGroupAdded
noti fic ationGroupChanged

1

1

OpCenterInfo

«ty pedef»

NoticationRecordIterator

«interfac e»

Identifier

1

1

1

1

1

1

NotificationEventType

«enumeration»

*

1

Noti fic ationRem ov ed

NotificationType

«enumeration»

11

1

1

NotificationRecipientData

1

UniquelyIdentifiable

«interfac e»

1

R10: new

1

NotificationIndividualName NotificationAgencyName

1

1

1

1

1

noti fic ationContac tAdded
noti fic ationContac tChanged

1

1

1

1

R10: rem ov ed id and nam e

1 NotificationContactType

«enumeration»NotificationContactData

1NotificationGroupData

NotificationRecipientEventType

«enumeration»

R10: new

R10: c hanged INDIVIDUAL to
c ontac t

R10: c hanges
1. add, m odi fy , rem ov e noti fic ation
c ontac ts and groups .
2. rem ov ed getM em bers () part of
group inform ation
3. renam ed getIndiv iduals to
getContac ts
4. added s ubjec t for s endNoti fic ation
and s endGroupNoti fic ation

R10: rem ov ed s truc t
Noti fc ationM em berInfo

1

NotificationRecipientEvent

«ty pedef»

NotificationGroupInfo

1NotificationRecipientTypeData

«ty pedef»

id : Identi fier
indiv idualNam e : String
s tatus Ty pe : Noti fic ationStatus Ty pe
s tatus Tim e : Tim eStam p2
s tatus Tex t : String

NOTIFL_STATUS_TYPE_REQUESTED
NOTIF_STATUS_TYPE_IN_PROGRESS
NOTIF_STATUS_TYPE_FAILED
NOTIF_STATUS_TYPE_RECEIVED

getM oreRec ords (m ax Count:long):Noti fic ationRec ord[]
des troy ():v oid

id Identi fier
ev entId : Identi fier
s tandalone : boolean
s entFrom Traffic Ev ent : boolean
author : String
opCenterNam e : String
s tartTim e : Tim eStam p2
endTim e : Tim eStam p2
m es s age : String
indiv idualNam e : String
groupNam e : String

in i tia lRec ords : Noti fic ationRec ord[]
has Addi tionalRec ords : boolean
addi tionalRec ords Iterator : Notic ationRec ordIterator

dis c rim inator : Noti fic ationRec ipientEv entTy pe
noti fic ationContac tAddedInfo : Noti fic ationContac tEv entData
noti fic ationContac tChangedInfo :Noti fc ationContac tInfo
noti fic ationContac tRem ov edInfo : Identi fier
noti fic ationGroupAddedInfo : Noti fic ationGroupEv entData
noti fic ationGroupChangedInfo : Noti fic ationGroupEv entData
noti fic ationGroupRem ov edInfo : Identi fier

ty pe :Noti fic ationTy pe
traffic Ev entFac tory Id:Identi fier
ev entId:Identi fier

NOTIF_TYPE_STAND_ALONE
NOTIF_TYPE_TRAFFIC_EVENT

Noti fic ationAdded
Noti fic ationChanged
Noti fic ationRem ov ed

Noti fic ationContac tAdded
Noti fic ationContac tChanged
Noti fic ationContac tRem ov ed
Noti fic ationGroupAdded
Noti fic ationGroupChanged
Noti fic ationGroupRem ov ed

id : Identi fier
noti fic ationM grId : Identi fier
s eqNum : long
ev entFac tory Id : Identi fier
ev entId : Identi fier
noti fTy pe : Noti fic ationTy pe
author : String
opCenter : OpCenterInfo
c reateDate : Tim eStam p2
m es s age : String
reques tLis t:Noti fic ationRec ipientData[]
reques tStatus :Noti fic ationStatus []

groupId : Identi fier
groupNam e : s tring

ty peData : Noti fic ationRec ipientTy peData

dis c rim inator : Noti fic ationEv entTy pe
noti fInfo : Noti fic ationInfo
noti fChangedInfo : Noti fic ationChangedEv entInfo[]
noti fRem ov edId : Identi fier

ty pe : Noti fic ationTargetTy pe

info : Noti fic ationGroupInfo
c ontac ts :Identi fier[]

noti fic ationId : Identi fier
s tatus Lis t : Noti fic ationStatus []

id : Identi fier
ty peData : Noti fic ationContac tNam eData
em ai lAdd : s tring
updated : tim es tam p
ty pe:Noti fic ationContac tTy pe
groups : Identi fier[]

NOTIF_TARGET_TYPE_CONTACT
NOTIF_TARGET_TYPE_GROUP

rec ord : Noti fic ationRec ord
noti fic ationRef : Noti fic ation

getNoti fic ations (tok en : Ac c es s Tok en):Noti fic ationIDInfo[]
getGroups (tok en : Ac c es s Tok en) : Noti fic ationGroupData[]
getContac ts (tok en : Ac c es s Tok en) : Noti fic ationContac tData[]
s endNoti fic ation(tok en : Ac c es s Tok en,
 n i : Noti fic ationCreationInfo[],
 nrl : Noti fic ationRec ipientData[],
 m es s age : String, s ubjec t : String) : Noti fic ationInfo
s endGroupNoti fic ation(tok en:Ac c es s Tok en, grpIdLis t : Identi fier[],
 m es s age:String, s ubjec t : String) : Noti fic ationInfo
getNoti fic ationRec ords (tok en: Ac c es s Tok en,
 fi l ter : Noti fic ationRec ordFi l ter,
 m ax Count : long) : Noti fic ationRec ordQuery Res ul ts
addNoti fic ationContac t(tok en:Ac c es s Tok en, info:Noti fic ationContac tData)
m odi fy Noti fic ationContac t(tok en:Ac c es s Tok en, info:Noti fic ationContac tData)
rem ov eNoti fic ationContac t(tok en:Ac c es s Tok en, id:Identi fier)
addNoti fic ationGroup(tok en:Ac c es s Tok en, info:Noti fic ationGroupData)
m odi fy Noti fic ationGroup(tok en:Ac c es s Tok en, info:Noti fic ationGroupData)
rem ov eNoti fic ationGroup(tok en:Ac c es s Tok en, id:Identi fier)

ty pe : Noti fic ationContac tTy pe

c ontac tFi rs tNam e : s tring
c ontac tLas tNam e : s tring

id : Identi fier
noti fic ationRef : Noti fic ation

NOTIF_CONTACT_TYPE_INDIVIDUAL
NOTIF_CONTACT_TYPE_AGENCY

getID() : Identi fier
getNoti fic ationRec ord() : Noti fic ationRec ord
delete(Ac c es s Tok en)

c ontac tNam e : s tring

CHART R10 Detailed Design – Rev 3 9-43 08/14/2012

9.11.7 NotificationContactName (Class)

This union identifies the name information either for a Notification Individual or Agency

based on the NotificationContactType.

9.11.8 NotificationContactType (Class)

This IDL enumeration defines the types of notification contact types supported by the

system, i.e. Individual or Agency.

9.11.9 NotificationCreationInfo (Class)

Structure contains data used to create a new notification.

9.11.10 NotificationEvent (Class)

This union identifies the data to be passed with events that are pushed through the CORBA

event service in relation to notifications.

9.11.11 NotificationEventType (Class)

This IDL enumeration defines the types of CORBA Events supported in the Notification

Module. These can either be notification Added, Changed, or Removed.

9.11.12 NotificationGroupData (Class)

This data structure defines a Notification Group in CHART. It includes information such as

notification group information and list of notification contacts that belong to it.

9.11.13 NotificationGroupInfo (Class)

This data structure defines the basic notification group information that includes its unique

identifier and name.

9.11.14 NotificationIDInfo (Class)

This struct contains a CORBA reference to the notification object and its corresponding ID.

9.11.15 NotificationIndividualName (Class)

This data structure contains the name for the Notification Individual.

9.11.16 NotificationInfo (Class)

This struct contains the notification record data and a CORBA reference to the notification

object.

9.11.17 NotificationManager (Class)

Interface used to manage Notification Contacts, Notification Groups, notification messages,

and query notification status records.

CHART R10 Detailed Design – Rev 3 9-44 08/14/2012

9.11.18 NotificationRecipientData (Class)

This object contains the data that is returned as a result of an object get recipient (groups or

contacts) request.

9.11.19 NotificationRecipientEvent (Class)

This union identifies the data to be passed with events that are pushed through the CORBA

event service in relation to notification contacts and groups.

9.11.20 NotificationRecipientEventType (Class)

This IDL enumeration defines the types of CORBA Events supported in the Notification

Module. These events will be generated when either a notification contact or notification

group is Added, Changed, or Removed.

9.11.21 NotificationRecipientTypeData (Class)

The object that contains either a notification group or notification contact based on the

NotificationTargetType requested.

9.11.22 NotificationRecord (Class)

This object contains the data for an entry in the notification record which represents a

notification message in the CHART DB

9.11.23 NotificationRecordFilter (Class)

This struct is used to specify criteria for querying notification records.

9.11.24 NotificationRecordQueryResults (Class)

This structure contains the data that is returned from a notification history record query.

9.11.25 NotificationStatus (Class)

Contains data describing the status of an individual recipient of a given notification

message.

9.11.26 NotificationStatusType (Class)

This enumeration specifies the type of status contained in a notification status structure.

9.11.27 NotificationTargetType (Class)

This enumeration specifies the type of notification data contained in a notification recipient

structure.

9.11.28 NotificationType (Class)

This enumeration specifies the type of notification that is represented by data in a

notification record or creation info structure.

CHART R10 Detailed Design – Rev 3 9-45 08/14/2012

9.11.29 OpCenterInfo (Class)

This structure contains the information about an OperationsCenter.

9.11.30 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

9.12 ResourceManagement (Class Diagram)

This class diagram contains the interfaces pertaining to shared resources, operations centers,

user login sessions, and organizations.

Figure 9-12. ResourceManagement (Class Diagram)

9.12.1 HasControlledResources (Class)

This class represents an exception which describes a failure caused when the user tries to do

Video session information added
for Release 9.

*

1
VideoSessionInfo

1

1*

1 *

11

*

*

**

1

OpCenterStatus2

«datatype»

*

1

ResponseParticipantList

«typedef»

*

1

TransferableResourceList

«typedef»

* 1

UsersLoggedIn

«exception»

OperationsCenterList

«typedef»

*1

OpCenterConfiguration

«datatype»

OpCenterConfigInfo

«typedef»

1
1

ResponseParticipantEventInfo

«typedef»

SharedResource

«interface»

TransferableSharedResource

«interface»

LogoutFailure

«exception»

LoginFailure

«exception»
ResourceControlConflict

«exception»

HasControlledResources

«exception»

Organization

«interface»

UnhandledControlledResourcesInfo

«typedef»

ResponseParticipant

«typedef»ResponseParticipantType

«enumeration»

OpCenter Info

«typedef»

SharedResourceList

«typedef»

LoginSessionList

«typedef»

ResourceEventType

«enumeration»

UniquelyIdentifiable

«interface»

OperationsCenter

«interface»

OperationsCenterFactory

SharedResourceManager

«interface»

UserLoginSession

«interface»

InvalidOperationsCenter

«exception»

1 *

Added associated
AORs for R10.

getOperationCenters():OpCenterList
createOperationsCenter(
 AccessToken token,
 OpCenterConfiguration config):
 OperationsCenter

loginUser(UserLoginSession loginSession,
 UserName name,
 string password,
 string hostname):AccessToken
logoutUser(AccessToken token,
 UserLoginSession loginSession):void
changeUser(AccessToken token,
 UserLoginSession oldSession,
 UserLoginSession newSession,
 UserName userName,
 string password):AccessToken
getControlledResources():SharedResourceList
getLoginSessions(AccessToken token):LoginSessionList
forceLogout(AccessToken token,
 UserLoginSession loginSession):void
isUserLoggedIn(UserName userName):boolean
sUserLoggedInWithRight(right : FunctionalRight) : boolean
isAnyUserLoggedInWithAnyRights(rights : FunctionalRight[]) : boolean
isAnyOneUserLoggedInWithAllRights(rights : FunctionalRight[]) : boolean
getNumLoggedInUsers():long
transferSharedResources(AccessToken token,
 TransferableSharedResourceList resources,
 OperationsCenter targetOpCenter):void
verifyUserPassword(UserName userName,
 string password):boolean
getConfiguration() : OpCenterConfiguration
getStatus() : OpCenterStatus
getAllSystemResponseParticipants() : ResponseParticipant[]
getEligibleResponseParticipants(
 ResponseParticipantType type) :
 ResponseParticipant[]
addEligibleResponseParticipant(AccessToken token,
 ResponseParticipant participant) :void
removeEligibleResponseParticipant(AccessToken token,
 ResponseParticipant participant) :void
remove(AccessToken token):void
setConfiguration(AccessToken token,
 OpCenterConfiguration config):void
requestVideoSession(token : AccessToken, userName : String,
 userHost : String, userIP : String, clientInstanceID : Identifier,
 clientAppHost : String, subjectID : Identifier, subjectDesc : String,
 subjectIsTour : boolean) : VideoSessionInfo
endVideoSession(token : AccessToken, sessionID : Identifier,
 reason : String) : void
getVideoSessions() : VideoSessionInfo[]
touchVideoSessions(clientInstanceID : Identifier,
 sessionIDs : Identifier[], isCompleteSet : boolean) : void

getID()
getName()

TYPE_UNSPECIFIED
TYPE_AGENCY
TYPE_RESOURCE
TYPE_SPECIAL_NEEDS
TYPE_CHART_UNIT

getControllingOpCenter():OpCenterInfo
getOwnerOrgID():Identifier

Identifier opCtrID
OpCenterConfiguration config

string m_name
ResponseParticipantType m_type

void setControllingOpCenter(AccessToken token,
 OpCtrInfo opCtrInfo)

getResources() : SharedResourceList
getControlledResources(Identifier opCtrID) : SharedResourceList
hasControlledResources(Identifier opCtrID) : boolean

string m_opCtrName
defaultMonitorGroup : Identifier
backupOpCenters : Identifier[]
owningOrganization : Identifier
maxVideoSessions : int
associatedAORs : Identifier[]

numLoggedInUsers : int
allUsersRightsUnion : FunctionalRight[]
videoSessions : VideoSessionInfo[]

getOpCenter():OperationsCenter
getUsername():UserName
ping():boolean
void forceLogout(AccessToken token)

ResponseParticipantAdded
ResponseParticipantRemoved
OpCenterAdded
OpCenterRemoved
OpCenterConfigChanged
VideoSessionAdded
VideoSessionEnded
VideoSessionsRemoved
VideoSessionsTouched

string reason string reason

Identifier opCtrID
ResponseParticipant participant

id : Identifier
userName : String
opCenterName : String
opCenterID : Identifier
startTime : TimeStamp2
lastTouched : TimeStamp2
userHost : String
userIP : String
clientAppHost : String
clientInstanceID : Identifier
subjectID : Identifier
subjectDesc : String
subjectIsTour : boolean

string reason
string controllingOpCenterName

OpCenterInfo opCtrInfo

string reason string reason

Identifier m_id
string m_name

string reason

CHART R10 Detailed Design – Rev 3 9-46 08/14/2012

something which requires that no resources be controlled, yet the Operations Center which

the user is logged in to is still controlling one or more shared resources.

9.12.2 InvalidOperationsCenter (Class)

Exception which describes a failure caused when the operations center specified is not valid

for the attempted operation.

9.12.3 LoginFailure (Class)

This class represents an exception which describes a login failure.

9.12.4 LoginSessionList (Class)

A LoginSessionList is simply a collection of UserLoginSession objects.

9.12.5 LogoutFailure (Class)

This exception is thrown when an error occurs while logging a user out of the system.

9.12.6 OpCenterConfigInfo (Class)

This structure contains information pertaining to a change in the configuration of an

operations center.

9.12.7 OpCenterConfiguration (Class)

This structure contains the configuration data for an operations center. For R10, the list of

associated areas of responsibility was added.

9.12.8 OpCenterInfo (Class)

This structure contains the information about an OperationsCenter.

9.12.9 OpCenterStatus2 (Class)

The actual name of this class is OpCenterStatus. It represents the status of an operations

center. This class was introduced for R3B1 to transmit status of operations centers from the

Resource Manger serving it to other intereested parties. The data stored in the

OpCenterStatus includes the number of users currently logged into the center and the union

of all functional rights held by all users currently logged into that center.

9.12.10 OperationsCenter (Class)

The OperationsCenter represents a center where one or more users are located. This class is

used to log users into the system. If the username and password provided to the loginUser

method are valid, the caller is given a token that contains information about the user and the

functional rights of the user. This token is then used to call privileged methods within the

system. Shared resources in the system are either available or under the control of an

OperationsCenter. The OperationsCenter keeps track of users that are logged in so that it

can ensure that the last user does not log out while there are shared resources under its

control. This list of logged in users is also available for monitoring system usage or to

CHART R10 Detailed Design – Rev 3 9-47 08/14/2012

force users to logout for system maintenance.

9.12.11 OperationsCenterFactory (Class)

This class is used to create new operations centers and maintain them in a collection.

9.12.12 OperationsCenterList (Class)

This represents a collection of OperationsCenter objects.

9.12.13 Organization (Class)

The Organization interface extends the UniquelyIdentifiable interface and will represent an

organization, that is an administrative body which can control or own resources.

9.12.14 ResourceControlConflict (Class)

This exception is thrown when attempt to gain control of a shared resource fails because the

resource is under the control of a different operations center and the requesting user does

not have the functional right to override the restriction.

9.12.15 ResourceEventType (Class)

The ResourceEventType enumeration defines all of the resource related event types.

9.12.16 ResponseParticipant (Class)

The ResponseParticipant class is a non-behavioral structure which specifies a participant in

a response.

9.12.17 ResponseParticipantEventInfo (Class)

This structure contains information about an eligible response participant that is added to an

operations center.

9.12.18 ResponseParticipantList (Class)

This represents a collection of ResponseParticipant objects.

9.12.19 ResponseParticipantType (Class)

The ResponseParticipantType enumeration defines a type of entity participating in a

response to an event. This could be an external organization, a mobile unit, a mobile device

or special purpose vehicle, or a special needs vehicle equipped to handle unusual or

hazardous situations.

9.12.20 SharedResource (Class)

The SharedResource interface is implemented by any object that may have an operations

center responsible for the disposition of the resource while the resource is in use.

CHART R10 Detailed Design – Rev 3 9-48 08/14/2012

9.12.21 SharedResourceList (Class)

A SharedResourceList is simply a collection of SharedResource objects.

9.12.22 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared

resources. Implementing classes must be able to provide a list of all shared resources under

their management. Implementing classes must also be able to tell others if there are any

resources under its management that are controlled by a given operations center. The

shared resource manager is also responsible for periodically monitoring its shared resources

to detect if the operations center controlling a resource doesn't have at least one user logged

into the system. When this condition is detected, the shared resource manager must push an

event on the ResourceManagement event channel to notify others of this condition.

9.12.23 TransferableResourceList (Class)

This represents a collection of transferable shared resources.

9.12.24 TransferableSharedResource (Class)

The TransferrableSharedResource interface extends the SharedResource interface, which is

implemented by SharedResource objects whose control can be transferred from one

operations center to another.

9.12.25 UnhandledControlledResourcesInfo (Class)

The UnhandledControlledResourcesEvent class is an event pushed when it is detected that

an OperationsCenter is controlling one or more controlled resources but has no users logged

in.

9.12.26 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

9.12.27 UserLoginSession (Class)

The UserLoginSession CORBA interface is used to store information about a user that is

logged into the system. This object is served from the GUI and provides a means for the

servers to call back into the GUI process.

9.12.28 UsersLoggedIn (Class)

This exception is thrown if an attempt is made to remove the operations center when users

are logged in.

9.12.29 VideoSessionInfo (Class)

This structure represents information used to keep track of an active video session (i.e., an

instance of video on the desktop).

CHART R10 Detailed Design – Rev 3 9-49 08/14/2012

9.13 TrafficEventManagement (Class Diagram)

This class diagram contains all classes relating to Traffic Events

Figure 9-13. TrafficEventManagement (Class Diagram)

9.13.1 ActionEvent (Class)

This class models roadway events that require an operations center to take action but do not

fit well into the other event categories. An example of this type of event would be debris in

the roadway.

9.13.2 AudioClipOwner (Class)

This interface allows the AudioClipManager to check whether there are any parties

interested in an audio clip. If no AudioClipOwners claim interest in a clip, the clip can be

deleted.

VideoTourRPIData

TrafficEventFactory

«interfac e»

ResponsePlanItemList

«ty pedef»

LaneConfiguration

1

1

1

RoadwayEvent

«interfac e»

WeatherServiceEvent

«interfac e»

PlannedRoadwayClosure

«interfac e»

1
TempPresetEntryOwner

«interfac e»

DecisionSupportEnabled

«interfac e»

ActionEvent

«interfac e»

ResponsePlanItemStatus

«ty pedef»

LaneType

«enumeration»

DM SRPIData

CommandStatus

«interfac e»

1

1

1

EntryOwner

«interfac e»

SafetyM essageEvent

«interfac e»

1

CongestionEvent

«interfac e»

LaneState

«enumeration»

ResponsePartic ipationList

«ty pedef»

HARRPIData

1

*

*

*

1

1

1

LaneConfigReferenceDirection

«enumeration»

ResponsePartic ipation

«interfac e»

1

*

ResourceDeployment

«interfac e»

1

1

TrafficEvent

«interfac e»

LaneConfigurationList

«ty pedef»

TrafficEventList

«ty pedef»

Lane

LaneTrafficFlowDirection

«enumeration»

M ergeInfo

*

1

ResponsePlanItem

«interfac e»

ResponsePlanItemData

Organiz ationPartic ipation

«interfac e»

1

1

*

1

1

M ergeAction

«enumeration»

AudioClipOwner

«interfac e»

EventInitiator

«union»

1

1

1

M ergeSection

«enumeration»

1

*

*

Incident

«interfac e»

DisabledVehicleEvent

«interfac e»

SpecialEvent

«interfac e»

1

1

reques tSugges tions (rec ip ient:Sugges tionRec ip ient, targets :Sugges tionReques t[]):v o id
reques tSugges tions (rec ip ient:Sugges tionRec ip ient, ty pes :Sugges tionTy pe[]):v o id
d is ableSugges tions For(ids :Identi fer[]):v o id
enableSugges tions For(ids :Identi fier[]):v o id
getDis abledSugges tionLis t():Identi fier[]

+v al idateTem pPres ets (c am eraID, tem pPreas etID): Identi fierL is t
+fa i ledToCreateTem pPres et(c am eraID, tem pPreas etID)

getTy pe() : Traffic Ev entTy pe
addLogEntry () :v o id
addLogEntry WithStats () : v o id
addRes pons eItem () : v o id
addRes pons ePartic ipation() :v od
as s oc iateEv ent() :v o id
rem ov eEv entAs s oc iation() : v o id
c los e() : v o id
ov errideClos ureTim e() : v o id
ex ec uteRes pons e() : v o id
getAs s oc iatedEv ents () : Identi fier[]
getHis tory (fi l ter : LogFi l ter, m ax Count) : LogQuery Res ul ts
getRoadway Loc ation() : Roadway Loc ation
is Prim ary () : boolean
s etPrim ary () : v o id
s etSec ondary () : v o id
getRes pons ePartic ipations () : Res pons ePartic ipant[]
getBas ic Ev entData() : Bas ic Ev entData
getRes pons ePlanItem s () : Res pons ePlanItem []
s etNam e() : v o id
s etSourc e() : v o id
s etDi rec tion() : v o id
s etDelay Cleared() : v o id
s etFals eAlarm () : v o id
s etLoc ation(tok en : Ac c es s Tok en,
 loc ation : Objec tLoc ation) : v o id
s etNam eAndLoc ation(tok en:Ac c es s Tok en,boolean is Ov erridden,
 theLoc ation:Objec tLoc ation):v o id
s etSc eneCleared() : v o id
s etConfi rm ed() : v o id
s etM ax QueueLength() :v o id
ov errideSc eneClearedTim e() : v o id
ov errideDelay ClearedTim e() : v o id
ov errideConfi rm edTim e() : v o id
ov errideLogEntry Tim e() : v o id
rev ok eEx ec ution() : v o id
m ergeEv ent(tok en : Ac c es s Tok en, s rc Ev entID : Identi fier,
 m ergeInfoLis t : M ergeInfoLis t,
 c om m andStatus : Com m andStatus) : v o id
openPending(Ac c es s Tok en, in i tia torTy pe : Ev entIn i tia torTy pe,
 in i tia torId : Identi fier) : v o id
deletePending(Ac c es s Tok en) : v o id
s etEx ternal In teres ting(Ac c es s Tok en tok en, boolean flag):v o id
s etPriori ty L is tOrder(tok en:Ac c es s Tok en, order:long):v o id
s etEs tim atedTim eToClear(tok en:Ac c es s Tok en, m inutes :long):v o id
s etOpCenterPOC(tok en:Ac c es s Tok en, poc :s tring):v o id
s etOnSc enePOC(tok en:Ac c es s Tok en, poc :s tring):v o id
s etCom m ents (tok en:Ac c es s Tok en, c om m ents :s tring):v o id

M ergeSec tion s ec tion
M ergeCom pletionv alue v a lue

getPartic ipationData() : Res pons ePartic ipationData
s etNoti fied(Ac c es s Tok en tok en,
 boolean has BeenNoti fied) : v o id
ov errideNoti fic ationTim e(Ac c es s Tok en tok en ,
 Tim eStam p noti fic ationTim e) : v o id
rem ov e(Ac c es s Tok en tok en) : v o id

M ERGE_USE_TARGET_DATA
M ERGE_USE_SOURCE_DATA
M ERGE_USE_UNION_OF_DATA

s etRes pondedToEv ent(Ac c es s Tok en tok en,
 boolean has Res ponded) : v o id
ov errideRes pondedTim e(Ac c es s Tok en tok en,
 Tim eStam p res pondedTim e) : v o id

M ERGE_SECTION_BASIC_EVENT
M ERGE_SECTION_ROAD_CONDITION
INCIDENT_EVENT
INCIDENT_VEHICLES_INVOLVED
DISABLED_VEHICLES_TAG_AND_M AKE
DISABLED_VEHICLES_REASON
ACTION_EVENT
CONGESTION_EVENT
SPECIAL_EVENT
PLANNED_EVENT
WEATHER_EVENT
M ERGE_SECTION_ASSOCIATED_EVENTS
M ERGE_SECTION_PARTICIPANTS
M ERGE_SECTION_RESPONSE_PLAN

getTargetID():Identi fier
ex ec ute(Ac c es s Tok en tok en):v o id
s etItem Data(Ac c es s Tok en tok en,
 Res pons ePlanItem Data data):v o id
getItem Data(Ac c es s Tok en tok en):Res pons ePlanItem Data
is Ac tiv e():boolean
has BeenEx ec uted():boolean
s etState(Ac c es s Tok en tok en, Item State rp iState):v o id
getDes c rip tion():s tring
s etDes c rip tion(Ac c es s Tok en tok en,
 s tring des c rip tion):v o id
is Us ingObjec t(Identi fier[] ob jec tIDs):boolean
rem ov e(Ac c es s Tok en tok en):v o id
getItem Status ():Res pons ePlanItem Status
rev ok eEx ec ution(Ac c es s Tik en tok en):v o id

getLaneConfiguration():LaneConfiguration
s etLaneConfiguration(Ac c es s Tok en tok en,
 LaneConfiguration laneConfig)
ov errideLaneOpenClos eTim e(Ac c es s Tok en tok en,
 Lane c hangedLane):v o id

s etArriv edOnSc ene(Ac c es s Tok en tok en,
 boolean has Arriv ed) : v o id
s etDepartedFrom Sc ene(Ac c es s Tok en tok en,
 boolean has Departed) : v o id
ov errideArriv a lTim e(Ac c es s Tok en tok en,
 Tim eStam p arriv a lTim e) : v o id
ov errideDepartureTim e(Ac c es s Tok en tok en,
 Tim eStam pdepartureTim e) : v o id

d is c rim inator: Ev entIn i tia torTy pe
us erIn i tia tor: Ev entIn i tia torUs erData
s c heduleIUs ern i tia tor : Ev entIn i tia torSc heduleUs erData

s tring las tKnownState
boolean is Ac tiv e
boolean has BeenEx ec uted
boolean m _m odi fied

s etVehic leData(Ac c es s Tok en tok en,
 Inc identVehic leData v ehic leData):v o id
s etTy pe(Ac c es s Tok en tok en,
 Inc identTy pe ty pe):v o id
s etRoadCondi tions (Ac c es s Tok e tok en,
 RoadCondi tions Data roadCondi tions):v o id
ov errideLaneOpenClos eTim e(
 Ac c es s Tok en tok en,
 long laneOffs etFrom Left,
 Tim eStam p tim eOpenedOrClos ed):v o id

NORTH
EAST
OUTER_LOOP

getTargetID():Identi fier
is Ex ec utable() : boolean
ex ec ute(Ac c es s Tok en tok en,
 Traffic Ev ent tra ffic Ev t,
 Com m andStatus s tatus):v o id
rev ok eEx ec ution(Ac c es s Tik en tok en,
 Traffic Ev ent tra ffic Ev t,
 Identi fier i tem ID):v o id
is Us ingObjec t(Identi fier[] ob jec tIDs):boolean
getVerbos eDes c rip tion(): s tring
getTraffic Ev entTy pe(): in t
getTargetOwningOrgID():Identi fier

s tring m _des c rip tion
Identi fier m _targetOwningOrgID
Identi fier m _targetID
-in t m _traffic Ev entTy pe

getLanes ():Lane[]

s tring m _c onfigurationDes c rip tion
Lane[] m _lanes
LaneConfigReferenc eDirec tion m _referenc eDir

LANE_OPEN
LANE_CLOSED
LANE_UNKNOWN

PRIM ARY
OPPOSITE
BIDIRECTIONAL
NONE

getM oni torL is t():M oni torIn fo[]
s etM oni torL is t(m oni torL is t:M oni torIn fo[]):v o id
getTourEntry L is t():AutoM odeTourEntry Sourc eInfo[]
s etTourEntry LIs t(entries :AutoM odeTourEntry Sourc eInfo[]):v o id
getAc tiv eTourEntry L is t():AutoM odeTourEntry Sourc eInfo[]

m _m oni torL is t:M oni torIn fo[]
m _tourEntries :AutoM odeTourEntry Sourc eInfo[]

is Rec urring(Ac c es s Tok en tok en)
s etRec urring(Ac c es s Tok e tok en,
 boolean is Rec urring):v o id

m _rec urring

LaneState m _c urrentState
LaneTraffic FlowDirec tion m _di rec tionOfTrav el
Tim eStam p m _tim eStateChanged
LaneTy pe m _ty pe
s tring m _des c rip tion
boolean m _orientedSam eAs ConfigReferenc eDir

SHOULDER
TRAFFIC_LANE
COLLECTOR_DISTRIBUTOR
TUNNEL_LANE
TOLL_LANE
CENTER_TURN_LANE
RIGHT_ON_RAM P
RIGHT_OFF_RAM P
RIGHT_M ERGE_LANE
RIGHT_ACCELERATION_LANE
RIGHT_TURN_LANE
RIGHT_DECELERATION_LANE
LEFT_ON_RAM P
LEFT_OFF_RAM P
LEFT_ACCELERATION_LANE
LEFT_M ERGE_LANE
LEFT_TURN_LANE
LEFT_DECELERATION_LANE
DOUBLE_YELLOW_LINE
M EDIA

CHART R10 Detailed Design – Rev 3 9-50 08/14/2012

9.13.3 CommandStatus (Class)

The CommandStatus CORBA interface is used to allow a calling process to be notified of

the progress of a long-running asynchronous operation. This is normally used when field

communications are involved to complete a method call. The most common use is to allow

a GUI to show the user the progress of an operation. It can also be used and watched by a

server process when it needs to call on another server process to complete an operation.

The long running operation typically calls back to the CommandStatus object periodically

as the command is being executed, to provide in-progress status information, and it always

makes a final call to the CommandStatus when the operation has completed. The final call

to the CommandStatus from the long running operation indicates the success or failure of

the command.

9.13.4 CongestionEvent (Class)

This class models roadway congestion which may be tagged as recurring or non-recurring

through the use of an attribute.

9.13.5 DecisionSupportEnabled (Class)

This class is a CORBA interface that facilitates requesting suggestions from any server side

component.

9.13.6 DisabledVehicleEvent (Class)

This class models disabled vehicles on the roadway.

9.13.7 DMSRPIData (Class)

The DMSRPIData class is an abstract class which describes a response plan item for a

DMS. It contains the unique identifier of the DMS to contain the DMSMessage, and the

DMSMessage itself.

9.13.8 EntryOwner (Class)

Interface which must be implemented by any class which is responsible for putting an

ArbQueueEntry on a device's arbitration queue. This validate method of this interface can

be called by the device to determine continued validity of the entry (either during recovery

or as a final check of the validity of an entry before putting its message on the device).

9.13.9 EventInitiator (Class)

This union contains information about the entity or entities involved in the initiation of a

traffic event. This can be the schedule, if a schedule was involved in initating the event,

and/or a user, if a user was involved in initating the event. This union allows for possible

expansion in future releases, where traffic events may be initiated by a schedule without

user confirmation, or by CHART devices (traffic sensors, weather sensors, etc.) or external

interfaces (RITIS, etc.) initially with, or possibly later without, user involvement.

CHART R10 Detailed Design – Rev 3 9-51 08/14/2012

9.13.10 HARRPIData (Class)

This class represents an item in a traffic event response plan that is capable of issuing a

command to put a message on a HAR when executed. When the item is executed, it adds

an ArbQueueEntry to the specified HAR, which stores the entry in its MessageQueue.

When the item's execution is revoked, or the item is removed from the response plan

(manually or implicitly through closing the traffic event) the item asks the HAR to remove

the entry. The HARRPIData object also allows specification of a subset (0 to all) of the

HARNotifier devices (SHAZAM or DMS devices acting as SHAZAMs) to be activated if

and while the message is being broadcast on the HAR.

9.13.11 Incident (Class)

This class models objects representing roadway incidents. An incident typically involves

one or more vehicles and roadway lane closures.

9.13.12 Lane (Class)

This class represents a single traffic lane at the scene of a RoadwayEvent.

9.13.13 LaneConfigReferenceDirection (Class)

This enumeration restricts the possible reference directions for a lane configuration, which

is necessary because the lane offsets are defined relative to the "left" side, which is an

ambiguous term. For example, if the direction is North then "left" to the West, but if the

direction is South (also valid on a North-South roadway) then "left" could be considered (if

not for this enumeratiion) to East. Thus if the direction of the lane config were to change

from North to South, the lanes would "flip" unintentionally. This enumeration holds the

reference direction for a North-South roadway to always be to the West (regardless of

whether the direction of the event is North or South), and holds similarly for East-West

roadways and beltways (Inner-Outer loops).

9.13.14 LaneConfiguration (Class)

This class contains data that represents the configuration of the lanes.

9.13.15 LaneConfigurationList (Class)

A collection of LaneConfiguration objects.

9.13.16 LaneState (Class)

This enumeration lists the possible states that a traffic lane may be in.

9.13.17 LaneTrafficFlowDirection (Class)

Defines the possible directions of traffic flow, relative to the lane orientation.

9.13.18 LaneType (Class)

This enumeration lists the types of lanes.

CHART R10 Detailed Design – Rev 3 9-52 08/14/2012

9.13.19 MergeAction (Class)

This enumeration specifies how to merge a section of data during a traffic event merge

operation.

9.13.20 MergeInfo (Class)

This valuetype is passed between Chartlite to Chart to provide instructions for performing

the merge

9.13.21 MergeSection (Class)

This idl enum defines values for each merge section

9.13.22 OrganizationParticipation (Class)

This class is used to manage the data captured when an operator notifies another

organization of a traffic event.

9.13.23 PlannedRoadwayClosure (Class)

This class models planned roadway closures such as road construction. This interface will

be expanded in future releases to include interfacing with the EORS system.

9.13.24 ResourceDeployment (Class)

This class is used to store the data captured when an operator deploys resources to the scene

of a traffic event.

9.13.25 ResponseParticipation (Class)

This interface represents the involvement of one particular resource or organization in

response to a particular traffic event.

9.13.26 ResponseParticipationList (Class)

A collection of ResponseParticipation objects.

9.13.27 ResponsePlanItem (Class)

Objects of this type can be executed as part of a traffic event response plan. A

ResponsePlanItem can be executed by an operator, at which time it becomes the

responsibility of the System to activate the item on the ResponseDevice as soon as it is

appropriate.

9.13.28 ResponsePlanItemData (Class)

This class is a delegate used to perform the execute and remove tasks for the response plan

item. Derived classes of this base class have specific implementations for the type of

device the response plan item is used to control.

CHART R10 Detailed Design – Rev 3 9-53 08/14/2012

9.13.29 ResponsePlanItemList (Class)

A collection of ResponsePlanItem objects.

9.13.30 ResponsePlanItemStatus (Class)

This stucture contains data that describes the current state of a response plan item.

9.13.31 RoadwayEvent (Class)

This class models any type of incident that can occur on a roadway. This point in the

heirarchy provides a break off point for traffic event types that pertain to other modals.

9.13.32 SafetyMessageEvent (Class)

This type of event is created by an operator when he/she would like to send a safety

message to a device.

9.13.33 SpecialEvent (Class)

This class models special events that affect roadway conditions such as a concert or

professional sporting event.

9.13.34 TempPresetEntryOwner (Class)

Interface which must be implemented by any class which is responsible for creating the

camera temporary preset. The validate method of this interface can be called to determine

if the TempPresetEntry is still valid (I.E. should remain on the camera's temp preset list.

9.13.35 TrafficEvent (Class)

Objects of this type represent traffic events that require action from system operators.

9.13.36 TrafficEventFactory (Class)

This interface is supported by objects that are capable of creating traffic event objects in the

system.

9.13.37 TrafficEventList (Class)

A collection of TrafficEvent objects.

9.13.38 VideoTourRPIData (Class)

This class is a ResponsePlanItemData that carries the data pertinent to a response plan

video tour.

9.13.39 WeatherServiceEvent (Class)

This class models roadway weather events such as snow or fog that are manually entered by

an operator in response to receiving an alert from the national weather service.

CHART R10 Detailed Design – Rev 3 9-54 08/14/2012

9.14 VideoControl (Class Diagram)

Figure 9-14. VideoControl (Class Diagram)

9.14.1 AutoModeTourEntryOwnerInfo (Class)

This struct contains data that defines an AutoModeTour owner.

9.14.2 AutoModeTourEntryOwnerType (Class)

This enumeration defines the types of AutoModeTourEntryOwner types supported in

CHART2.

9.14.3 AutoModeTourVideoSourceInfo (Class)

This struct is used to define video source information used as part of an AutoModeTour.

9.14.4 CameraControlDeviceModel (Class)

This enum lists the models of camera control devices used.

9.14.5 CameraControlDeviceType (Class)

This enum lists the types of control devices which can be used to control video cameras.

This enum is used as the discriminator in the VideoControlDeviceConfig union.

9.14.6 CannotOverrideException (Class)

This exception is thrown when attempt is made to display an image with requires a route,

but the route could not be made due to higher priority routes already existing.

9.14.7 CodecVideoConnection (Class)

This structure defines configuration data pertaining to one specific CODEC transmission

stream.

Uni quel yI dent i f i abl e
«int er f ace»

TempPreset O w nerType
«enumer at ion»

1

SharedResourceM anager
«int er f ace»

TempPreset O w ner

TempPreset O w ner I nf o
«t ype»

1

Vi deoFabr i c
«int er f ace»

1

VideoFabr icAdded
or

VideoFabr icConf igChanged

1

Cont rol l i ngI nf o
«st r uct »

1

1
1

Cont rol l i ngUser I nf o
«st r uct »

1

*

Vi deoProvi derType

1

I dent i f i er

1
Vi deoSw i t chConf i gEvent I nf o

«st r uct »

1

1

Vi deoSw i t chSt at usEvent I nf o
«st r uct »

1
Vi deoTransmi ssi onDevi ceSt at us

«st r uct »

Vi deoProvi derSt at us
«st r uct »

Vi deoSw i t ch
«int er f ace»

Aut oM odeTourEnt ryO w nerType
«enumer at ion»

1

New f or R10

1

1

Vi deoCol l ect orConf i g
«st r uct »

1 1 Vi deoRecei vi ngDevi ceI nf o
«st r uct »

Vi deoRout eConf i g
«st r uct »

Vi deoRout eI nf o
«st r uct »

1

1

Sw i t chEvent Type
«enumer at ion»

Vi deoSw i t chI nf o
«st r uct »

1

Vi deoRout eSt at us
«st r uct »

Vi deoSw i t chConf i g
«st r uct »

1

1

1

Vi deoCol l ect or I nf o
«st r uct »

1

1

1

1

1

1

1

1

Vi deoSw i t chSt at us
«st r uct »

1

Si nkSourcePai rVC
«st r uct »

Vi deoCont rol Devi ceConf i g
«st r uct »

1

1

1

1

CO NTRO L_I P

1
1

CO NTRO L_CO M _PO RT

Vi deoCont rol CmdProcConf i g
«st r uct »

11
CO NTRO L_CO M M AND_PRO CESSO R

1

1

1

I dent i f i er

1

1

VideoSwit chSt at usChanged

1 1
VideoSwit chAdded

or
VideoSwit chConf igChanged

1

1

VideoFabr icDelet ed

M oni t orDi spl ayI nf o
«st r uct »

Vi deoProvi der
«int er f ace»

Vi deoProvi derFact ory
«int er f ace»

Vi deoSendi ngDevi ceSt at us
«st r uct »

1

1

Vi deoRecei vi ngDevi ceSt at us
«st r uct »

1

1

Vi deoFabr i cConf i g
«st r uct »

Vi deoCol l ect orSt at us
«st r uct »

1

1

1

1

Vi deoRout e
«int er f ace»

Vi deoCol l ect orFact ory
«int er f ace»

Vi deoCont rol Devi ce
«int er f ace»

Vi deoTransmi ssi onDevi ce
«int er f ace»

Encoder

Vi deoCol l ect or
«int er f ace»

CommEnabl ed
«int er f ace»

Decoder
«int er f ace»

1

Uni quel yI dent i f i abl e
«int er f ace»

O verr i deNot Request edExcept i on
«except ion»

Cannot O verr i deExcept i on
«except ion»

1

Vi deoRecei vi ngDevi ce
«int er f ace»

Vi deoSendi ngDevi ce
«int er f ace»

Vi deoRout eM anager
«int er f ace»

Vi deoSw i t chFact ory
«int er f ace»

1

Vi deoCompressi onType
«enumer at ion»

CodecVi deoConnect i on
«st r uct »

CameraCont rol Devi ceM odel
«enumer at ion»

Vi deoDevi ceType
«enumer at ion»

Vi deoTransmi ssi onM edi um
«enumer at ion»

Vi deoTransmi ssi onDevi ceConf i g
«st r uct »

1 1

11

1 1

1

1

1

1

Vi deoCont rol EncoderConf i g
«st r uct »

Vi deoCont rol CO M Port Conf i g
«st r uct »

Vi deoCont rol Devi ceSt at us
«st r uct »

1

1

Vi deoComponent Type
«enumer at ion»

1
1

Vi deoFabr i cI nf o
«st r uct »

Vi deoCol l ect orType
«enumer at ion»

Vi deoSw i t chM odel
«enumer at ion»

CameraCont rol Devi ceType
«enumer at ion»

Vi deoProvi der I nf o
«st r uct »

Vi deoProvi derConf i g
«st r uct »

1

1

*

1

1

VideoSwit chDelet ed

1

1

Sw i t chEvent
«union»

Vi deoFabr i cConf i gEvent I nf o
«st r uct »

1

1

Aut oM odeTourVi deoSourceI nf o
«t ype»

Aut oM odeTourEnt ryO w ner I nf o
«t ype»

1

+get Rout eI nf oList () : VideoRout eI nf oList
+connect (t oken, VideoPr ovider I nf o, VideoPr ovider Conf ig,
 VideoCollect or I nf o, VideoCollect or Conf ig,
 over r ideRequest ed, t est O nly, doNot Block, xCm dSt at) : boolean
+disconnect (t oken, VideoPr ovider I nf o, VideoCollect or I nf o,
 cm dSt at) : boolean
+set Cam er aCont r olled(t oken, cam er aI D, m onit or G r oupI D)
+set Cam er aNot Cont r olled(t oken, cam er aI D)

+m _sinkSour cePair s : SinkSour cePair List VC

get St at us() : VideoRout eSt at us
get Conf ig(t oken) : VideoRout eConf ig
set I m age(t oken, sour ceI D)

+m _sinkI D : I dent if ier
+m _sour ceI D : I dent if ier

+m _r eason : st r ing

+cr eat eVideoSwit ch(t oken, VideoSwit chConf ig)
+cr eat eVideoFabr ic(t oken)
+get Swit chList () : VideoSwit chI nf oList
+get VideoFabr icI nf oList () : VideoFabr icI nf oList

+m _r out eI D : I dent if ier
+m _r out e : VideoRout e

+m _car r yingI m ageI D : I dent if ier
+m _isO nline : boolean

+m _nam e : st r ing
+m _br idgeCir cuit I Ds : I dent if ier

+get St at us() : VideoSwit chSt at us
+get Conf igur at ion(t oken) : V1500Cwit chConf ig
+set Conf igur at ion(t oken, V1500Swit chConf ig)
+r em ove(t oken)
+connect (t oken, sr c: Swit chI nput Por t , dest : Swit chO ut put Por t)
+disconnect (t oken, dest : Swit chO ut put Por t)
+r eloadSwit chConnect ions(t oken)

SWI TCH_V1500

+m _nam e: st r ing
+m _m odel: VideoSwit chM odel
+m _swit chFabr icI D: I dent if ier
+m _inPor t s: shor t []
+m _out Por t s: shor t []
+m _owningO r dI D: I dent if ier
+m _net wor kConnect ionSit e Net wor kConnect ionSit e

t akeO f f line(AccessToken, Com m andSt at us) : void
put O nline(AccessToken, Com m andSt at us) : void
put I nM aint enanceM ode(AccessToken, Com m andSt at us) : void
get Com m M ode() : Com m unicat ionM ode

+m _com m M ode: Com m unicat ionsM ode
+m _opSt at us: O per at ionalSt at us

+m _swit chI D : I dent if ier
+m _swit ch : VideoSwit ch

+get Conf ig(t oken) : VideoFabr icConf ig
+set Conf ig((t oken, videoFabr icConf ig)
+r em ove(t oken)
+addSwit ch(t oken, swit chI D)
+delet eSwit ch(t oken, swit chI D)

swit chRef : VideoSwit ch
swit chI D : I dent if ier
conf ig : VideoSwit chConf ig

+m _f abr icI D: I dent if ier
+m _f abr ic : VideoFabr ic

+swit chI D : I dent if ier
+st at us : VideoSwit chSt at us

VideoFabr icAdded
VideoSwit chAdded
VideoFabr icDelet ed
VideoSwit chDelet ed
VideoFabr icConf igChanged
VideoSwit chConf igChanged
VideoFabr icSt at usChanged
VideoSwit chSt at usChanged

m _videoSour ceI D : I dent if ier
m _pr eset Num : int
m _t em pPr eset I D : I dent if ier
m _ent r yO r dinal : int

get Collect or I nf oList () : VideoCollect or I nf oList

discr im inat or : Swit chEvent Type
f abr icConf igI nf o : VideoFabr icConf igEvent I nf o
swit chConf igI nf o : VideoSwit chConf igEvent I nf o
f abr icI D : I dent if ier
swit chI D : I dent if ier
swit chSt at usI nf o : VideoSwit chSt at usEvent I nf o

+m _com m M ode : Com m unicat ionM ode
+m _opSt at us : O per at ionalSt at us
+m _pr ovider I D : I dent if ier
+m _sour ceI D : I dent if ier
+m _st at usChangeTim eSecs : long
+m _last Cont act Tim eSecs : long

m _owner I d : I dent if ier
m _owner Type :
 Aut oM odeTour Ent r yO wner Type

+get Collect or St at us() : VideoCollect or St at us
+get Collect or Conf ig(t oken) : VideoCollect or Conf ig
+r em oveCollect or (t oken)
+connect ReceivingToSendingDevice(byt e[] , VideoPr ovider I nf o,
 byt e[] , Com m andSt at us, boolean,
 St r ingHolder) : boolean
+disconnect ReceivingFm SendingDevice(byt e[] , Com m andSt at us,
 boolean, St r ingHolder) : boolean

TRAFFI C_EVENT

get I D()
get Nam e()

+validat eTem pPr eset s(cam er aI D) : I dent if ier List
+f ailedToCr eat eTem pPr eset (cam er aI D, t em pPr easet I D,
 St r ing : descr ipt ion)

f abr icRef : VideoFabr ic
f abr icI D : I dent if ier
conf ig : VideoFabr icConf ig

+m _nam e : st r ing
+m _com ponent Type : VideoCom ponent Type
+m _collect or Type : VideoCollect or Type
+m _owningO r gI D : I dent if ier
+m _net wor kConnect ionSit e : Net wor kConnect ionSit e
+m _r eceivingDeviceI D : I dent if ier
+m _r eceivingDeviceConf ig : VideoTr ansm issionDeviceConf ig

+m _collect or I D : I dent if ier
+m _collect or : VideoCollect or
+m _t ype : VideoCollect or Type

m _owner I d: I dent if ier
m _owner Type: Tem pPr eset O wner Type

+m _nam e: st r ing
+m _owningO r gI D : I dent if ier
+m _net wor kConnect ionSit e : Net wor kConnect ionSit e
+m _t r ansm issionM edium : VideoTr ansm issionM edium
+m _swit chI D: I dent if ier

get DeviceSt at us() : VideoTr ansm issionDeviceSt at us
get DeviceConf ig(byt e[]) : VideoTr ansm issionDeviceConf ig

VI DEO _CO LLECTO R
VI DEO _SI NK
VI DEO _M O NI TO R
BRI DG E_CI RCUI T_I NPUT

get Resour ces() : Shar edResour ceList
get Cont r olledResour ces(I dent if ier opCt r I D) : Shar edResour ceList
hasCont r olledResour ces(I dent if ier opCt r I D) : boolean

get SendingDeviceSt at us() : VideoSendingDeviceSt at us

TRAFFI C_EVENT

VI DEO _I P
VI DEO _V1500

+r eceive(init ial: int , int er char : int ,
 m axDur at ion: int)

get ReceivingDeviceSt at us() : VideoReceivingDeviceSt at us
connect Fr om (byt e[] , byt e[] ,
 VideoTr ansm issionDeviceConf ig) : boolean
disconnect Fr om (byt e[] ,
 VideoTr ansm issionDeviceConf ig) : boolean
disconnect (byt e[]) : boolean

get Cont r olDeviceSt at us() : VideoCont r olDeviceSt at us
get Cont r olDeviceConf ig(t oken) : VideoCont r olDeviceConf ig
t er m inat eCont r ol(dr opAddr ess) : boolean
send(dat a, init ialTim eout M s, int er Char Tim eout M s, m axReadDur at ionM s) : Byt eAr r ay

+m _gener alSt at us : VideoTr ansm issionDeviceSt at us
+m _r eceiver I Ds : I dent if ier List

m _opSt at us : O per at ionalSt at us

+m _gener alSt at us : VideoTr ansm issionDeviceSt at us
+m _sender I D : I dent if ier List

+m _m edium Type : VideoTr ansm issionM edium
+m _deviceType : VideoDeviceType
+m _m odelType : Cam er aCont r olDeviceM odel
+m _nam e : st r ing
+m _por t : long
+m _videoPor t : shor t
+m _codecConnect ions : CodecVideoConnect ionList
+m _videoFabr icI D : I dent if ier
+m _swit chI D : I dent if ier

+m _DeviceI D : I dent if ier
+m _device : VideoReceivingDevice

+m _opSt at us : O per at ionalSt at us

+get Pr ovider St at us() : VideoPr ovider St at us
+get Pr ovider Conf ig(t oken) : VideoPr ovider Conf ig
+r em ovePr ovider (t oken)
+addDisplay(t oken, displayI nf o) : void
+r em oveDisplay(t oken, displayI D)
+addConnect edCollect or (t oken, collect or I D)
+r em oveConnect edCollect or (t oken, collect or I D)

+m _user I nf o : Cont r ollingUser I nf o
+m _opCent er I nf o : O pCent er I nf o

+m _com ponent Type : VideoCom ponent Type
+m _nam e : St r ing
+m _net wor kConnect ionSit e : St r ing
+m _owningO r gI D : byt e[]
+m _pr ovider Type : VideoPr ovider Type
+m _sendingDeviceConf ig : VideoTr ansm issionDeviceConf ig[]
+m _sendingDeviceI Ds : byt e[] []

VI DEO _SENDI NG _DEVI CE
VI DEO _RECEI VI NG _DEVI CE

 get Pr ovider I nf oList () : VideoPr ovider I nf oList

O THER
CO RETEC_M PEG 4
I M PATH_M PEG 2

+m _por t Nam e : st r ing
+m _com m Por t Conf ig : Com m Por t Conf ig

+m _m onit or G r oupI D: I dent if ier
+m _user Nam e: st r ing

m _pr ovider I D : I dent if ier
m _pr ovider : VideoPr ovider
m _t ype : VideoPr ovider Type

+m _com pr essionType : VideoCom pr essionType
+m _videoM ult icast Addess : st r ing
+m _videoM ult icast Por t : long

VI DEO _PRO VI DER
VI DEO _SO URCE
VI DEO _CAM ERA
CO NTRO LLABLE_VI DEO _CAM ERA
NTCI P_CAM ERA
CO HU_3955_CAM ERA
VI CO N_SVFT_CAM ERA
BRI DG E_CI RCUI T_O UTPUT

+m _nam e : st r ing
+m _por t : long
+m _com m Por t Conf ig : Com m Por t Conf ig
+m _m odelType : Cam er aCont r olDeviceM odel

+m _com m M ode: Com m unicat ionM ode
+m _opSt at us: O per at ionalSt at us
+m _cont r ollingO pCent er : O pCent er I nf o
+m _m onit or I nf o: M onit or DisplayI nf o
+m _collect or I Ds : I dent if ier List
+m _deviceSt at usChangeTim eSecs: int
+m _m onit or St at usChangeTim eSecs: int

CO NTRO L_I P
CO NTRO L_CO M _PO RT
CO NTRO L_CO M M AND_PRO CESSO R

VI DEO _SO URCE_CO M PO NENT
VI DEO _SI NK_CO M PO NENT
VI DEO _BRI DG E_CI RCUI T

CO M PRESSI O N_M PEG 4
CO M PRESSI O N_M PEG 2

discr im inat or : Cam er aCont r olDeviceType
encoder Conf ig : VideoCont r olEncoder Conf ig
com Por t Conf ig : VideoCont r olCO M Por t Conf ig
cm dPr ocConf ig : VideoCont r olCm dPr ocConf ig

m _sinkI D : I dent if ier
m _t our I D : I dent if ier
m _t our Suspended : boolean

+m _id I dent if ier

CHART R10 Detailed Design – Rev 3 9-55 08/14/2012

9.14.8 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put

online, or put in maintenance mode through a standard interface. These states typically

apply only to field devices. When a device is taken offline, it is no longer available for use

through the system and automated polling (if any) is halted. When put online, a device is

again available for use by TrafficEvents within the system and automated polling is enabled

(if applicable). When put in maintenance mode a device is offline (i.e., cannot be used by

TrafficEvents), and maintenance commands appropriate for the particular type of device are

allowed to help in troubleshooting.

9.14.9 ControllingInfo (Class)

The ControllingInfo structure contains information about the entity controlling (or

requesting to control) a VideoCamera.

9.14.10 ControllingUserInfo (Class)

The ControllingUserInfo structure contains information about the monitor group and user

of the entity controlling (or requesting to control) a VideoCamera.

9.14.11 Decoder (Class)

This interface describes the Decoder interface. The decoder includes the

VideoReceivingDevice interface.

9.14.12 Encoder (Class)

The Encoder interface is implemented by classes representing any type of video encoder.

The Encoder interface includes both the Codec and the VideoSendingDevice interfaces,

which means in addition to providing forwarding of video, it also is used to send video

camera control commands and return responses to a camera control process.

9.14.13 Identifier (Class)

Wrapper class for a CHART2 identifier byte sequence. This class will be used to add

identifiable objects to hash tables and perform subsequent lookup operations.

9.14.14 MonitorDisplayInfo (Class)

This object is used to identify a video sink currently displaying video from a video

provider. A List of these structures is stored in a video provider's status.

9.14.15 OverrideNotRequestedException (Class)

his exception is thrown when attempt is made to display an image with requires a route, but

the route could not be made due to all routes already in use. The implication is that if

override had been requested, the route would be likely to be created (which would override

another route, or routes). Information is provided about what monitor(s) would be likely to

be overridden, along with what source each monitor is viewing.

CHART R10 Detailed Design – Rev 3 9-56 08/14/2012

9.14.16 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared

resources. Implementing classes must be able to provide a list of all shared resources under

their management. Implementing classes must also be able to tell others if there are any

resources under its management that are controlled by a given operations center. The

shared resource manager is also responsible for periodically monitoring its shared resources

to detect if the operations center controlling a resource doesn't have at least one user logged

into the system. When this condition is detected, the shared resource manager must push an

event on the ResourceManagement event channel to notify others of this condition.

9.14.17 SinkSourcePairVC (Class)

This structure contains a VideoSink ID and VideoSource ID pair.

9.14.18 SwitchEvent (Class)

This structure stores configuration information used to find and use the video control device

used to send/receive camera control commands/responses to/from a camera.

9.14.19 SwitchEventType (Class)

This enum lists the events related to switch control (switches and fabrics) that are pushed

on a switch event channel through the CORBA event service. The data pushed with these

events is defined in the SwitchEvent union.

9.14.20 TempPresetOwner (Class)

This interface must be implemented by any class that calls a controllable camera to create

temporary presets. The interface is utilized to ask the owner to verify that they still need

the presets they have created.

9.14.21 TempPresetOwnerInfo (Class)

This IDL struct contains info describing a TempPresetOwner including the owner id and

owner type.

9.14.22 TempPresetOwnerType (Class)

This IDL enumeration specifies the supported types of Temp Preset Owners. Currently

only TrafficEvents may own temporary presets.

9.14.23 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

9.14.24 VideoCollector (Class)

The VideoCollector interface is a generic abstract interface including VideoSink objects

(e.g. video monitors) and BridgeCircuit objects. Both VideoSink and BridgeCircuit objects

CHART R10 Detailed Design – Rev 3 9-57 08/14/2012

collect video from a VideoProvider, but only VideoSink objects are true destination

endpoints for video feeds which a typical user would have direct interaction with.

BridgeCircuit VideoCollector objects are merely an intermediate step in a VideoRoute

which eventually provides video ultimately to the VideoSink object(s) at the end of the

route(s).

9.14.25 VideoCollectorConfig (Class)

This structure defines configuration data common to all video collectors.

9.14.26 VideoCollectorFactory (Class)

This interface defines an object that is used to manage video collector objects in the system.

There is no create operation because VideoCollector is an abstract interface.

9.14.27 VideoCollectorInfo (Class)

A structure of related information about a single VideoCollector.

9.14.28 VideoCollectorStatus (Class)

This structure defines the data included in the status of a video collector.

9.14.29 VideoCollectorType (Class)

This enum lists the different types of VideoCollector in the system.

9.14.30 VideoComponentType (Class)

This enum lists the video compnent types supported by the software.

9.14.31 VideoCompressionType (Class)

This enum lists the models of camera control devices used.

9.14.32 VideoControlCmdProcConfig (Class)

This structure stores configuration information about a command processor based video

control device used to transmit camera control commands/responses to/from the camera.

This is the structure in a VideoControlDeviceConfig if its CameraControlDeviceType

discriminator is CONTROL_COMMAND_PROCESSOR.

9.14.33 VideoControlCOMPortConfig (Class)

This structure stores configuration information about a COM port based video control

device used to transmit camera control commands/responses to/from the camera. This

structure is in a VideoControlDeviceConfig if its CameraControlDeviceType discriminator

is CONTROL_COM_PORT.

9.14.34 VideoControlDevice (Class)

This interface is used to represent a video control device in the field. A video control

CHART R10 Detailed Design – Rev 3 9-58 08/14/2012

device is used to communicate camera control commands to a camera, and return responses

to the requester.

9.14.35 VideoControlDeviceConfig (Class)

This structure stores configuration information used to find and use the video control device

used to send/receive camera control commands/responses to/from a camera.

9.14.36 VideoControlDeviceStatus (Class)

This structure defines status data common to a video control device, i.e. ,a device used to

send/receive camera control commands/responses to/from the camera.

9.14.37 VideoControlEncoderConfig (Class)

This structure stores configuration information about an IP encoder based video control

device used to transmit camera control commands/responses to/from the camera. This

structure is in a VideoControlDeviceConfig if its CameraControlDeviceType discriminator

is CONTROL_IP.

9.14.38 VideoDeviceType (Class)

This enum lists the types video transmission devices that a video transmission device can

be.

9.14.39 VideoFabric (Class)

The VideoFabric interface is implemented by a class representing any Video Fabric in the

CHART system. This interface provides access to configuration for the video fabric.

9.14.40 VideoFabricConfig (Class)

This class contains the configuration information for a given VideoFabric.

9.14.41 VideoFabricConfigEventInfo (Class)

This struct is used for passing event data related to a video fabric configuration when a

video fabric is added to the system or undergoes a configuration change.

9.14.42 VideoFabricInfo (Class)

A structure of related information about a single VideoFabric.

9.14.43 VideoProvider (Class)

The VideoProvider interface is a generic abstract interface including VideoSource objects

(e.g. video cameras) and BridgeCircuit objects. Both VideoSource and BridgeCircuit

objects provide video to a VideoCollector, but only VideoSource objects are true origins of

video which a typical user would have direct interaction with. BridgeCircuit VideoProvider

objects merely pass on video provided from elsewhere in a VideoRoute.

CHART R10 Detailed Design – Rev 3 9-59 08/14/2012

9.14.44 VideoProviderConfig (Class)

This structure defines configuration data common to all video sources.

9.14.45 VideoProviderFactory (Class)

This interface defines an object that is used to manage video provider objects in the system.

There is no create operation because VideoProvider is an abstract interface.

9.14.46 VideoProviderInfo (Class)

A structure of related information about a single VideoProvider.

9.14.47 VideoProviderStatus (Class)

The VideoProviderStatus structure is used to hold and transmit status information about

VideoProvider objects at the VideoProvider level. Further details about lower-level

VideoProvider subclasses are provided by subclasses of VideoProviderStatus.

9.14.48 VideoProviderType (Class)

This enum lists the different types of VideoProvider in the system.

9.14.49 VideoReceivingDevice (Class)

The VideoReceivingDevice interface is used to represent a video receiving device in the

field. These devices are used to actually connect a video provider to a video collector. The

system contains an instance of this interface for each video receiving device.

9.14.50 VideoReceivingDeviceInfo (Class)

A tuple of related information about a single VideoReceivingDevice.

9.14.51 VideoReceivingDeviceStatus (Class)

This structure defines status data for video receiving devices.

9.14.52 VideoRoute (Class)

This interface defines the operations for a video route.

9.14.53 VideoRouteConfig (Class)

This structure defines configuration data for a VideoRoute.

9.14.54 VideoRouteInfo (Class)

A structure of related information about a single VideoRoute.

9.14.55 VideoRouteManager (Class)

The VideoRouteManager interface is implemented by a class which provides video routing

capabilities within CHART II. This router does not need to be used (in fact, cannot be

used) when the VideoSource and VideoSink are on the same switch fabric -- it is used only

CHART R10 Detailed Design – Rev 3 9-60 08/14/2012

to make video routes across switch fabrics.

9.14.56 VideoRouteStatus (Class)

This structure defines status data for a video route.

9.14.57 VideoSendingDevice (Class)

The VideoSendingDevice interface is implemented by objects which can be used to send

video to a corresponding VideoReceivingDevice. A VideoSendingDevice may be an

MPEG encoder or may be an input port on a video switch.

9.14.58 VideoSendingDeviceStatus (Class)

The VideoSendingDeviceStatus structure is used to store generic status information

common to all types of VideoSendingDevice objects. Subclasses will provide additional

information specific to the type of object/interface referenced at that level of the

VideoTransmissionDevice inheritance tree at that point.

9.14.59 VideoSwitch (Class)

The V1500Switch interface is implemented by a class representing any V1500 Video

Switch in the CHART system. This interface provides access to configuration and status

information for the siwtch, and provides connect and disconnect functions for making and

breaking video connections.

9.14.60 VideoSwitchConfig (Class)

This represents the configuration information for a V1500 switch (R2B2).

9.14.61 VideoSwitchConfigEventInfo (Class)

This struct is used for passing event data related to a video switch configuration when a

video switch is added to the system or undergoes a configuration change.

9.14.62 VideoSwitchFactory (Class)

The VideoSwitchFactory interface is used to create and manage VideoSwitch objects and

SwitchFabric objects in the system.

9.14.63 VideoSwitchInfo (Class)

A structure of related information about a single VideoSwitch.

9.14.64 VideoSwitchModel (Class)

This enum lists the models video switches a VideoSwitch can be.

9.14.65 VideoSwitchStatus (Class)

This represents the status information for a V1500 switch (R2B2).

CHART R10 Detailed Design – Rev 3 9-61 08/14/2012

9.14.66 VideoSwitchStatusEventInfo (Class)

This struct is used for passing event data related to a video switch status when a video

switch undergoes a status change.

9.14.67 VideoTransmissionDevice (Class)

The VideoTransmissionDevice interface is used to represent a video transmision device in

the field (either a video sending device or a video receiving device). These devices are used

to actually connect a video provider to a video collector. The system contains an instance

of this interface for each video transmission device.

9.14.68 VideoTransmissionDeviceConfig (Class)

This structure defines configuration data common to all video transmission devices.

9.14.69 VideoTransmissionDeviceStatus (Class)

This structure defines status data common to all video transmission devices.

9.14.70 VideoTransmissionMedium (Class)

This enum lists the video transmission media supported by the software.

9.15 VideoControlR10 (Class Diagram)

This class diagram shows the changes for VideoControl IDL for R10. Updated to support

AutoModeMonitors and CameraTempPresets.

Figure 9-15. VideoControlR10 (Class Diagram)

9.15.1 AutoModeTourEntryOwnerInfo (Class)

This struct contains data that defines an AutoModeTour owner.

AutoModeTourVideoSourceInfo

«type» TempPresetOwner

TempPresetOwnerInfo

«type»

New for R10

1

1

AutoModeTourEntryOwnerInfo

«type»

TempPresetOwnerType

«enumeration»

AutoModeTourEntryOwnerType

«enumeration»

VideoControl IDL Updates for R10

1

1

UniquelyIdentifiable

«interface»

m_videoSourceID : Identifier
m_presetNum : int
m_tempPresetID : Identifier
m_entryOrdinal : int

m_ownerId : Identifier
m_ownerType :
 AutoModeTourEntryOwnerType

TRAFFIC_EVENT

+validateTempPresets(cameraID): IdentifierList
+failedToCreateTempPreset(cameraID, tempPreasetID,
 String : description)

m_ownerId: Identifier
m_ownerType:TempPresetOwnerType TRAFFIC_EVENT

CHART R10 Detailed Design – Rev 3 9-62 08/14/2012

9.15.2 AutoModeTourEntryOwnerType (Class)

This enumeration defines the types of AutoModeTourEntryOwner types supported in

CHART2.

9.15.3 AutoModeTourVideoSourceInfo (Class)

This struct is used to define video source information used as part of an AutoModeTour.

9.15.4 TempPresetOwner (Class)

This interface must be implemented by any class that calls a controllable camera to create

temporary presets. The interface is utilized to ask the owner to verify that they still need

the presets they have created.

9.15.5 TempPresetOwnerInfo (Class)

This IDL struct contains info describing a TempPresetOwner including the owner id and

owner type.

9.15.6 TempPresetOwnerType (Class)

This IDL enumeration specifies the supported types of Temp Preset Owners. Currently

only TrafficEvents may own temporary presets.

9.15.7 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

CHART R10 Detailed Design – Rev 3 10-1 08/14/2012

10 Package Designs

10.1 CameraControlModule

10.1.1 CameraControlModule (Class Diagram)

This diagram shows the classes with comprise the CameraControlModule. The

CameraControlModule is an installable module that serves the camera-type objects and

factories to the rest of the CHART II system. This diagram shows how the implementation

of these CORBA interfaces rely on other supporting classes to perform their functions. The

CameraControlModule is responsible for serving all VideoSource objects including

controllable cameras, fixed cameras, No Video Available sources, and potentially any other

image generators, etc. The COHU3955CameraImpl, viconSVFTCameraImpl, and

NTCIPCameraImpl are the primary classes operating in this module. These objects provide

all access to the camera status and configuration. The CameraControlModule also includes

factory implementations responsible for providing lists of cameras and other such objects to

interested clients.

10.1.1.1 BlockToPublicCmd (Class)

This class represents the information needed to create a block camera to public command to

be added on the CommandQueue.

M oveToTempPreset Cmd

new f or R10

TempPreset O w nerHel per
SaveTempPreset Cmd

Del et eTempPreset Cmd

Cl eanupTempPreset Task
1

1

1

1 1

New f or R10
Tem pPr eset St ar t Nunber
Tem pPr ser t Range
Ent r yO wner Tim eout M in
CleanupTem pPr eset Tim er DelayM illis

New f or R10

Set SFSBl ockedCmd

Cont rol l i ngI nf o
«st r uct »

1

Vi deoCont rol Fl ashConf i g
«st r uct »

1

1

TakeCameraO f f l i neCmd

Vi deoProvi derSt at us
«st r uct »

1

Vi deoCameraSt at us
«st r uct »

1

1

1

CameraProt ocol Hdl r

CameraCont rol ComPort

1

1

FullTour St at usUpdat eFlag - says whet her t o push st at us
updat es f or cam er a st at us updat es f or changes t o t he
act ive m onit or list per t aining t o t our s only. Pr obably
def ault t o t r ue unless t hat causes t oo m uch t r af f ic.

FullTour O psLoggingFlag - sam e except f or wr it ing t o O ps
Log. Pr obably def ault t o f alse unless we need it f or
t r oubleshoot ing a pr oblem , as t his would be a lot of excess
O ps Log ent r ies.

Vi deoCameraI mpl

Vi deoSource
«int er f ace»

CommEnabl ed
«int er f ace»

get s m odule pr ops using

cr eat es

1

1

1

CO HUProt ocol Hdl r

1

1

M oveToPreset Cmd

CameraCont rol Devi ce

Vi deoCamera
«int er f ace»

Vi deoProvi der
«int er f ace»

Vi deoSourceSt at us
«st r uct »

1

Q ueueabl eCommand
«int er f ace»

Di spl ayI mageCmd

1

CO HU3955Camera
«int er f ace»

1

1

1

CommandProcessor
«int er f ace»

1

Vi deoCameraConf i g
«st r uct »

Vi deoSourceConf i g
«st r uct »

1

Vi conSVFTProt ocol Hdl r

Cont rol l abl eVi deoCameraConf i g
«st r uct »

Servi ceAppl i cat i onM odul e
«int er f ace»

Servi ceAppl i cat i on
«int er f ace»

Vi deoProvi derConf i g
«st r uct »

Dat aPort Enabl ed
«int er f ace»

NTCI PCameraConf i g
«st r uct »

1

Vi deoCont rol Fl ashSt at us

NTCI PCameraSt at us
«st r uct »

11

1

1

NTCI PCameraI mpl

NTCI PCamera
«int er f ace»

*

1

1

1

1

1

*

NTCI PCameraProt ocol Hdl r

NTCI PCameraPosi t i onRef erence
NTCI PCameraCommands

1
1

1

DBConnect i onM anager

1

j ava. ut i l . Ti mer

*

CameraCont rol DB

1

1

1

1

1

PushEvent Suppl i er

1

CheckForAbandonedCameraTask
1

Encoder

j ava. ut i l . Ti merTask

1

1

1

CameraConf i gVal i dat i on

Vi deoProvi derI mpl

1

1

1

CameraCont rol M odul ePropert i es

1

1

1

Cont rol l abl eVi deoCameraI mpl

1

Vi conSVFTCameraSt at us
«st r uct »

1

Cont rol l abl eVi deoCamera
«int er f ace»

*

Cont rol l abl eCameraFact oryI mpl

1

Vi deoCameraFact ory
«int er f ace»

1

Pol l CameraTask

CameraCont rol M odul e

CO HU3955CameraI mpl

1

1

RevokeDi spl ayCmd

1

Bl ockToPubl i cCmd

RevokeCont rol Cmd

1

1

1

1

CO HU3955CameraSt at us
«st r uct »

Vi conSVFTCameraI mp

Uni quel yI dent i f i abl e
«int er f ace»

Put CameraO nl i neCmd

1

1

1 1
1

1

1
1

1 1

1

1

1

1

1

1

1

CameraCommand
«st r uct »

Request CameraO verr i deCmd

1

1

CommandQ ueue

Termi nat eCont rol Cmd

Cont rol l abl eVi deoCameraSt at us
«st r uct »

1

Request CameraCont rol Cmd

1

get I D()
get Nam e()

t akeO f f line(AccessToken, Com m andSt at us) : void
put O nline(AccessToken, Com m andSt at us) : void
put I nM aint enanceM ode(AccessToken, Com m andSt at us) : void
get Com m M ode() : Com m unicat ionM ode

+cr eat eVideoCam er a(t oken, conf ig) : VideoCam er a
+get Cam er aI nf oList () : VideoCam er aI nf o[]
+get ValidRegionList () : St r ing[]

+m _com ponent Type : VideoCom ponent Type
+m _nam e : St r ing
+m _net wor kConnect ionSit e : St r ing
+m _owningO r gI D : byt e[]
+m _pr ovider Type : VideoPr ovider Type
+m _sendingDeviceConf ig : VideoTr ansm issionDeviceConf ig[]
+m _sendingDeviceI Ds : byt e[] []

+cr eat eCam er a(byt e[] , VideoPr ovider Conf ig) : void
+get Pr ovider I nf oList () : VideoPr ovider I nf o[]
+get Sour ceI nf oList () : VideoSour ceI nf o[]
+get NoVideoAvailableSour ces() : VideoSour ce[]
+get NoVideoAvailableSour cesFor Fabr ic(swit chFabr icI D) : VideoSour ceI nf o[]
+get O nlineNoVideoAvailableSour ces() : VideoSour ceI nf o[]
+get O nlineNoVideoAvailableSour cesFor Fabr ic(swit chFabr icI D) : VideoSour ceI nf o[]
+get Cam er aI nf oList () : VideoCam er aI nf o[]
+get ValidRegionList () : St r ing[]
+get Cont r ollableCam er aI nf oList () : Cont r ollableVideoCam er aI nf o[]
+get I D() : I dent if ier
+get Nam e() : St r ing
+get Resour ces() : Shar edResour ce[]
+get Cont r olledResour ces(opCt r I D) : Shar edResour ce[]
+hasCont r olledResour ces(opCt r I D) : boolean
checkFor AbandonedCam er aO bject s()
+checkFor Cam er aTim eout ()
f indO pCent er Nam e(opCt r I D) : St r ing
- get O pCent er Nam esFr om Tr ader ()
#get AllowSim ulat ion() : boolean
get LogFlags() : boolean[]
get Host Nam e() : St r ing
get Cam er aPushEvent Supplier () : PushEvent Supplier
get Pr oper t ies() : Cam er aCont r olM odulePr oper t ies
pollCam er aO bject s()
shut down() : boolean
- addCam er aTypesToTr ader ()
- alar m I f NoLoggedI nUser s(I dent if ier , St r ing)
- get Cont r ollingO pCent er s() : Hasht able
+doG et NoVideoAvailableSour ces(swit chFabr icI D, boolean) : VideoSour ceI nf o[]
- logPr od(St r ing, St r ing)
#logSt ackPr od(St r ing, St r ing, Except ion)
- log(St r ing, St r ing, St r ing)
#logLockDone(St r ing)
#logLockRcvd(St r ing)
#logLockRqst (St r ing)
- opLog(t oken, St r ing, int , St r ing, St r ing)
#set Sim ulat ionFlag(St r ing, St r ing) : boolean
- cr eat eDum m yCam er a()
f indVideoSink(I dent if ier) : VideoSink
f indM onit or G r oup(I dent if ier) : M onit or G r oup
- get VideoSinkRef sFr om Tr ader ()
- get M onit or G r oupRef sFr om Tr ader ()
+cleanupCam er aTem pPr eset ()

- m _allowSim ulat ion : boolean
- m _pr ovider I m plVect : Vect or
- m _cam er aI m plVect : Vect or
- m _cont r ollableI m plVect : Vect or
- m _db : Cam er aCont r olDB
- m _cam er aPushEvent Supplier : PushEvent Supplier
- m _cam er aSt at usLogFile : LogFile
- m _host Nam e : St r ing
- m _idO bj : I dent if ier
- m _lockFact or y : O bject []
- m _logFlags : boolean[]
- m _nam e : St r ing
m _opCent er Nam es : Hasht able
- m _r esM gm t PushEvent Supplier : PushEvent Supplier
- m _shar edResM onI nt : int
- m _shut down : boolean
- m _svcApp : Ser viceApplicat ion
- m _t im eDownSecs : int
- m _pr ops : Cam er aCont r olM odulePr oper t ies
- m _validRegions : St r ing[]
m _videoSinkRef s : Hasht able
m _m onit or G r oupRef s : Hasht able

+get Pr ovider St at us() : VideoPr ovider St at us
+get Pr ovider Conf ig(t oken) : VideoPr ovider Conf ig
+r em ovePr ovider (t oken)
+addDisplay(t oken, displayI nf o) : void
+r em oveDisplay(t oken, displayI D)
+addConnect edCollect or (t oken, collect or I D)
+r em oveConnect edCollect or (t oken, collect or I D)

+get Sour ceSt at us() : VideoSour ceSt at us
+get Sour ceConf ig(I dent if ier) : VideoSour ceConf ig
+set Sour ceConf ig(I dent if ier , VideoSour ceConf ig, Com m andSt at us)
+set User DisplaySt at us(I dent if ier , boolean)
+blockToPublic(t oken, Ext endedCom m andSt at us)
+set SFSBlocked(t oken, sf sHost , blocked : boolean, Com m andSt at us) : void
+unblockToPublic(t oken)
+set RevokeDisplayO r gs(t oken, r evokedO r gI Ds, xCm dSt at)
+isNoVideoAvailable() : boolean
+isDisplayable(I dent if ier , VideoCollect or I nf o, r eason: st r ing) : boolean
+isRem ovable(VideoCollect or I nf o, m onit or G r oupI D[] , r eason: st r ing) : boolean

+m _host : st r ing
+m _por t : shor t
+m _passwor d : st r ing
+m _public : boolean

init ialize(Ser viceApplicat ion app) : boolean
get Ver sion() : Com ponent Ver sion
t r ader G r oupUpdat ed() : void
shut down(Ser viceApplicat ion app) : boolean

Ser viceApplicat ion m _svcApp;
Def ault Ser viceApplicat ionPr oper t ies m _pr ops;

m _owner Ref : Tem pPr eset O wner
m _owner I nf o : Tem pPr eseO wner I nf o
m _owner Rem oveTim eout : long

+m _pr ovider Conf ig: VideoPr ovider Conf ig
+m _m aint ainingO r gI D : I dent if ier
+m _isNoVideoAvailableSour ce: boolean
+m _st r eam ingFlashConf ig : VideoCont r olFlashConf ig[]

+m _sour ceConf ig: VideoSour ceConf ig
+m _cam er aNum ber : int
+m _locat ion: O bject Locat ion
+m _r egions: st r ing[]
+m _displayO nI nt r anet M ap : boolean
+m _displayO nPublicM ap : boolean
+m _t m ddDeviceNam e: st r ing
+m _t m ddCCTVI m age: Tm ddCct vI m ageType
+m _t m ddCont r olType: Tm ddCam er aCont r olType
+m _t m ddLocnExt Hor izDat um : LRM SHor izont alDat um Type
+m _t m ddLocnExt LRM SLat it ude: int
+m _t m ddLocnExt LRM SLongit ude: int
+m _t m ddLocnExt Ver t Dat um : LRM SVer t icalDat um Type
+m _t m ddLocnExt LRM SHeight : int
+m _t m ddLocnExt Ver t Level: int
+m _t m ddRequest Com m ands: int

+isCont r ollable() : boolean
+get Cam er aSt at us() : VideoCam er aSt at us
+get Cam er aConf ig(t oken) : VideoCam er aConf ig
+set Cam er aConf ig(t oken, VideoCam er aConf ig)
+set Locat ion(t oken, ol)

+get Cont r ollableCam er aSt at us() : Cont r ollableVideoCam er aSt at us
+get Cont r ollableCam er aConf ig(t oken) : Cont r ollableVideoCam er aConf ig
+set Cont r ollableCam er aConf ig(t oken, conf ig, cm dSt at)
+set User Cont r olSt at us(t oken, st at e)
+r equest Cont r ol(t oken, over r ideRequest ed: boolean, inf o: Cont r ollingI nf o, cm dSt at : Com m andSt at us)
+t er m inat eCont r ol(t oken)
+set RevokeCont r olO r gs(t oken, r evokedO r gI Ds, cm dSt at)
+isCont r olled() : boolean
+get ValidTit leChar s() : st r ing
+adjpan(t oken, dir ect ion: int)
+adjTilt (t oken, dir ect ion: int)
+adjZoom (t oken, dir ect ion: int)
+adjFocus(t oken, wher e: int)
+adjI r is(t oken, dir ect ion: int)
+set Aut oI r is(t oken, boolean)
+adjRed(t oken, dir ect ion)
+adjBlue(t oken, dir ect ion)
+set Act iveTit le(t oken, t it le, lineNum : in, cm dSt at : Com m andSt at ust)
+r eset Cam er a(t oken)
+pollCar m er a(t oken)
+m oveToPr eset (t oken, pr eset , f or Tour)
+savePr eset (t oken, cam Pr eset , cm dSt at)
+delet ePr eset (t oken, pr eset Num , cm dSt at)
+m oveToTem pPr eset (t oken, pem pPr eset I D, cm dSt at)
+saveTem pPr eset (t oken, pr eset O wner , cm dSt at) : Tem pPr eset Cr eat ionResult
+delet eTem pPr eset (t oken, t em pPr eset I D, cm dSt at)
+r em oveTem pPr eset List For O wner (t oken, owner I d)

schedule() : void
cancel() : void

+init ialize(Ser viceApplicat ion) : boolean
+shut down(Ser viceApplicat ion) : boolean
- cr eat eEvent Channel(St r ing) : PushEvent Supplier
- cr eat eCam er aFact or y(int) : boolean
- addCam er aFact or yTypesToTr ader () : void
+get Ver sion() : Com ponent Ver sion

- m _svcApp : Ser viceApplicat ion
- m _db : Cam er aCont r olDB
- m _cam er aEvent Supplier : PushEvent Supplier
- m _r esM gm t Event Supplier : PushEvent Supplier
- m _cam er aFact or y : Cam er aFact or yI m pl
- m _pr ops : Cam er aCont r olM odulePr oper t ies
- m _t im er : Tim er

+get AllowSim ulat ion() : boolean
+get Sim ulat edCom m sSuccessRat e() : int
+get LogFlags() : St r ing
+get PollTim er DelayM illis() : int
+get Recover yTim er DelaySecs() : int
+get Shar edResM onI nt () : int
+get Cam er aCont r olResponseTim eO ut M illi() : int
+get Cam er aCont r olSessionTim eO ut Secs() : int
+get Last NSt at eChangeM ar ginalDenom inat or () : int
+get Last NSt at eChangeM ar ginalNum er at or () : int
+get Recent St at eChangeCount () : int
+get Recent St at eChangeTim eSecs() : int
+get CO HU3955ValidTit leChar act er s() : St r ing
+get Tem pPr eset St ar t Nunber () : int
+get Tem pPr ser t Range() : int
+ent r yO wner Tim eout M in() : long
+get CleanupTem pPr eset Tim er DelayM illis() : int
+get Cam er aM inDwellTim eM ills() : int

- m _pr ops : Pr oper t ies
- m _def ault s : Pr oper t ies

+blockToPublic(byt e[] , Ext endedCom m andSt at us) : void
+blockToPublicI m pl(
 Ext endedCom m andSt at us) : I m ageRem ovalResult
+clear Tim er s() : void
+get Cam er aConf ig(t oken) : VideoCam er aConf ig
+get Cam er aSt at us() : VideoCam er aSt at us
+get Cont r ollingO pCent er () : O pCent er I nf o
+get Locat ionDesc() : st r ing
+get Locat ionPr of iles() : Locat ionPr of iles[]
+get O wningO r gI D() : I dent if ier
+get Sour ceConf ig(I dent if ier) : VideoSour ceConf ig
+get Sour ceSt at us() : VideoSour ceSt at us
+isCont r ollable() : boolean
+isDisplayable(t oken, VideoCollect or I nf o, st r ing) : boolean
+isNoVideoAvailable() : boolean
+isRem ovable(VideoCollect or I nf o, m onit or G r oupI D[] , st r ing)
#pushSt at us(desc, war nTxt) : boolean
#per sist Dat a(desc, war nTxt) : boolean
#per sist St at us(desc, war nTxt) : boolean
+r evokeDisplayI m pl(byt e[] [] ,
 Ext endedCom m andSt at us) : I m ageRem ovalResult
+set Cam er aConf ig(t oken, VideoCam er aConf ig)
+set Locat ion(t oken: byt e[] , locat ion: O bject Locat ion) : void
+set Cont r ollingO pCent er (t oken, O pCent er I nf o)
+set RevokeDisplayO r gs(byt e[] , byt e[] [] ,
 Ext endedCom m andSt at us) : void
+set Sour ceConf ig(t oken, VideoSour ceConf ig)
+set User DisplaySt at us(t oken, boolean)
+r em ove(t oken)
+unblockToPublic(byt e[]) : void
- checkCont r ollingO pCent er Nam e()
+clear DeviceFor O f f lineM ode(t oken, Com m andSt at us)
cr eat ePO ATie() : Ser vant
debugPr int Conf ig(St r ing, St r ing, VideoSour ceConf ig)
debugPr int Conf ig(St r ing, St r ing, VideoCam er aConf ig)
debugPr int Dat a(St r ing, St r ing, Cam er aDat a)
debugPr int St at us(St r ing, St r ing, VideoSour ceSt at us)
debugPr int St at us(St r ing, St r ing, VideoCam er aSt at us)
get Ser viceTypeNam e() : St r ing
get Pr ovider Type() : VideoPr ovider Type
#init Def ault Cam er aDat a() : Cam er aDat a
#init Def ault Cam er aSt at us() : VideoCam er aSt at us
#init Def ault Sour ceSt at us() : VideoSour ceSt at us
isNoVideoAvailableSour ce() : boolean
- enablePublicFlashVideo()
- disablePublicFlashVideo()
set SFSBlockedI m pl(byt e[] , St r ing, boolean, Com m andSt at us) : void
- set St r eam sBlockedI nPublicSFSs(boolean, I m ageRem ovalResult ,
 Com m andSt at us) : void

#m _sour ceConf ig: VideoSour ceConf ig
#m _cam er aConf ig: VideoCam er aConf ig
#m _sour ceSt at us: VideoSour ceSt at us
#m _cam er aSt at us: VideoCam er aSt at us
#m _cam er aDat a: Cam er aDat a
m _displayTim er : Tim er
m _displayTim er Running: boolean
- m _isVideoSour ceO nly: boolean
m _publicTim er : Tim er
m _publicTim er Running: boolean
m _r evokeDisplayTask: RevokeDisplayTask
m _r evokePublicTask: RevokePublicTask

+validat eCf g(byt e[] , CO HU3955Cam er aConf ig, CO HU3955Cam er aConf ig
, Com m andSt at us, boolean[] , VideoPr ovider St at us, boolean)
+validat eCf g(byt e[] , Cont r ollableVideoCam er aConf ig,
Cont r ollableVideoCam er aConf ig, Com m andSt at us, boolean[] ,
VideoPr ovider St at us, boolean)
+validat eCf g(byt e[] , ViconSVFTCam er aConf ig, ViconSVFTCam er aConf ig,
Com m andSt at us, boolean[] , VideoPr ovider St at us, boolean)
+validat eCf g(byt e[] , VideoCam er aConf ig, VideoCam er aConf ig,
Com m andSt at us, boolean[] , VideoPr ovider St at us, boolean)
+validat eCf g(byt e[] , VideoPr ovider Conf ig, VideoPr ovider Conf ig,
Com m andSt at us, boolean[] , VideoPr ovider St at us, boolean)
+validat eCf g(byt e[] , VideoSour ceConf ig, VideoSour ceConf ig,
Com m andSt at us, boolean[] , VideoPr ovider St at us, boolean)
+validat eCf g(byt e[] , NTCI PCam er aConf ig, NTCI PCam er aConf ig,
Com m andSt at us, boolean[] , VideoPr ovider St at us, boolean)
#logLockDone(St r ing)
#logLockRcvd(St r ing)
#logLockRqst (St r ing)
#ver if yCom m M ode(Com m unicat ionM ode, St r ing, Com m andSt at us)
- log(St r ing, St r ing, St r ing)

+CheckFor AbandonedCam er aTask
 (Cont r ollableCam er aFact or yI m pl)
+r un()

- m _cont r ollableCam er aFact :
 Cont r ollableCam er aFact or yI m pl

r un()

#cr eat eNTCI PCam er aI m pl(I dent if ier , NTCI PCam er aConf ig, NTCI PCam er aSt at us)
 : NTCI PCam er aI m pl
+delet eCam er a(I dent if ier) : void
+delet eCam er aWit hConnect ion(I dent if ier , Connect ion) : boolean
- get Cam er aConf ig(I dent if ier) : Cam er aConf ig;
- get Cam er aList () : VideoPr ovider I m pl[] ;
- get Cam er aSt at us(I dent if ier) : Cam er aSt at us;
- get CO HU3955Cam er aConf ig(I dent if ier) : CO HU3955Cam er aConf ig;
- get CO HU3955Cam er aSt at us(I dent if ier) : CO HU3955Cam er aSt at us;
- get Cont r ollableCam er aConf ig(I dent if ier) : Cont r ollableVideoCam er aConf ig;
- get Cont r ollableCam er aPr eset (I dent if ier , int) : Cont r ollableVideoCam er aPr eset
- get Cont r ollableCam er aPr eset List (I dent if ier) : Cam er aPr eset [] ;
- get Cont r ollableCam er aSt at us(I dent if ier) : Cont r ollableVideoCam er aSt at us;
- get DeviceConf ig(I dent if ier) VideoTr ansm issionDeviceConf ig; ()
- get DeviceSt at us(I dent if ier) : VideoTr ansm issionDeviceSt at us;
+get NTCI PCam er aConf ig(I dent if ier) : NTCI PCam er aConf ig
- get NTCI PCam er aConf igWit hConnect ion(I dent if ier , Connect ion) :
 NTCI PCam er aConf ig
+get NTCI PCam er aSt at us(I dent if ier) : NTCI PCam er aSt at us
- get NTCI PCam er aSt at usWit hConnect ion(I dent if ier , Connect ion) :
 NTCI PCam er aSt at us
- get Pr ovider Conf ig(I dent if ier) : VideoPr ovider Conf ig;
- get Pr ovider St at us(I dent if ier) : VideoPr ovider St at us;
- get RegionList () : St r ing[] ;
- get Sour ceConf ig(I dent if ier) : VideoSour ceConf ig;
- get Sour ceSt at us(I dent if ier) : CideoSour ceSt at us;
- get ViconSVFTCam er aConf ig(I dent if ier) : ViconSVFTCam er aConf ig;
+inser t Cohu3955Cam er a(I dent if ier , CO HU3955Cam er aConf ig) :
 CO HU3955Cam er aI m pl;
+inser t NTCI PCam er a(I dent if ier , NTCI PCam er aConf ig) : NTCI PCam er aI m pl
+inser t ViconSVFTCam er a(I dent if ier , ViconSVFTCam er aConf ig) :
 ViconSVFTCam er aI m pl;
+inser t VideoCam er a(I dent if ier , VideoCam er aConf ig) : VideoCam er aI m pl;
+inser t VideoSour ceCam er a(I dent if ier , VideoSour ceConf ig) : VideoCam er aI m pl;
set Cam er aDat a (I dent if ier , Cam er aDat a) void; ()
set Cam er aSt at us(I dent if ier , VideoCam er aSt at us) void; ()
set CO HU3955Cam er aConf ig(I dent if ier , CO HU3955Cam er aConf ig) void; ()
- set CO HU3955Cam er aConf igWit hConnect ion(I dent if ier ,
 CO HU3955Cam er aConf ig, Connect ion) void; ()
set CO HU3955Cam er aSt at us(I dent if ier , CO HU3955Cam er aSt at us) void; ()
set Cont r ollableCam er aConf ig(I dent if ier , Cont r ollableVideoCam er aConf ig) void; ()
- set Cont r ollableCam er aConf igWit hConnect ion(I dent if ier ,
 Cont r ollableVideoCam er aConf ig, Connect ion) void; ()
set Cont r ollableCam er aPr eset (I dent if ier , Cont r ollableVideoCam er aPr eset) void; ()
set Cont r ollableCam er aSt at us(I dent if ier , Cont r ollableVideoCam er aSt at us) void; ()
set Fact or yI m pl(Cont r ollableCam er aFact or yI m pl) void; ()
+set NTCI PCam er aConf ig(I dent if ier , NTCI PCam er aConf ig)
- set NTCI PCam er aConf igWit hConnect ion
 (I dent if ier , NTCI PCam er aConf ig, Connect ion)
+set NTCI PCam er aSt at us(I dent if ier , NTCI PCam er aSt at us)
- set NTCI PCam er aSt at usWit hConnect ion
 (I dent if ier , NTCI PCam er aSt at us, Connect ion)
set Revoke(I dent if ier , VideoSour ceSt at us) void; ()
- set RevokeWit hConnect ion(I dent if ier , VideoSour ceSt at us, Connect ion) void; ()
set Sour ceSt at us(I dent if ier , VideoSour ceSt at us) void; ()
set ViconSVFTCam er aConf ig(I dent if ier , ViconSVFTCam er aConf ig) void; ()
- set ViconSVFTCam er aConf igWit hConnect ion(I dent if ier ,
 ViconSVFTCam er aConf ig, Connect ion) void; ()
set ViconSVFTCam er aSt at us(I dent if ier , ViconSVFTCam er aSt at us) void; ()
set VideoCam er aConf ig(I dent if ier , VideoCam er aConf ig) void; ()
- set VideoCam er aConf igWit hConnect ion(I dent if ier , VideoCam er aConf ig,
 Connect ion) void; ()
set VideoPr ovider Conf ig(I dent if ier , VideoPr ovider Conf ig) void; ()
- set VideoPr ovider Conf igWit hConnect ion(I dent if ier , VideoPr ovider Conf ig,
 Connect ion) void; ()
set VideoPr ovider St at us(I dent if ier , VideoPr ovider St at us) void; ()
set VideoSour ceConf ig(I dent if ier , VideoSour ceConf ig) void; ()
- set VideoSour ceConf igWit hConnect ion(I dent if ier , VideoSour ceConf ig,
 Connect ion) void; ()
+set Tem pCam er aPr eset (I dent if ier , Cont r ollableVideoCam er aTem pPr eset) void() ; ()
+get Tem pCam er aPr eset (I dent if ier) : Cont r ollableVideoCam er aTem pPr eset
+get Tem pCam er aPr eset List (I dent if ier) : Cont r ollableVideoCam er aTem pPr eset []

- m _dbConnM gr : DBConnect ionM anager 2
- m _cam er aFact or yI m pl : Cont r ollableCam er aFact or yI m pl
- m _cam er aPushEvent Supplier : PushEvent Supplier
- m _net wor kConnect ionSit e : St r ing
- m _svcApp : Ser viceApplicat ion

+m _cam er aConf ig: VideoCam er aConf ig
+m _cont r olDeviceI D: I dent if ier
+m _cont r olDeviceConf ig : VideoCont r olDeviceConf ig
+m _pollEnabled: boolean
+m _pollI nt er valCont r olledSecs: long
+m _pollI nt er valUncont r olledSecs: long
+m _enableDeviceLogging : boolean
+m _def ault Pr eset Num : shor t
+m _def ault Tit le : st r ing

+r un()
+PollCam er aTask(Cont r ollableCam er aFact or yI m pl)

- m _cont r ollableCam er aFact : Cont r ollableCam er aFact or yI m pl

#pushSt at us(St r ing, St r ingBuf f er)
#per sist St at us(St r ing, St r ingBuf f er)
+adjFocus(byt e[] , int)
+adjI r is(t oken, int)
+adjPan(t oken, int)
+adjTilt (t oken, int)
+adjZoom (t oken, int)
+clear Tim er s() : void
+get Cont r ollableCam er aConf ig(t oken) : Cont r ollableVideoCam er aConf ig
+get Cont r ollableCam er aSt at us() : Cont r ollableVideoCam er aSt at us
+isCont r ollable() : boolean
+m oveToPr eset (t oken, shor t , boolean)
+pollCam er a(t oken, boolean) : boolean
+r em ove(t oken)
+r equest Cont r ol(t oken, boolean, Cont r ollingI nf o, Com m andSt at us)
+r eset Cam er a(t oken)
+r evokeCont r olm pl(byt e[] [] , Com m andSt at us) : boolean
+savePr eset (t oken, shor t , St r ing)
+set Act iveTit le(t oken, St r ing, shor t , Com m andSt at us)
+set Aut oI r is(t oken, boolean)
+set Cont r ollableCam er aConf ig(t oken, Cont r ollableVideoCam er aConf ig)
+set RevokeCont r olO r gs(byt e[] , byt e[] [] , Com m andSt at us) : void
+set User Cont r olSt at us(t oken, boolean)
+t er m inat eCont r ol(t oken, Com m andSt at us)
+clear DeviceFor O f f lineM ode(t oken, Com m andSt at us)
+isRem ovable(VideoCollect or I nf o, m onit or G r oupI D[] , St r ingHolder) : boolean
+isCont r olled() : boolean
#isCont r olledBy(t oken)
#t er m inat eCont r olI m pl(t oken, Com m andSt at us)
debugPr int Conf ig(St r ing, St r ing, Cont r ollableVideoCam er aConf ig)
debugPr int St at us(St r ing, St r ing, Cont r ollableVideoCam er aSt at us)
#get Cont r ollableCam er aConf ig() : Cont r ollableVideoCam er aConf ig
#ver if yCont r oller (byt e[] , Com m andSt at us)
+r equest Cam er aCont r olI m pl(t oken, Com m andSt at us, Cont r ollingI nf o)
#isDisplayedLocally(Cont r ollingI nf o, t oken) : int
#checkCont r ollable(t oken, Com m andSt at us int)
#hasCom m andRunning()
+r equest Cam er aO ver r ideI m pl(byt e[] , Com m andSt at us, Cont r ollingI nf o)
#st opCam er aI f Necessar y(St r ing)
pollI f Necessar y()
#ver if yCom m M odeNot O f f line(St r ing, Com m andSt at us)
- set PollI nPr ogr ess(boolean)
#updat eCam er aTit le(int , St r ing)
- updat eLast At t em pt edPollTim e()
- updat eLast Com m andTim e()
#updat eLast Cont act Tim e()
- updat eLast Successf ulPollTim e()
#handleO pSt at us(O per at ionalSt at us, boolean, Com m andSt at us,
 St r ing, boolean, boolean) : boolean
#updat eCm dTim eSecs()
#conver t ToO per at ionalSt at us(Cam er aO per at ionalSt at us) : O per at ionalSt at us
#r ef r eshM onit or List ()
+populat eValidTit leChar act er s(St r ing)
+isTit leValid(St r ing) : boolean
+get ValidTit leChar s() : St r ing

#m _cont r ollableConf ig: Cont r ollableVideoCam er aConf ig
#m _cont r ollableSt at us: Cont r ollableVideoCam er aSt at us
#m _m axTit leLengt h: int
#m _m axTit leLineNum : int
#m _pr ot ocolHandler : Cam er aPr ot ocolHdlr
#m _lockO per at ion: O bject []
m _cont r olTim er : Tim er
m _cont r olTim er Running: boolean
m _last Har dO pSt at us: O per at ionalSt at us
- m _last NPossibleSt at eChanges : LinkedList
m _num Act ualSt at eChanges: int
m _num PossibleSt at eChanges: int
m _sim ulat edCom m sSuccessRat e: int
- m _r ecent St at eChanges: LinkedList
m _r ecent St at eChangeCnt : int
m _r ecent St at eChangeTim eSecs: int
m _r evokeCont r olTask: RevokeCont r olTask
- m _pollI nPr ogr ess: boolean
#m _validCO HU3955Char act er s: Hasht able
m _cam er aM inim unDwellTim e: long

+send(byt eM essage: byt e[]
+r eceive(init ial: int , int er char : int , m axDur at ion: int)

+get Connect ion() : java. sql. Connect ion
+get Cur r ent O penCur sor s() : int
+r eleaseConnect ion() : void
+shut down() : void
+ver if yDBI nit ialized() : boolean

+addConnect edCollect or (byt e[] , byt e[])
+debugPr int ColM onI nf o(St r ing, St r ing)
+debugPr int Conf ig(St r ing, St r ing, VideoPr ovider Conf ig)
+debugPr int St at us(St r ing, St r ing, VideoPr ovider St at us)
+get Com m M ode()
+get Pr ovider Nam e()
+shut down()
#clear Connect edCollect or s(St r ing)
#clear Connect edCollect or sI f Nec()
#clear DeviceFor O f f lineM ode(byt e[] , Com m andSt at us)
#clear Displays(St r ing)
#cm dSt at usFailur e(Com m andSt at us, St r ing)
#cm dSt at usFailur eM aybe(Com m andSt at us, St r ing, boolean)
#cm dSt at usSuccess(Com m andSt at us, St r ing)
#cm dSt at usSuccessM aybe(Com m andSt at us, St r ing, boolean)
#cm dSt at usUpdat e(Com m andSt at us, St r ing)
#equalCom m M ode(Com m unicat ionM ode)
#f indO pCent er Nam e(byt e[])
#f indVideoSink(I dent if ier)
#get AllowSim ulat ion()
#get O pSt at us()
#get Pr ovider Conf ig()
#get Pr ovider Type()
#get Sim ulat ionFlag(St r ing, St r ing)
get SvcApp()
#init ializeLogFlags(St r ing)
#isSim ulat ed()
#log(St r ing, St r ing, St r ing)
#logLockDone(St r ing)
#logLockRcvd(St r ing)
#logLockRqst (St r ing)
#logPr od(St r ing, St r ing)
#logSt ackPr od(St r ing, St r ing, Except ion)
#m oveToDef ault Pr eset I f Possible()
#opLog(byt e[] , St r ing, int , St r ing, St r ing)
#per sist AndPushSt at us(St r ing, St r ingBuf f er)
#per sist St at us(St r ing, St r ingBuf f er)
#pushSt at us(St r ing, St r ingBuf f er)
#set O pSt at us(O per at ionalSt at us)
#sleep(int)
#t er m inat eCont r olI f Necessar y()
#ver if yAccess(byt e[] , int , St r ing, St r ing, Com m andSt at us)
#ver if yAccess(byt e[] , int [] , St r ing, St r ing, Com m andSt at us)
#ver if yCom m M ode(Com m unicat ionM ode, St r ing, Com m andSt at us)
#ver if yNoResour ceConf lict (byt e[] , St r ing, Com m andSt at us)
- cm dSt at usCom plet ed(Com m andSt at us, St r ing, boolean)
- com m M odeToSt r ing(Com m unicat ionM ode)
- conver t I DToVideoSink(byt e[])
- opSt at usToSt r ing(O per at ionalSt at us)
- updat eM onit or St at usChangeTim e()
- ver if yCom m M ode(Com m unicat ionM ode, St r ing, Com m andSt at us, boolean)

- m _dat eFm t YYYYM M DDHHM M SS : Sim pleDat eFor m at
- m _net wor kConnect ionSit e : St r ing
#m _cm dQ ueue : Com m andQ ueue
#m _cr eat eLogFlag : St r ing
#m _f act or y : Cont r ollableCam er aFact or yI m pl
#m _lockConf ig : O bject []
#m _lockNam e : O bject []
#m _lockSt at us : O bject []
#m _logFlags : boolean[]
#m _pr oConf ig : VideoPr ovider Conf ig
#m _pr ovider Conf ig : VideoPr ovider Conf ig
#m _pr ovider St at us : VideoPr ovider St at us
#m _pushEvent Supplier : PushEvent Supplier
#m _svcApp : Ser viceApplicat ion
#m _syst em Right : Funct ionalRight Typ
#m _syst em Token : byt e[]
- m _any : Any
- m _collect or I DSet : HashSet
- m _idO bj : I dent if ier
- m _m diSet : HashSet
- m _sim ulat eCom m s : boolean
- m _sim ulat ionAllowed : boolean
$SI M ULATE_CAM ERA_CO M M S_KEYWO RD : St r ing

+init ialize() : boolean
+connect () : boolean
+disconnect () : boolean
+shut down() : boolean
+send(byt eM essage: byt e []) : byt e []
+send(m essages: Ar r ayList , id: t oken) : boolean
+r eceive(byt e [] , int) : void
+r eceive(init ial: int , int er char : int ,
m axDur at ion: int)
+r eceive(dat a: Ar r ayList , lengt h: Ar r ayList , id: t oken)
+get Act ualByt esRead() : int
+set Conf igur at ion(CO HU3955Cam er aConf ig)
 : boolean

+m _header : byt e []
+m _header Response: byt e[]
+m _com m and: byt e[]
+m _com m andResponse: byt e[]
+m _expect edLengt h: int
+m _com m andType: int

+r eceive(init ial: int , int er char : int ,
 m axDur at ion: int)

+init ialize() : boolean
+connect () : boolean
+disconnect () : boolean
+shut down() : boolean
+set Cam er aI d() : void
+set Cam er aNam e() : void
+get I nit ialCom m ands()

m _cam er aI d: int
m _cam er aNam e: St r ing

+m _cam er aSt at us: VideoCam er aSt at us
+m _cont r olled: boolean
+m _cont r ollingUser I nf o: Cont r ollingUser I nf o
+m _act ionSt at e: Cam er aAct ionSt at e
+m _inAut oFocusM ode: boolean
+m _inAut oI r isM ode: boolean
+m _cur r ent Tit le: st r ing
+m _at Pr eset Num : shor t
+m _def inedPr eset s : Cam er aPr eset []
+m _t em pPr eset : Tem pCam er aPr eset []
+m _last Cont r olCm dTim eSecs: long
+m _user Cont r olSt at us: boolean

+adjPan(dir ect ion: int) : Cam er aO per at ionalSt at us
+adjTilt (dir ect ion: int) : Cam er aO per at ionalSt at us
+adjZoom (dir ect ion: int) : Cam er aO per at ionalSt at us
+adjFocus(wher e: int) : Cam er aO per at ionalSt at us
+adjI r is(boolean) : Cam er aO per at ionalSt at us
+adjBlue(dir ect ion: int) : Cam er aO per at ionalSt at us
+adjRead(dir ect ion: int) : Cam er aO per at ionalSt at us
+set Aut oI r is(boolean) : Cam er aO per at ionalSt at us
+set Aut oFocus(boolean) : Cam er aO per at ionalSt at us
+set Aut oColor (boolean) : Cam er aO per at ionalSt at us
+set LensFast (boolean) : Cam er aO per at ionalSt at us
+r eset Cam er a() : Cam er aO per at ionalSt at us
+set Act iveTit le(t it le, lineNum) : Cam er aO per at ionalSt at us
+poll() : Cam er aO per at ionalSt at us
#buildCom m and() : byt e[]
#get Ret ur nedSt at us(byt e[] : cam er aSt at us)
+m iscCom m and(st r ing, int) : Cam er aO per at ionalSt at us
- r eceiveACKor NAKSt at us() : Cam er aO per at ionalSt at us
#sendACK(byt e)
- sendCom m andFor Dat a() : Cam er aO per at ionalSt at us
#sendM essage(byt e[]) : Cam er aO per at ionalSt at us
+set Tit leEnabled(boolean) : Cam er aO per at ionalSt at us
+set Tit leToTop(boolean) : Cam er aO per at ionalSt at us
+shut down() : boolean
+st opAll()

+r eceive(init ial: int , int er char : int ,
 m axDur at ion: int)

+get CO HU3955Cam er aSt at us()
 : CO HU3955Cam er aSt at us
+get CO HU3955Cam er aConf ig(I dent if ier)
 : CO HU3955Cam er aConf ig
+set CO HU3955Cam er aConf ig(I dent if ier ,
 CO HU3955Cam er aConf ig)
+set Aut oFocus(t oken, boolean)
+set Aut oColor (t oken, boolean)
+set LensFast (t oken, boolean)
+set Power O n(t oken, boolean)

+addCom m and(Com m andTr ansact ion)
+dequeue()
+execut eCom m and()
+r eceive(I dent if ier)
+r eceiveResponse(byt e[])
+r un()
+sendCom m andToCom Por t (Cam er aCom m and)
+st opThr ead()

m _com m ands : List
m _com por t : Cam er aCont r olCom Por t
m _com por t Nam e : St r ing
m _enableDeviceLogging : boolean
m _lock : O bject
m _r esponseLock : O bject
m _r esponses : Hasht able
m _sim ulat ed : boolean
m _st opThr ead : boolean

+adjPan(dir ect ion: int) : Cam er aO per at ionalSt at us
+adjTilt (dir ect ion: int) : Cam er aO per at ionalSt at us
+adjTilt (dir ect ion: int) : Cam er aO per at ionalSt at us
+adjFocus(wher e: int) : Cam er aO per at ionalSt at us
+adjI r is(wher e: int) : Cam er aO per at ionalSt at us
+set Aut oI r is(boolean) : Cam er aO per at ionalSt at us
+set Act iveTit le(st r ing t it le, int lineNum) : Cam er aO per at ionalSt at us
+poll() : Cam er aO per at ionalSt at us
+set Aut oFocus(boolean) : Cam er aO per at ionalSt at us
+set Aut oColor (boolean) : Cam er aO per at ionalSt at us
+set Aut oI r is(boolean) : Cam er aO per at ionalSt at us
+m oveToPr eset (Pr eset : int) : Cam er aO per at ionalSt at us
+savePr eset (num ber : int) : Cam er aO per at ionalSt at us
#handleExcept ion(except ion: Except ion) : void
#sendM essage(cm d: O I D, payLoad: O bject) : void
#sendM essageFor Dat a(cm d: O I D, payLoad: O bject) : st r ing
+set Tit leEnabled(isEnabled: boolean) : Cam er aO per at ionalSt at us
+set Tit leToTop(isTI t leTop: boolean) : Cam er aO per at ionalSt at us
+set Cam er aPower (isPower O n: boolean) : Cam er aO per at ionalSt at us
#get Zoom Posit ion() : int
#updat eVar iableCont r olSpeed(zoom Posit ion: int) : void
#set LabelText (num : int , t it le: int) : void

- m _cohu3955Conf ig: CO HU3955Cam er aConf ig
- m _cohu3955St at us: CO HU3955Cam er aSt at us

+m _sour ceSt at us: VideoSour ceSt at us

execut e()
int er r upt ed()

+execut e()
+int er r upt ed()

- m _cVideoSinkI m pl : VideoSinkI m pl
- m _cm dSt at : Com m andSt at us
- m _videoPr ovider I nf oSr c : VideoPr ovider I nf o
- m _bTour : boolean
- m _t oken : t oken

+adjPan(dir ect ion: int) : Cam er aO per at ionalSt at us
+adjTilt (dir ect ion: int) : Cam er aO per at ionalSt at us
+adjZoom (dir ect ion: int) : Cam er aO per at ionalSt at us
+adjFocus(wher e: int) : Cam er aO per at ionalSt at us
+adjI r is(boolean) : Cam er aO per at ionalSt at us
+set Aut oI r is(boolean) : Cam er aO per at ionalSt at us
+set Act iveTit le(st r ing t it le, int lineNum) : Cam er aO per at ionalSt at us
+poll() : Cam er aO per at ionalSt at us
+set Aut oFocus(boolean) : Cam er aO per at ionalSt at us
+set Aut oColor (boolean) : Cam er aO per at ionalSt at us
+set LensFast (boolean) : Cam er aO per at ionalSt at us
+set Aut oI r is(boolean) : Cam er aO per at ionalSt at us
+r eset Cam er a() : Cam er aO per at ionalSt at us
+set Posit ion(Com m and, Value) : int
+get Posit ion() : Posit ion
+m oveToPosit ion(Pr eset) : int
+savePr eset (num ber) : int

+m _pr ovider St at us: VideoPr ovider St at us
+m _m aint M odeUser Nam e: st r ing
+m _blockedToPublic: boolean
+m _user DisplaySt at us: boolean
+m _r evokedDisplayO r gI D[]
+m _r evokedCont r olO r gI Ds[]
+m _st r eam ingFlashSt at us :
 VideoCont r olFlashSt at us[]

+com m and(cm dI ndex: int) : O I D

m _com m ands[] : O I D

- m _r equest er Token: Token
- m _cm dSt at : Com m andSt at us
- m _sour ce: VideoCam er aI m pl
- m _pr eset Num : int

+m _user I nf o : Cont r ollingUser I nf o
+m _opCent er I nf o : O pCent er I nf o

+execut e()
+int er r upt ed()

- m _cam er a : Cont r ollableVideoCam er aI m pl
- m _cm dSt at : Com m andSt at us
- m _t oken : t oken
- m _inf o : Cont r ollingI nf o

+m _cont r ollableSt at us: Cont r ollableVideoCam er aSt at us
+m _inAut oColor M ode: boolean
+m _power O n: boolean
+m _lensSpeedFast : boolean
+m _cur r ent Tit le2: st r ing

+execut e()
+int er r upt ed()

- m _cam er a : Cont r ollableVideoCam er aI m pl
- m _cm dSt at : Com m andSt at us
- m _t oken : t oken
- m _inf o : Cont r ollingI nf o

+m _com m M ode: Com m unicat ionM ode
+m _opSt at us: O per at ionalSt at us
+m _cont r ollingO pCent er : O pCent er I nf o
+m _m onit or I nf o: M onit or DisplayI nf o
+m _collect or I Ds : I dent if ier List
+m _deviceSt at usChangeTim eSecs: int
+m _m onit or St at usChangeTim eSecs: int

get Posit ionCom m and() : byt e[]
NTCI PCam er aPosit ionRef er ence(m ode: byt e, speedAndDir ect ion: byt e)

m _oper at ionM ode: byt e
m _speedAndDir ect ion: byt e

+execut e()
+int er r upt ed()

- m _cam er a: Cont r ollableVideoCam er aI m pl
- m _cm dSt at : Com m andSt at us
- m _t oken: Token

+m _cont r ollableConf ig : Cont r ollableVideoCam er aConf ig
+m _def ault Tit le2 : st r ing
+m _nt cipCom m unit y : st r ing
+m _enableHDLCFr am ing : boolean
+m _m inPanSpeed : shor t
+m _m axPanSpeed: shor t
+m _m inTilt Speed: shor t
+m _m axTilt Speed: shor t
+m _var iableZoom Speed: shor t
+m _var iableFocusSpeed: shor t
+m _m inZoom Range: int
+m _m axZoom Range: int

+adjBlue(byt e[] , int) : void
+adjM enuHor izont ally(byt e[] , int) : void
+adjM enuVer t ically(byt e[] , int) : void
+adjRed(byt e[] , int) : void
+get ValidTit leChar s() : St r ing
+get ViconSVFTCam er aConf ig(byt e[]) : ViconSVFTCam er aConf ig
+get ViconSVFTCam er aSt at us() : ViconSVFTCam er aSt at us
#per sist St at us(St r ing, St r ingBuf f er) : boolean
#pushSt at us(St r ing, St r ingBuf f er) : boolean
+r em ove(byt e[]) : void
+set Aut oColor (byt e[] , boolean) : void
+set Aux(byt e[] , shor t) : void
+set LensSpeed(byt e[] , shor t) ; void()
+set Pr ogr am m ingM ode(byt e[] , boolean) : void
+set ViconSVFTCam er aConf ig(byt e, ViconSVFTCam er Conf ig) : void
updat eCam er aTit le(int , St r ing) : void
- ver if yCom m M ode(Com m unicat ionM ode, St r ing, Com m andSt at us, boolean) : void

+m _sf sHost : st r ing
+m _st r eam Exist s : boolean
+m _st r eam Blocked : boolean

+execut e()
+int er r upt ed()

- m _pr ovider : VideoPr ovider I m pl
- m _cm dSt at : Com m andSt at us
- m _t oken : t oken

+execut e()
+int er r upt ed()

- m _cam er a : Cont r ollableVideoCam er aI m pl
- m _cm dSt at : Com m andSt at us
- m _t oken : t oken

+get NTCI PCam er aSt at us() : NTCI PCam er aSt at us
+get NTCI PCam er aConf ig(t oken) : NTCI PCam er aConf ig
+set NTCI PCam er aConf ig(t oken, NTCI PCam er aConf ig , Com m andSt at us)
+set Aut oFocus(t oken, boolean)
+set Power O n(t oken, boolean)

+execut e()
+int er r upt ed()

- m _cam er a : VideoCam er aI m pl
- m _cm dSt at : Com m andSt at us
- m _t oken : t oken
- m _or gI D : r evokedO r gI D

+execut e()
+int er r upt ed()

- m _cam er a: Cont r ollableVideoCam er aI m pl
- m _pr eset O wner : Tem pPr eset O wner
- m _t em pPr eset : Tem pCam er aPr eset
- m _cm dSt at : Com m andSt at us
- m _t oken : t oken

+get NTCI PCam er aSt at us() : NTCI PCam er aSt at us
+get NTCI PCam er aConf ig(t oken) : NTCI PCam er aConf ig
#per sist AndPushNTCI PCam er aConf ig(NTCI PCam er a, St r ing, St r ingBuf f er) :
 boolean
#per sist NTCI PCam er aConf ig(NTCI PCam er a, St r ing, St r ingBuf f er) : boolean
#per sist St at us(St r ing, St r ingBuf f er) : boolean
#pushNTCI PCam er aConf ig(NTCI PCam er a, St r ing, St r ingBuf f er) : boolean
#pushSt at us(St r ing, St r ingBuf f er) : boolean

#m _cam er aPushEvent Supplier : PushEvent Supplier
#m _devLogFile : LogFile
- m _nt cipConf ig : NTCI PCam er aConf ig
- m _nt cipSt at us : NTCI PCam er aSt at us
- m _pr ot ocolHandler : NTCI PPr ot ocolHdlr

+execut e()
+int er r upt ed()

- m _cam er a: Cont r ollableVideoCam er aI m pl
- m _t em pPr eset : Tem pCam er aPr eset
- m _cm dSt at : Com m andSt at us
- m _t oken : t oken

+execut e()
+int er r upt ed()

- m _cam er a : Cont r ollableVideoCam er aI m pl
- m _cm dSt at : Com m andSt at us
- m _t oken : t oken
- m _or gI D : r evokedO r gI D

+m _cont r ollableSt at us : Cont r ollableVideoCam er aSt at us
+m _cur r ent Tit le2 : st r ing

+execut e()
+int er r upt ed()

- m _cam er a : VideoCam er aI m pl
- m _cm dSt at : Com m andSt at us
- m _t oken : t oken

+execut e()
+int er r upt ed()

- m _cam er a: Cont r ollableVideoCam er aI m pl
- m _t em pPr eset : Tem pCam er aPr eset
- m _cm dSt at : Com m andSt at us
- m _t oken : t oken

- m _t oken : byt e[]
- m _cam er a : VideoCam er aI m pl
- m _sf sHost : St r ing
- m _block : boolean
- m _cm dSt at : Com m andSt at us

+m _cont r ollableSt at us : Cont r ollableVideoCam er aSt at us
+m _cur r ent Tit le2 : st r ing
+m _power O n : boolean

CHART R10 Detailed Design – Rev 3 10-2 08/14/2012

10.1.1.2 CameraCommand (Class)

CameraCommand contains information about the commands sent to, and responses

received from, the camera.

10.1.1.3 CameraConfigValidation (Class)

This class provides validates camera configuration data for any type of camera (Video

Source, (Fixed) Video Camera, COHU3955, SVFT, and NTCIP).

10.1.1.4 CameraControlComPort (Class)

The CameraControlComPort interface is implemented by a class representing a COM port

with direct connection to the control port of a video camera. It is used to send video camera

control commands and return responses to a camera control process.

10.1.1.5 CameraControlDB (Class)

The CameraControlDB class provides an interface between the Camera service and the

database used to persist and depersist the Camera objects and their configuration and status

in the database. It contains a collection of methods that perform database operations on

tables pertinent to Camera Control. The class is constructed with a DBConnectionManager

object, which manages database connections. Methods exist to insert and delete Camera

objects from the database, and to get and set their configuration and status information.

10.1.1.6 CameraControlDevice (Class)

The CameraControlDevice interface is implemented by classes which provide

communications for access to control functions for a video camera. This includes encoders,

command processors, and direct COM ports.

10.1.1.7 CameraControlModule (Class)

The CameraControlModule class is the service module for the Camera devices and a

Camera factory. It implements the ServiceApplicationModule interface. It creates and

serves a single CameraFactoryImpl object, which in turn serves zero or more CameraImpl

objects. It also creates CameraControlDB, CameraControlModuleProperties, and

PushEventSupplier objects.

10.1.1.8 CameraControlModuleProperties (Class)

The CameraControlModuleProperties class is used to provide access to properties used by

the Camera Control Module. This class wraps properties that are passed to it upon

construction. It adds its own defaults and provides methods to extract properties specific to

the Camera Control Module.

10.1.1.9 CameraProtocolHdlr (Class)

CameraProtocolHdlr classes provide implementations for all the camera commands. Each

CameraImpl class will have a CameraProtocolHdlr instantiated when initialized. When a

camera control command is sent to the CameraImpl, CameraProtocolHdlr will be called to

translate the command to byte messages which the camera understands. Then those

CHART R10 Detailed Design – Rev 3 10-3 08/14/2012

messages are sent by the CameraControlDevice to the camera. CameraProtocolHdlr is

capable of using different CameraControlDevice which is created during the initialization.

10.1.1.10 CheckForAbandonedCameraTask (Class)

The CheckForAbandonedCameraTask is a timer task. When the timer fires, it checks to see

if a camera control session has exceeded the timeout, or whether a camera is controlled by

an Operations center with no one logged in.

10.1.1.11 CleanupTempPresetTask (Class)

This timer task is responsible for cleaning up TempPreset objects that are no longer needed

by the owner that created them.

10.1.1.12 COHU3955Camera (Class)

The COHUCamera interface is implemented by objects representing COHU-brand video

cameras. The COHUCamera interface is extended by the COHUMPCCamera and

COHU3955Camera interfaces. The COHUCamera interface includes all methods which

are common to the two COHU cameras used by CHART II, the COHU MPC camera and

the COHU 3955 camera. (Note that this interface may well contain a superset of methods

which would be implemented by the entire line of all models of COHU video cameras).

10.1.1.13 COHU3955CameraImpl (Class)

This class implements the COHU3955Camera interface, and inherits from the

ControllableCameraImpl class. The COHU3955CameraImpl implements methods of

COHU3955Camera, extending the controllable camera to include 3955-specific operations.

This class will contain a configuration and status object as necessary to convey 3955-

specific configuration and status information.

10.1.1.14 COHU3955CameraStatus (Class)

The CameraStatus class is an abstract value-type class which provides status information

for a Camera. This status information is relatively dynamic: things like the communication

mode, operational status, operation center information, status change time.

10.1.1.15 COHUProtocolHdlr (Class)

COHUProtocolHdlr is the base class for all COHU cameras. At present, this class contains

implementations for common functions for COHU MPC and COHU 3955 cameras

10.1.1.16 CommandProcessor (Class)

The CommandProcessor interface is implemented by a class representing a command

processor control port with direct connection to the control port of several video cameras.

It is used to send video camera control commands and return responses to a camera control

process.

10.1.1.17 CommandQueue (Class)

The CommandQueue class provides a queue for QueueableCommand objects. The

CHART R10 Detailed Design – Rev 3 10-4 08/14/2012

CommandQueue has a thread that it uses to process each QueueableCommand in a first in

first out order. As each command object is pulled off the queue by the CommandQueue's

thread, the command object's execute method is called, at which time the command

performs its intended task.

10.1.1.18 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put

online, or put in maintenance mode through a standard interface. These states typically

apply only to field devices. When a device is taken offline, it is no longer available for use

through the system and automated polling (if any) is halted. When put online, a device is

again available for use by TrafficEvents within the system and automated polling is enabled

(if applicable). When put in maintenance mode a device is offline (i.e., cannot be used by

TrafficEvents), and maintenance commands appropriate for the particular type of device are

allowed to help in troubleshooting.

10.1.1.19 ControllableCameraFactoryImpl (Class)

The CameraFactoryImpl class provides an implementation of the CameraFactory interface

(and its CameraFactory and SharedResourceManager interfaces) as specified in the IDL.

The CameraFactoryImpl maintains a list of CameraImpl objects and is responsible for

publishing Camera objects in the Trader on startup and as new camera objects are created.

Whenever a Camera is created or removed, that information is persisted to the database.

This class is also responsible for performing the checks requested by the timer tasks: to

poll the Camera devices, to look for Camera devices with timeout exceeded, to look for

Camera devices with no one logged in at the controlling operations center, and to initiate

recovery processing as needed

10.1.1.20 ControllableVideoCamera (Class)

The ControllableVideoCamera interface is implemented by objects representing

controllable video cameras within the CHART II system. The ControllableVideoCamera

interface represents a controllable video camera as opposed to the uncontrollable,

immovable VideoCamera. Current plans call for classes to represent a COHU MPC

camera, COHU 3955 camera, Vicon SVFT camera, and NTCIP-compliant camera, and

there are interfaces defined for each of these subtypes of ControllableVideoCamera. The

ControllableVideoCamera interface includes all methods common to the three known types

of video cameras currently in use by MDSHA, although it is likely to contain a superset of

methods which would be implemented by the entire universe of all video cameras which

could someday be used. This interface may have to be refined in the event that future

brands or models of video cameras might be incorporated under CHART II, but it is an

appropriate set of methods for the present day. Current plans call for classes to represent a

COHU MPC camera, COHU 3955 camera, Vicon SVFT camera, and NTCIP-compliant

camera.

10.1.1.21 ControllableVideoCameraConfig (Class)

The ControllableVideoCameraConfig is used to hold and transmit configuration

information about ControllableVideoCamera objects at the ControllableVideoCamera level.

CHART R10 Detailed Design – Rev 3 10-5 08/14/2012

10.1.1.22 ControllableVideoCameraImpl (Class)

The ControllableCameraImpl class provides an implementation of the

ControllableVideoCamera interface and is derived from the CameraImpl class

implementing the VideoCamera interface.

This class contains a CommandQueue object that is used to sequentially execute long

running operations related to camera control in a thread separate from the CORBA request

threads, thus allowing quick initial responses.

Also contained in this class are ControllableVideoCameraConfig and

ControlablVideoCameraStatus objects (used to store the configuration and status of the

camera), and a VideCameraData object (used to store internal status information which is

persisted but not pushed out to clients).

The ControllableCameraImpl contains *Impl methods that map to methods specified in the

IDL, including requests to request control of the camera, terminate control of the camera,

override control of the camera, and to send pan/tilt/zoom (PTZ) commands to the camera.

Some of these requests are long running, so each request is stored in a specific subclass of

QueueableCommand and added to the CommandQueue. The queueable command objects

simply call the appropriate ControllableCameraImpl method as the command is executed

by the CommandQueue in its thread of execution. PTZ commands are not considered long

running and are not placed on the command queue.

The ControllableCameraImpl also contains methods called by the CameraFactory to

support the timer tasks of the Camera Service: to poll the Camera, to look for Camera

devices with communications timeout exceeded.

10.1.1.23 ControllableVideoCameraStatus (Class)

The ControllableVideoCameraStatus is used to hold and transmit status information about

ControllableVideoCameraStatus objects at the ControllableVideoCamera level.

10.1.1.24 ControllingInfo (Class)

The ControllingInfo structure contains information about the entity controlling (or

requesting to control) a VideoCamera.

10.1.1.25 DataPortEnabled (Class)

This interface is implemented by device specific communications classes. This interface

provides an extra layer to remove dependencies on device specific packages.

10.1.1.26 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database

connections. Any CHART II system thread requiring database access gets a database

connection from the pool of connections maintained by this manager class. The connections

are maintained in two separate lists namely, inUseList and freeList. The inUseList contains

connections that have already been assigned to a thread. The freeList contains unassigned

connections. This class assumes that an appropriate JDBC driver has been loaded either by

using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor

CHART R10 Detailed Design – Rev 3 10-6 08/14/2012

thread that is started by the constructor. This connection monitor thread periodically checks

the inuseList to see if there are connections that are owned by dead threads and move such

connections to the freeList. The connection monitor thread is started only if a non-zero

value is specified for the monitoring time interval in the constructor.

10.1.1.27 DeleteTempPresetCmd (Class)

This class is used to queue the command used to delete a camera temp preset from the

database and the camera so it can execute in a seperate thread

10.1.1.28 DisplayImageCmd (Class)

This class represents the information needed to create a display image command to be

added on the CommandQueue.

10.1.1.29 Encoder (Class)

The Encoder interface is implemented by classes representing any type of video encoder.

The Encoder interface includes both the Codec and the VideoSendingDevice interfaces,

which means in addition to providing forwarding of video, it also is used to send video

camera control commands and return responses to a camera control process.

10.1.1.30 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or

recurring execution.

10.1.1.31 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one

or more times.

10.1.1.32 MoveToPresetCmd (Class)

This class represents the information needed to create a move to preset command to be

added on the CommandQueue.

10.1.1.33 MoveToTempPresetCmd (Class)

This class is used to queue the command used to move to camera temp preset so it can

execute in a seperate thread

10.1.1.34 NTCIPCamera (Class)

This interface is used to represent an NTCIP model video camera in the field. The system

contains an instance of this interface for each NTCIP video camera.

10.1.1.35 NTCIPCameraCommands (Class)

This class holds the ntcip command OIDs so the mib db does not have to be queried after

startup.

CHART R10 Detailed Design – Rev 3 10-7 08/14/2012

10.1.1.36 NTCIPCameraConfig (Class)

This structure defines configuration data for the NTCIP type video camera.

10.1.1.37 NTCIPCameraImpl (Class)

This class implements the NTCIPCamera interface, and inherits from the

ControllableCameraImpl class. The NTCIPCameraImpl implements methods of

NTCIPCamera, extending the controllable camera to include NTCIP-specific operations.

This class will contain a configuration and status object as necessary to convey NTCIP-

specific configuration and status information.

10.1.1.38 NTCIPCameraPositionReference (Class)

This class represents the NTCIP protocol Camera Position Reference object. This object is

used in position commands to configure the speed and direction of movement.

10.1.1.39 NTCIPCameraProtocolHdlr (Class)

This object contains the protocol for communication with a NTCIP Camera.

10.1.1.40 NTCIPCameraStatus (Class)

This structure defines the status data for the NTCIP video camera type.

10.1.1.41 PollCameraTask (Class)

The PollCameraTask is a timer task. When the timer fires it polls a camera by sending a

poll command to the camera.

10.1.1.42 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.

The user of this class can pass a reference to the event channel factory to this object. The

constructor will create a channel in the factory. The push method is used to push data on

the event channel. The push method is able to detect if the event channel or its associated

objects have crashed. When this occurs, a flag is set, causing the push method to attempt to

reconnect the next time push is called. To avoid a supplier with a heavy supply load from

causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.

This interval specifies the quickest reconnect interval that can be used. The push method

uses this interval and the current time to determine if a reconnect should be attempted, thus

reconnects can be throttled independently of a supplier's push rate.

10.1.1.43 PutCameraOnlineCmd (Class)

This class represents the information needed to request a put camera online command to be

added on the CommandQueue.

10.1.1.44 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a

CommandQueue for asynchronous execution. Derived classes implement the execute

method to specify the actions taken by the command when it is executed. This interface

CHART R10 Detailed Design – Rev 3 10-8 08/14/2012

must be implemented by any device command in order that it may be queued on a

CommandQueue. The CommandQueue driver calls the execute method to execute a

command in the queue and a call to the interrupted method is made when a

CommandQueue is shut down.

10.1.1.45 RequestCameraControlCmd (Class)

This class represents the information needed to request a camera control command to be

added on the CommandQueue.

10.1.1.46 RequestCameraOverrideCmd (Class)

This class represents the information needed to request a camera control override command

to be added on the CommandQueue.

10.1.1.47 RevokeControlCmd (Class)

This class represents the information needed to create a revoke camera control command to

be added on the CommandQueue.

10.1.1.48 RevokeDisplayCmd (Class)

This class represents the information needed to create a revoke camera display command to

be added on the CommandQueue.

10.1.1.49 SaveTempPresetCmd (Class)

This class is used to queue the command used to save a camera temp preset to the database

and the camera so it can execute in a seperate thread

10.1.1.50 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a

ChartII service application. These services include providing access to basic CORBA

objects that are needed by service applications, such as the ORB, POA, Trader, and Event

Service.

10.1.1.51 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing

classes are notified when their host service is initialized and when it is shutdown. The

implementing class can use these notifications along with the services provided by the

invoking ServiceApplication to perform actions such as object creation and publication.

10.1.1.52 SetSFSBlockedCmd (Class)

This queuable command is used to block or unblock a camera's stream within a single SFS

server.

10.1.1.53 TakeCameraOfflineCmd (Class)

This class represents the information needed to request a take camera offline command to

CHART R10 Detailed Design – Rev 3 10-9 08/14/2012

be added on the CommandQueue.

10.1.1.54 TempPresetOwnerHelper (Class)

This class contains owner remove timeout information and also contains a reference to

TempPresetOwner object.

10.1.1.55 TerminateControlCmd (Class)

This class represents the information needed to request a terminate camera control

command to be added on the CommandQueue.

10.1.1.56 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

10.1.1.57 ViconSVFTCameraImp (Class)

This class implements the ViconSVFTCamera interface, and inherits from the

ControllableCameraImpl class. The ViconSurveyorVFTCameraImpl implements methods

of ViconSVFTCamera, extending the controllable camera to include Vicon SVFT-specific

operations. This class will contain a configuration and status object as necessary to convey

Vicon SVFT-specific configuration and status information.

10.1.1.58 ViconSVFTCameraStatus (Class)

The ViconSVFTCameraStatus class is used to hold camera status information at the

ViconSVFTCamera level. Only ViconSVFTCamera specific information is stored.

10.1.1.59 ViconSVFTProtocolHdlr (Class)

This class contains an implementation for Vicon SVFT camera control commands. It

translates every camera command (pan, tilt, zoom…) into bytes that a Vicon SVFT camera

understands. Then, it uses a CameraControlDevice to send the byte codes to the camera and

evaluate responses from the camera.

10.1.1.60 VideoCamera (Class)

The VideoCamera interface is implemented by objects representing controllable video

cameras within the CHART II system. The VideoCamera interface represents a

controllable video camera as opposed to the uncontrollable, immovable

FixedVideoCamera, the other type of GenericVideoCamera. (The VideoCamera class

could have been called the ControllableVideoCamera interface, but since the CHART II

video system exists primarily to control controllable video cameras, the camera hierarchy

has been arranged to avoid the longish name ControllableVideoCamera.) Current plans call

for classes to represent a COHU MPC camera, COHU 3955 camera, Vicon SVFT camera,

and NTCIP-compliant camera, and there are interfaces defined for each of these subtypes of

VideoCamera. The VideoCamera interface includes the GeoLocatable interface, to

someday allow for advanced features such as automatic identification of cameras near

traffic events, automatic pointing of cameras to traffic events, etc.

CHART R10 Detailed Design – Rev 3 10-10 08/14/2012

The VideoCamera interface includes all methods common to the three known types of

video cameras currently in use by MDSHA, although it is likely to contain a superset of

methods which would be implemented by the entire universe of all video cameras which

could someday be used. This interface may have to be refined in the event that future

brands or models of video cameras might be incorporated under CHART II, but it is an

appropriate set of methods for the present day.

10.1.1.61 VideoCameraConfig (Class)

The VideoCameraConfig structure is used to hold configuration information about

VideoCamera objects at the VideoCamera level. Further details about lower-level

VideoCamera subclasses are provided by subclasses of VideoCameraConfig.

10.1.1.62 VideoCameraFactory (Class)

The VideoCameraFactory interface is implemented by factory classes responsible for

creating, maintaining, and controlling a collection of VideoCamera objects.

10.1.1.63 VideoCameraImpl (Class)

The CameraImpl class provides an implementation of the VideoCamera interface, and by

extension the VideoSource, SharedResource, CommEnabled, GeoLocatable, and

UniquelyIdentifiable interfaces, as specified by the IDL.

This class contains a CommandQueue object that is used to sequentially execute long

running operations in a thread separate from the CORBA request threads, thus allowing

quick initial responses.

Also contained in this class are VideoCameraConfig and VideoCameraStatus objects (used

to store the configuration and status of the camera), and a VideCameraData object (used to

store internal status information which is persisted but not pushed out to clients).

The CameraImpl contains *Impl methods that map to methods specified in the IDL,

including requests to display the camera video on a monitor, remove the camera video from

a monitor, put the camera online, put the camera offline, put the camera in maintenance

mode (future), or to change (set) the configuration of the camera (future). Some of these

requests require (or potentially require) field communications to the device, so each request

is stored in a specific subclass of QueueableCommand and added to the CommandQueue.

The queueable command objects simply call the appropriate CameraImpl method as the

command is executed by the CommandQueue in its thread of execution.

The CameraImpl also contains methods called by the CameraFactory to support the timer

tasks of the Camera Service: to look for Cameras with no one logged in at the controlling

operations center, and to initiate recovery processing if needed (future).

10.1.1.64 VideoCameraStatus (Class)

The VideoCameraStatus structure is used to hold status information about VideoCamera

objects at the VideoCamera level. Further details about lower-level VideoCamera

subclasses are provided by subclasses of VideoCameraStatus.

CHART R10 Detailed Design – Rev 3 10-11 08/14/2012

10.1.1.65 VideoControlFlashConfig (Class)

This structure stores configuration information about a flash streaming server configuration

that is displaying a camera's image.

10.1.1.66 VideoControlFlashStatus (Class)

This structure contains information about the existence and blocked status of a video

source's stream within a Streaming Flash Server (SFS).

10.1.1.67 VideoProvider (Class)

The VideoProvider interface is a generic abstract interface including VideoSource objects

(e.g. video cameras) and BridgeCircuit objects. Both VideoSource and BridgeCircuit

objects provide video to a VideoCollector, but only VideoSource objects are true origins of

video which a typical user would have direct interaction with. BridgeCircuit VideoProvider

objects merely pass on video provided from elsewhere in a VideoRoute.

10.1.1.68 VideoProviderConfig (Class)

This structure defines configuration data common to all video sources.

10.1.1.69 VideoProviderImpl (Class)

This class implements the VideoProvider interface as an abstract class. Subclasses for this

class are the VideoCameraImpl and BridgeCircuitProviderImpl class.

10.1.1.70 VideoProviderStatus (Class)

The VideoProviderStatus structure is used to hold and transmit status information about

VideoProvider objects at the VideoProvider level. Further details about lower-level

VideoProvider subclasses are provided by subclasses of VideoProviderStatus.

10.1.1.71 VideoSource (Class)

The VideoSource interface is implemented by objects which originate video signals, such

as video cameras and image generators. Within the user interface, the VideoSource

interface represents all video sources which can be put on monitors (i.e., VideoSink

objects).

The VideoSource interface includes the SharedResource interface. A VideoSource is

controlled by an Operations Center if the VideoSource is in maintenance mode, or if the

VideoSource is a camera which has an active control session up.

10.1.1.72 VideoSourceConfig (Class)

This structure defines configuration data common to all video sources.

10.1.1.73 VideoSourceStatus (Class)

The VideoSourceStatus structure is used to hold and transmit status information about

VideoSource objects at the VideoSource level. Further details about lower-level

VideoSource subclasses are provided by subclasses of VideoSourceStatus.

CHART R10 Detailed Design – Rev 3 10-12 08/14/2012

10.1.2 CameraControlModuleR10 (Class Diagram)

This class diagram shows the R10 updates for the CameraControlModule. Modifications

made to support Camera Temp Presets.

10.1.2.1 CameraControlDB (Class)

The CameraControlDB class provides an interface between the Camera service and the

database used to persist and depersist the Camera objects and their configuration and status

in the database. It contains a collection of methods that perform database operations on

tables pertinent to Camera Control. The class is constructed with a DBConnectionManager

object, which manages database connections. Methods exist to insert and delete Camera

objects from the database, and to get and set their configuration and status information.

10.1.2.2 CameraControlModule (Class)

The CameraControlModule class is the service module for the Camera devices and a

Camera factory. It implements the ServiceApplicationModule interface. It creates and

serves a single CameraFactoryImpl object, which in turn serves zero or more CameraImpl

objects. It also creates CameraControlDB, CameraControlModuleProperties, and

PushEventSupplier objects.

10.1.2.3 CameraControlModuleProperties (Class)

The CameraControlModuleProperties class is used to provide access to properties used by

the Camera Control Module. This class wraps properties that are passed to it upon

construction. It adds its own defaults and provides methods to extract properties specific to

the Camera Control Module.

New for R10

TempPresetOwnerHelper

Updated for R10
TempPresetStartNunber
TempPrsertRange
EntryOwnerTimeoutMin
CleanupTempPresetTimerDelayMillis

CameraControlModuleProperties

CameraControlDB

SaveTempPresetCmd

new for R10

DeleteTempPresetCmd MoveToTempPresetCmd

CameraControlModule

Updated for R10.
Add timer for temp
preset c lean up.

Updated for R10.
Add ability to persist /
de-persist temp presets.

QueueableCommand

«interface»

m_ownerRef : TempPresetOwner
m_ownerInfo : TempPreseOwnerInfo
m_ownerRemoveTimeout: long

+execute()
+interrupted()

-m_camera: ControllableVideoCameraImpl
-m_presetOwner:TempPresetOwner
-m_tempPreset : TempCameraPreset
-m_cmdStat : CommandStatus
-m_token : token

+execute()
+interrupted()

-m_camera: ControllableVideoCameraImpl
-m_tempPreset : TempCameraPreset
-m_cmdStat : CommandStatus
-m_token : token

+initialize(ServiceApplication) : boolean
+shutdown(ServiceApplication) : boolean
-createEventChannel(String) : PushEventSupplier
-createCameraFactory(int) : boolean
-addCameraFactoryTypesToTrader() : void
+getVersion() : ComponentVersion

-m_svcApp : ServiceApplication
-m_db : CameraControlDB
-m_cameraEventSupplier : PushEventSupplier
-m_resMgmtEventSupplier : PushEventSupplier
-m_cameraFactory : CameraFactoryImpl
-m_props : CameraControlModuleProperties
-m_timer : Timer

+execute()
+interrupted()

-m_camera: ControllableVideoCameraImpl
-m_tempPreset : TempCameraPreset
-m_cmdStat : CommandStatus
-m_token : token

CHART R10 Detailed Design – Rev 3 10-13 08/14/2012

10.1.2.4 DeleteTempPresetCmd (Class)

This class is used to queue the command used to delete a camera temp preset from the

database and the camera so it can execute in a seperate thread

10.1.2.5 MoveToTempPresetCmd (Class)

This class is used to queue the command used to move to camera temp preset so it can

execute in a seperate thread

10.1.2.6 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a

CommandQueue for asynchronous execution. Derived classes implement the execute

method to specify the actions taken by the command when it is executed. This interface

must be implemented by any device command in order that it may be queued on a

CommandQueue. The CommandQueue driver calls the execute method to execute a

command in the queue and a call to the interrupted method is made when a

CommandQueue is shut down.

10.1.2.7 SaveTempPresetCmd (Class)

This class is used to queue the command used to save a camera temp preset to the database

and the camera so it can execute in a seperate thread

10.1.2.8 TempPresetOwnerHelper (Class)

This class contains owner remove timeout information and also contains a reference to

TempPresetOwner object.

10.1.3 CameraControlModule:MoveToPreset (Sequence Diagram)

This sequence diagram describes the process of moving to a preset for COHU 3955, Vicon,

and NTCIP cameras. The absolute position of the camera is retrieved and the command is

built up and sent to the camera by the protocol handler. Next, the camera is queried to get

its absolute position as it moves to the preset. Once it reaches the expected position (within

a tolerance), the operation succeeds. Otherwise the operation fails.

CHART R10 Detailed Design – Rev 3 10-14 08/14/2012

10.1.4 CameraControlModule:cleanupCameraTempPreset (Sequence Diagram)

This Sequence Diagram shows how the CleanupCameraTempPresetTask object executes its

task when directed to run by the Java timer object. The run method of

CleanupCameraTempPresetTask calls the cleanupCameraTempPreset method of

ControllableCameraFactoryImpl, which calls validateTempPreset on each

ControllableCamera. This method will contact the EntryOwner and ask it to verify that the

entry is still valid and if it is not, remove it from the temp preset table. If the entry owner

can not be contacted (any CORBA error), the status is undetermined. Undetermined entries

will be allowed to remain on the temp preset table, but will be tracked and removed if they

remain undermined for too long.

 minimumDwellTimeMills > 0

[minimumDwellTimeMills > 0]

[currentPositionTime = now]

New for R10

Camera Reject
Move to Preset

[forTour == true]

[now - currentPositionTime < minimumDwellTimeMills]

return

R7 adds NTCIP camera
to the process

persistAndPushStatus()

testAndSetCommandRunning()

setActiveTitle(title,linenum)

clearCommandRunning()

moveToStoredPreset(presetnum)

This diagram illustrates moveToPreset
functionality for the COHU 3955, Vicon Suveyor, and NTCIP Cameras.
The protocol handler is responsible for
sending and receiving the position commands
from the camera. The ControllableVideoCamera
checks a to see if the camera is at the correct position.
The number of position checks the ControllableVideoCamera
makes is dependent on a property. The tolerance is also
stored as a property

ControllableVideoCamera CameraControlDB

return Preset

Preset

create

getPosition()

CameraProtocolHdlr

moveToPreset(number)

getPreset(number,cameraID)

CHART R10 Detailed Design – Rev 3 10-15 08/14/2012

10.1.5 CameraControlModule:createTempPreset (Sequence Diagram)

This sequence diagram describes the process of createting the temporary preset.

10.1.6 CameraControlModule:deleteTempPreset (Sequence Diagram)

This sequence diagram describes the process of deleting the temporary preset from camera

and database.

ownerTimeout : long = getOwnerRemoveTimeout()

[ownerRef == null ||
CorbaException]

else

If we have not been able to call
the Owner to validate its temp presets
in a configurable amount of time,
remove the owners temp presets.
This should also remove the
TempPresetOwnerHelp for the
owner as well.

setOwnerRemoveTimeout(now)

ownerRef:TempPresetOwner =
getOwnerRef()

TempPresetOwnerHelper

TempPresetOwnerHelper[] : tempPresetOwnesr =
 getPresetOwners()

[ownerRef != null]

setOwnerRemoveTimeout(0)

Returns the list of TempPresetOnwerHelpers
representing the current list of temp presets.

This method will attempt to resolve any reference
to temp preset owners that are null (which would be
the case for depersisted temp presets at start up. This
method uses an ObjectLocator constructed with a module
specific DataModel to find refs to Traffic Events (Temp
Preset Owners). At some point we will have found all the
refs for depersisted TempPrests or removed the owners
Temp Presets. At this point the ObjectLocator and DataModel
can be removed (freeing up memory)

java.util.Timer

CleanupTempPresetTask ControllableCameraFactoryImpl TempPresetOwnerControllableCameraImpl

run()
cleanupCameraTempPreset()

[* for each
ControllableCamera]

validateTempPreset()

validateTempPresets(cameraID)

[* for each
TempPresetOwner]

validTempPresetList

removeInvalidTempPreset(validTempPresetList)

[other CORBA error
 (i.e., TRANSIENT)]

[ownerRemoveTO != 0 &&
now - ownerRemoveTO >

m_props.getOwnerRemoveTimeoutMins * 60* 1000]

removeAllTempPresetsForOwner(ownerID)

setDescription

tempPreset

Description for preset define as:
"TMP- <AvailableNumber>".
During implementation consider
the possibility of putting a date
timestamp "MM/DD/YY HH:MM:SS".
With a 2 digit temp preset # that would
make the description 24 chrs which is the
limit for the desription.

ControllableVideoCameraImpl

TempCameraPreset

createTempPreset()

tempPresetNumber = getFirstAvailableTempPresetNumber()

[no preset available
throw ResourceLimitReached]

create()

TempCameraPreset

Sav eTempPreset()

see getFirstAvailableTempPresetNumber
sequence diagram

CHART R10 Detailed Design – Rev 3 10-16 08/14/2012

10.1.7 CameraControlModule:getFirstAvailableTempPresetNumber (Sequence

Diagram)

This operation is used to find out the first available temporary preset number. If all temp

preset taken NoPresetAvailable exception will be throw.

update("Queued delete preset command")

deleteTempPresetImpl(token, tempPreset,cmdStat)

update("Preset updated in the DB")

cmdStatusCompleted("Successfully saved Preset")

deleteTempCameraPreset(tempPresetID)

return

create()

ControllableVideoCameraImpl CameraProtocolHdlr CameraControlDBDeletePresetCmd CommandStatus

deleteTempPreset(token,
tempPresetID, cmdStat)

getPresetNumber()

testAndSetCommandRunning

update("Verifed no other commands are running")

moveOutOfPreset()

setPresetTitle()

clearCommandRunning()

pushStatus

CHART R10 Detailed Design – Rev 3 10-17 08/14/2012

10.1.8 CameraControlModule:initialize (Sequence Diagram)

This diagram describes the initialization of the CameraControlModule. The Properties

object is created. Discovery is started for Traffic Event classes.Finally, a TimerTask is

created and schedule to periodically check each camera to determine if it’s temp preset

needs to be clean up.

[set presetAv ailable == true]

get CameraTempPreset f rom
ControllableVideoCameraIStatus

break

presetNumber

createTempPreset()

ControllableVideoCameraImpl

getFirstAv ailableTempPresetNumber()

[*f oreach PresetNumber in TempPresetRange]

[*f oreach tempPreset]

[tempPreset.m_number == presetNumber]

[set presetAv ailable = f alse]

[presetAv ailable == true]

break

[presetAv ailable == f alse]

[throw ResourceLimitReached]

CHART R10 Detailed Design – Rev 3 10-18 08/14/2012

10.1.9 CameraControlModule:moveToTempPreset (Sequence Diagram)

This sequence diagram describes the process of moving to a temporary preset for

Controllable cameras. The tempery preset Id is retrived and the command is built up and

sent to the camera by the protocol handler.

CleanupTempPresetTask

schedule(cleanupTask, intervalSecs, intervalSecs)

create()

CameraControlModule

MonitorControlModuleProperties

initialize(ServiceApplication
app)

create(orb, traderGroup,
objecCache, null, discoveryToken)

TimerTask: To periodically
check each Controllable Video
Camera to remove unused temp prersetjava.utility.timer

m_cleanupTempPresetTask

DiscoveryManager

eDiscCmd:
DiscoverTrafficEventClasses

intervalSecs : int = getTempPresetCleanupTimerIntervalSecs()

scheduleIfNeeded(
teDiscCmd)

create()

For Temp Presets,
set camera title to
blank since generated
name is not useful
to display on
camera. Might want to
make this configurable
for testing purposes.

[minimumDwellT imeMills > 0]

return

[currentPositionTime = now]

[minimumDwellT imeMills > 0]

Reject move
to Preset

[now - currentPositionTime < minimumDwellT imeMills]

[CameraNotControlledException]

get CameraTempPreset from
ControllableVideoCameraIStatus

testAndSetCommandRunning()

checkControllable()

checkRights()

ControllableVideoCameraImpl

moveToTempPreset(token, tempPresetID)

[throw PresetUndefinedException]

setActiveTitle(" ",linenum)

persistAndPushStatus()

[throw AccessDenied]

CameraProtocolHdlr

getTempPreset(tempPresetID)

moveToStoredPreset(presetNumber)

clearCommandRunning()

CHART R10 Detailed Design – Rev 3 10-19 08/14/2012

10.1.10 CameraControlModule:saveTempPreset (Sequence Diagram)

This operation is used to save the current camera position as a temporary preset

TempPresetOwner

[if any Exception]
failedToCreateTempPreset(cameraID, tempPresetID, description)

create()

create()

see createTempPreset
sequence diagram.

TempPresetCreationResult

ControllableVideoCameraImpl CameraProtocolHdlr

SaveTempPresetCmd

CommandStatus CameraControlDB

saveTempPreset(token,
presetOwner, cmmdStat)

createTempPreset()

[if all preset is taken
throw ResourceLimitReached] update("Queued save preset command")

saveTempPresetImpl(token, tempPreset, presetOwner,cmdStat)
TempPresetCreationResult

testAndSetCommandRunning

update("Vefied no other commands running")

[ControllableVideoCameraPreset:
 presetObj.position = getCameraPosition()]

([if CommSuccess] update("Queried camera position")

[if CommFailed] clearCommandRunning()

[if CommFailed] cmdStatusCompleted()]

setTempCameraPreset(tempPresetID, tempPresetEntryOwnerInfo, presetObj)

update("Preset updated in the DB")

storePreset

update("Preset Stored on The Camera")
setPresetTitle

update("Preset Title Saved"")
clearCommandRunning

pushStatus

cmdStatusCompleted("Successfully saved Preset")

CHART R10 Detailed Design – Rev 3 10-20 08/14/2012

10.2 DecisionSupportUtility

10.2.1 DecisionSupportUtility (Class Diagram)

This diagram shows structures related to utility methods for decision support.

10.2.2 DecisionSupportManager (Class)

This class provides utility methods that are applicable to decision support. It includes

methods for generating suggestions, applying templates, determining distances, etc.

10.2.2.1 DistanceType (Class)

This enumeration represents different values for types of distance stated in miles (roadway

miles, straight line miles).

10.2.2.2 DMSAndExitInfo (Class)

This class contains proximity information for proxy DMSs including the roadway distance

(in miles) between the DMS location and the traffic event location. This class also contains

information about the nearest exit to the traffic event that is located on the same route and

in the same direction.

10.2.2.3 DMSDecSupMsgDataSupplier (Class)

This interface is implemented by objects that will supply decision support data for the

purpose of generating a DMS message template suggestion. The data supplied could be

LocatableDSInfo

ProximityDistance

«typedef»

Locatable

«interface»

11

1

1

1

1

DMSAndExitInfo

XMLHTTPService

GISMappingService
1
1

1

DMSDecSupMsgDataSupplier

«interface»

PlanDSInfo

DSEventAndDMSDataHelper

1

1

1

1

1

1

1

1

DistanceType

«enumeration»

1

DMSDSInfo

ProximityInfo

«typedef»

DecisionSupportManager

ObjectCacheSystemProfileProperties

TraderGroup ObjectLocator

getDistanceMilesForPctLanesClosed(pctClosed:float):float
getDistanceTypeForMiles(miles:float):DistanceCategory
getCameraDistanceMilesForPctLanesClosed(pctClosed:float):float
scoreCameraPosition(cameraPosition:LocatableDSInfo):float
getCameraDistanceTypeForMiles(miles:float):DistanceCategory
getDMSList(location:GeoLocation, radiusMiles:float):DMSAndExitInfo[]
findPertinentCameras(this, radius):LocatableDSInfo[]
executeRequest(cmd:QueueableCmd):void
generateSuggestionsForDMS(te:TrafficEventGroup, nearestExitEditInfo, dms:DMSDSInfo):UseDMSSuggestion
findApplicableDMSTemplates(dms:DMSDSInfo, eventType:EventType):ProxyDSDMSMsgTemplate[]
applyTemplate(dmsTemplate:ProxyDSDMSMsgTemplate, te:TrafficEventGroup, dms:DMSDSInfo,
 nearestExit:ExitInfo, exitProximity : IntersectingFeatureProximityType):DMSMessageSuggestion
getApplicablePlans(eventLoc:Coordinate, eventType:EventType, radiusMiles:float):PlanDSInfo[]
getGISMappingService():XMLHTTPService

getEventType() :short
getIncidentType() :short
getRouteInfo() :RouteInfo
getRouteDir() : short
getExitProximity() : IntersectingFeatureProximityType
getExitInfo() : ExitInfo
getLaneConfiguration() : LaneConfiguration
getSignWidthColumns() : short

getDMS() : ProxyDMS
getEvent() : TrafficEventGroup
getExitInfo() : ExitInfo

m_te : TrafficEventGroup
m_dms : ProxyDMS
m_exit : ExitInfo

getScore():float

plan:ProxyPlan
planItemsInRange:ProxyPlanItem[]

post(req:XMLHTTPRequest):XMLHTTPResponse
get(req:XMLHTTPRequest):XMLHTTPResponse

m_baseURL:String

ctor(atProximityTolerance : float)
getDMSAndExitInfo(teLocation : GeoLocation, teRoute : WebRoadwayLocation,
 teDirection : Direction, dmsList : DMSDSInfo[]) : DMSAndExitInfo

getDMS() : ProxyDMS

m_proxyDMS : ProxyDMS

getLocatable():Locatable
getProximityDistance():ProximityDistance

boolean sameRoute
ProximityDirectionType dirType
boolean upstream

create(dmsDSInfo : DMSDSInfo[], exitInfo : ExitInfo,
 exitProximity : IntersectingFeatureProximityType)
getDMSDSInfoArr() : DMSDSInfo[]
getExitInfo() : ExitInfo
getExitProximity() : IntersectingFeatureProximityType

m_dmsDSInfo : DMSDSInfo[]
m_exitInfo : ExitInfo
m_teProximityToNearestExit : IntersectingFeatureProximityType

DistanceType distType
float distanceMiles
ProximityInfo proxInfo

ROADWAY_MILES
STRAIGHT_LINE_MILES

CHART R10 Detailed Design – Rev 3 10-21 08/14/2012

"dummy" data which would be the case for editing a decision support dms message

template. The data represents a DMS / Event pair.

10.2.2.4 DMSDSInfo (Class)

This class is a CORBA structure that represents a DMS that is suggested by decision

support. This class includes distance and proximity information for the DMS.

10.2.2.5 DSEventAndDMSDataHelper (Class)

This class implements the DMSDecSupMsgDataSupplier interface ans is a helper class

used when generation DMS message suggestions. It wraps traffic event, DMS and exit

data and provides methods to return that data in commons ways primarily for use in the

DMSDecSupMsgTemplateModel.

10.2.2.6 GISMappingService (Class)

This class extends the XMLHTTPService and provides specific functionality for Decision

Support.

10.2.2.7 Locatable (Class)

The Locatable interface should be implemented by any object that has a GeoLocation

and/or Roadway location and wants to be utilized by the Decision Support subsystem.

10.2.2.8 LocatableDSInfo (Class)

This class contains a locatable object and information about its proximity to a location.

10.2.2.9 ObjectCache (Class)

The ObjectCache is a wrapper for the DataModel. It provides access to DataModel

methods to find objects in the data model, delegating those methods to the DataModel

itself. It also provides additional methods of finding name filtered objects and discovering

"duplicate" objects (as defined by an isDuplicateOf() method of the Duplicatable interface).

10.2.2.10 ObjectLocator (Class)

This class is used to provide access to proxy objects stored in the CHART object cache

(which have been discovered by the DiscoveryDriver tasks).

10.2.2.11 PlanDSInfo (Class)

This class is a CORBA structure that represents a plan that is suggested by decision

support.

10.2.2.12 ProximityDistance (Class)

This struct defines members that represent proximity and distance information used when

comparing locations based on position.

10.2.2.13 ProximityInfo (Class)

This struct defines members that represent proximity information used when comparing

CHART R10 Detailed Design – Rev 3 10-22 08/14/2012

locations based on position.

10.2.2.14 SystemProfileProperties (Class)

This class is used to cache the system profile properties and provide access to them. It is

also used to interact with the server to change system profile settings.

10.2.2.15 TraderGroup (Class)

This class provides a facade for trader lookups that allows application level code to be

unaware of the number of CORBA trading services that the application is using or the

details of the linkage between those services.

10.2.2.16 XMLHTTPService (Class)

This class represents a remote XML/HTTP based web service at a specified URL. It

supports operations to perform HTTP get and post operations on the remote service.

10.2.3 DecisionSupportManager:findPertinentDMSDevices (Sequence Diagram)

This diagram shows how the initial list of DMSs pertient to decision support is generated.

The TrafficEventGroup calls findPertinentDMSDevices(), and the ProxyDMS objects are

retrieved from the DataModel cache. External DMSs are excluded from the list. The

DMS's display configuration is retrieved from the cache. If not found, the DMS is

excluded. The default font from the font table is used to find the characters per row and

rows per page for the DMS. If the characters per row is less than 8, or the rows per page is

less than 2, the DMS is excluded. The LocationDSInfo structure containing the distance to

the disstace to the DMS is calculated, and if the distance is more than the specified radius,

the DMS is excluded. If not excluded, a the DMSDSInfo is created for a DMS and added

to the list to return.

CHART R10 Detailed Design – Rev 3 10-23 08/14/2012

10.2.4 DecisionSupportManager:generateSuggestionsForDMS (Sequence

Diagram)

This diagram shows the processing that occurs when the DecisionSupportManager object is

called to generate suggestions for a DMS. The TrafficEventObject is called to get the type

of the event. The DMS, type of the traffic event, and the distance type (Immediate, Near, or

Far)is used to find DMS templates that are applicable. Each template is applied to the DMS

and traffic event. In R10 the application of a template to a DMS takes the DMS Display

Configuration into account when checking if the message generated using the template will

fit on the DMS. If at least one of the templates is successfully applied, a

UseDMSSuggestion object is created. After all templates have been processed, all

UseDMSSuggestion objects that have been created are passed to the caller.

DMSFontTable

DMSDisplayConfig
FontInfo

LocatableDSInfo

findPertinentDMSDevices(
locatable, radiusMiles) getDataModel()

getObjectsOfType(ProxyDMS.class)
ProxyDMS[]

isExternal()

getConfig()
DMSConfiguration

getObject(new Identifier(dmsConfig.m_dmsDisplayConfigID))

DMSDisplayConfig or null

getFontTable()

get(DMSFontNumber.DefaultFontNumber)
DMSFontAndSpacing

create(displayConfig, fontAndSpacing)

getMinCharsPerRowFitting()
getMaxRowsPerPageFitting()

[chars per row < 8 or
rows per page < 2]

[is external]

calculateInitialLocatableDSInfo(refLoc, dms);

getProximityDistance()

[dsInfo is null]

[display config
is null]

DMSDSInfo

[distance >
radiusMiles]

create(dms, proximityDistance)

Add To List

ArrayList<LocatableDSInfo>

[* for each
ProxyDMS]

TrafficEvent
Group

DecisionSupportManager ObjectCache DataModel ProxyDMS DMSDisplayConfig

Changed for R10 to utilize the DMS Display
Configuration when applying a template,
which will take the font and other display
settings into consideration when checking
the message fit.

TrafficEventGroup

UseDMSSuggestion

applyTemplate(dmsTemplate,
dms, te,nearestExit, exitProximity)

[* for each applicable template]

TrafficEventGroup

getType()

findApplicableDMSTemplates(dmsDSInfo, eventType)

[if at least one template succeeded]

DecisionSupportManager

generateSuggestionsForDMS(te, nearestExit, dmsDSInfo)

CHART R10 Detailed Design – Rev 3 10-24 08/14/2012

10.3 DMSControlModule

10.3.1 DMSControlClassDiagram (Class Diagram)

This Class Diagram shows the classes of the DMS Control Module. The DMS Control

Module is an installable module that serves the DMS objects and DMSFactory to the rest of

the Chart2 system. This diagram shows how the implementation of these CORBA

interfaces rely on other supporting classes to perform their functions.

10.3.1.1 AlertFactoryWrapper (Class)

This singleton class provides a wrapper for the Alert Factory that provides automatic

location of an Alert Factory and automatic re-discovery should the Alert Factory reference

return an error. This class also allows for built-in fault tolerance by automatically failing

over to a "working" Alert Factory without the user of this class being aware that this being

done. In addition, this class defers the discovery of the Alert Factory until its first use, thus

eliminating a start-up dependency for modules that use the Alert Factory.

This class delegates all of its method calls to the system AlertFactory using its currently

known good reference to an AlertFactory. If the current reference returns a CORBA failure

in the delegated call, this class automatically switches to another reference. When there are

no good references (as is true the first time the object is used), this class issues a trader

query to (re)discover the published Alert Factory objects in the system. During a method

R10
M ethods m od i fied and im p lem ented
 fo r d is p lay c onfigura tion us e .

1

DM SOperations

ExternalDM SFactory Impl

ExternalDM SFactory

« in te rfac e»

1

DM SImpl See DM SContro lClas s Diagram 2
for de ta i ls o f Im p l c las s es .

DM S

« in te rfac e»

ExternalDM SImpl

*

1

DiscoveryM anager

1

1

TravelRouteConsumer

« in te rfac e»

NOTE: Sta ts m ethods wa i t un ti l
rou teUpdates Com ple ted() c a l l to
update arb queue m s g, as a l l TT or
to l l ra te updates c om e in a bunc h,
fo l lowed by th is c a l l .

1

1

ArbitrationQueue

« in te rfac e»

1

DM STravInfoM sgHandler

DM STravInfoM sg

«s truc t»

*1

DM STravInfoM sgDataSupplier

« in te rfac e»

1

1

TravInfoM sgSchedWatcherTask

ExternalDM S

« in te rfac e»

DM STravInfoM sgTemplateM odel

1

1

AlertFactoryWrapper

11

1*

1

Chart2DM SData

FP9500DM SImpl

1

CommandQueue

SetDM SM essageFromQueueCmd

PortLocator

1

1

1

1

1

HARM essageNotifier

« in te rfac e»

1

1

1

1

*

DM S

« in te rfac e»

SharedResourceM anager

« in te rfac e»

DM SFactory

« in te rfac e»

1

*

*

1
1

Uniquely Identifiable

« in te rfac e»

java .util.Timer

Chart2DM SFactory

« in te rfac e»

ArbitrationQueue

« in te rfac e»

DM SArbitrationQueue

PushEventSupplier

Chart2DM SFactory Impl

CommEnabled

« in te rfac e»

DictionaryWrapper

DBConnectionM anager

1

1

*

1

1

RecoveryTimerTask

DM SControlDB

DM SControlM oduleProperties

QueueableCommand

« in te rfac e»

CheckForAbandonedDM STask

java.util.TimerTask

PollDM STask

CheckCommLossTask

SharedResource

« in te rfac e»

1

1

*

1

1

1

1

1

1
1

1

1

1

*

1

1

1

1

11

11

ArbQueueEntry

«v a lue ty pe»
DM SControlM odule

Serv iceApplicationM odule

« in te rfac e»

Chart2DM SStatus

«v a lue ty pe»

ServiceApplication

« in te rfac e»

java .util.Properties

1

1

1

1

Chart2DM S

« in te rfac e»

FP9500DM S

« in te rfac e»

Chart2DM SImpl

FP9500DM SStatus

«v a lue ty pe»

Chart2DM SConfiguration

«v a lue ty pe»

GeoLocatable

« in te rfac e»

Chart2DM SOperations

« in te rfac e»

R10
M ethods m od i fied and im p lem ented
 fo r d is p lay c onfigura tion us e .

*

DM SFac tory Im p l (Serv ic eApp l ic a tion ,
 DM SContro lDB,Pus hEv entSupp l ie r,
 SharedRes ourc eM oni to ring In te rv a l)
c hec k DM SRec ov ery (): v o id
c hec k Trav In foM s gSc hedu le(): v o id
getDM SOfferIDs ():in t[]
s hu tdown():boo lean
rem ov eDM S(DM SIm pl dm s)
c hec k Com m Los s ():v o id
c hec k ForAbandonedDM S():v o id
c hec k DM SRec ov ery (in t):v o id
po l lDM SObjec ts ():v o id

Thread m _as y nc FM SSta tus Thread;
Co l lec tion m _dm s Lis t;

run()

Chart2DM SFac tory Im p l m _fac tory

DM SContro lM odu leProperties (Properties p rops ,
 Properties de fau l ts)
ge tCom m Los s Tim erDe lay Sec s () : in t
ge tFac tory ID() : by te []
ge tPo l lPortWai tTim eSec s () : in t
ge tPo l lTim erDe lay Sec s () : in t
ge tRec ov ery Tim erIn tSec s () : in t
ge tSharedRes ourc eM onIn t() : in t

in t m _ las tAttem ptedPo l lTim e
in t m _ las tContac tTim e
String m _las tSta tus LogDate
boo lean m _s hou ldBeReev a lua ted

DM SContro lDatabas e(DBConnec tionM anager db)
getDM SLis t() : Chart2DM SIm pl []
ins ertDM S(Identi fe r dm s , Chart2DM SConfigura tion c onfig) :
 Chart2DM SIm pl
de le teDM S(Identi fie r id) : v o id
getConfigura tion(Identi fie r id) : Chart2DM SConfigura tion
getSta tus (Identi fe r dm s ID) : Chart2DM SSta tus
s etConfigura tion(Identi fe r dm s ID,
 Chart2DM SConfigura tion c onfig) : v o id
s e tSta tus (Identi fe r dm s , Chart2DM SSta tus s ta tus ,
 Chart2DM SData) :v o id
addTra ffic Ev entID(Identi fie r dm s ID, Identi fe r tfc Ev tID) : v o id
rem ov eTra ffic Ev entID(Identi fe r dm s ID, Identi fe r tfc Ev tID) : v o id
s e tLoc ation(dm s ID:Identi fie r, loc a tion :Ob jec tLoc ation):v o id
s e tDM STrav In foConfig (dm s ID: Identi fie r,
 dm s Trav In foConfig DM STrav In foConfig): v o id

DBConnec tionM anager m _db;

fac to ry c rea teFP9500Sta tus () : FP9500DM SSta tus

oc te t m _c urren tM s gNum
oc te t m _c urren tM s gSourc e

DM SIm pl(Configura tion , DM SFac tory ,
 Pus hEv entSupp l ie r, Dic tionary ,
 Serv ic eApp l ic a tion , DM SContro lDB): c to r
s e tM es s ageIm pl(Ac c es s Tok en, s tring , boo lean, c om m andSta tus):v o id
s e tM es s ageFrom Queue(Ac c es s Tok en, DM SM es s age,
 Com m andSta tus , in t): v o id
s e tM es s ageFrom QueueIm pl(Ac c es s Tok en, DM SM es s age,
 Com m andSta tus , in t): v o id
b lank Sign Im pl(Ac c es s Tok en, Com m andSta tus): v o id
b lank SignFrom QueueIm pl(Ac c es s Tok en, Com m andSta tus): v o id
b lank SignNow(Ac c es s Tok en, Com m andSta tus): v o id
res e tContro l le rIm p l (Ac c es s Tok en, Com m andSta tus): v o id
tak eOffl ine Im pl(Ac c es s Tok en, Com m andSta tus): v o id
putInM ain tM odeIm pl(Ac c es s Tok en, Com m andSta tus): v o id
putOn l ine Im pl(Ac c es s Tok en, Com m andSta tus): v o id
po l lNowIm pl(Ac c es s Tok en, Com m andSta tus): v o id
po l l IfNec es s ary (Ac c es s Tok en, Com m andSta tus): v o id
s hutdown(): v o id
equa ls (Ob jec t ob j): boo lean
c hec k Rec ov ery Tim e(in t tim eDown): boo lean
c hec k Com m Los s (): v o id
-c hec k Res ourc eConfl ic t(Ac c es s Tok en, Com m andSta tus): v o id
hand leOpSta tus (Opera tiona lSta tus , Com m andSta tus):v o id
report(s tring , boo lean, boo lean, Com m andSta tus , ArbQueuEntry [])
ev a lua teQueue(boo lean):v o id
fm s GetConnec tedPort(Com m andSta tus , boo lean):v o id
fm s Releas ePort(Port)
reques tFa i led(ArbQueueEntry []):v o id
reques tSuc c es s fu l (ArbQueueEntry [], boo lean):v o id
~c hec k Trav In foM es s ageSc hedu le(): v o id
c om puteTrav In foM s gSc hedEnab led(): v o id
getDi rec tion():s hort
ge tSta tus ():DM SSta tus
v a l ida te fg (c hart2dm s Config , tok en):v o id
pers is tDM SConfig (des c ,warnTx t):v o id
in i tSta tus (): v o id
in i tia l iz eNewDM S(): v o id
up loadFonts (Port,Com m andSta tus , boo lean)
v eri fy Fonts (Port,Com m andSta tus , boo lean)

m _c onfig : Chart2DM SConfigura tion
m _s ta tus : Chart2DM SSta tus
m _fac tory :Chart2DM SFac tory Im p l
m _las tSuc c es s fu lPo l lTim e: in t
m _po l l InProgres s : boo lean
m _po l lNeeded: boo lean
m _ac tiv eArbQueueEntries : ArbQueueEntry []
m _ las tQueuedSetM s gCm d: SetDM SM es s ageFrom QueueCm d
m _in foM s gHand lers : Vec tor<DM STrav In foM s gHand ler>
m _dm s Dis p lay Config : DM SDis p lay Config

getNetwork Connec tionSi te ():Network Connec tionSi te
fac tory c rea teChart2DM SConfigura tion() :
 Chart2DM SConfigura tion

m _dm s Dis p lay Config ID:Identi fie r
m _dm s M ode l ID: DM SM odel ID
m _owningOrgID: Identi fie r
m _m ain ta in ingOrg ID : Identi fie r
m _network Connec tionSi te : Network Connec tionSi te
m _po l l ingEnab led : boo lean
m _po l l In te rv a lM inu tes : long
m _portLoc ationData : PortLoc ationData []
m _ ipPortLoc ationData : IPPortLoc ationData []
m _c om m PortConfig : Com m PortConfig
m _dev ic ePhoneNum ber: s tring
m _dev ic eDropAddres s : long
m _dev ic eRes pons eTim eout: long
m _s haz am M es s age: DM SM es s age
m _as s oc ia tedHARID: Identi fie r
m _enab leDev ic eLog: boo lean
m _dm s Trav In foM s gConfig : DM STrav In foM s gConfig
m _am gToNoti fy : OpCenterIn fo
m _c om m Fai lAle rtOpc enter: OpCenterIn fo
m _c om m Fai lu reNoti fy GroupIn fo : Noti fic a tionGroupEv entData
m _hwFai lu reNoti fy GroupIn fo : Noti fic a tionGroupEv entData

trav In foM s gId : Identi fie r
tem pla te Id : Identi fie r
rou te IdL is t: Identi fie r[]
au toRowPos i tion ing : boo lean

+addCom m and(Com m andTrans ac tion)
+dequeue()
+ex ec uteCom m and()
+rec e iv e(Identi fie r)
+rec e iv eRes pons e(by te [])
+run()
+s endCom m andToCom Port(Cam eraCom m and)
+s topThread()

m _c om m ands : L is t
m _c om port : Cam eraContro lCom Port
m _c om portNam e : String
m _enab leDev ic eLogg ing : boo lean
m _loc k : Ob jec t
m _res pons eLoc k : Ob jec t
m _res pons es : Has htab le
m _s im ula ted : boo lean
m _s topThread : boo lean

~s etUs erEnab ledFlag(enab led : boo lean): v o id
~s etSc hedu leEnab ledFlag(enab led : boo lean): v o id
~hand leTrav e lTim eSta ts Updated(rou te Id : Identi fie r, tim eData : RouteTrav Tim eSta ts): v o id
~hand leTo l lRouteSta ts Updated(rou te Id : Identi fie r, to l lData : RouteTo l lRateSta ts): v o id
~hand leDis p lay ConfigUpdated(rou te Id : Identi fie r, c on fig : Trav e lRouteDis p lay Config): v o id
~hand leRouteUpdates Com ple ted(): v o id
-c hec k M es s age(): v o id
-ac tiv a teM es s age(): v o id
-deac tiv a teM es s age(): v o id

m _us erEnab led : boo lean
m _s c hedu leEnab led : boo lean
m _trav In foM s gConfig : DM STrav In foM s g
m _routeDis pConfigs : Trav e lRouteDis p lay Config []
m _routeSta ts : Trav e lRouteSta ts []
m _dm s Ref: Chart2DM S
m _dm s Im pl : Chart2DM SIm pl
m _arbQueueEntry Key : ArbQueueEntry Key
m _m s gTim es tam pSec s : long

CHART R10 Detailed Design – Rev 3 10-25 08/14/2012

call, the trader will be queried at most one time and under normal circumstances, not at all.

10.3.1.2 ArbitrationQueue (Class)

An ArbitrationQueue is a queue that arbitrates the usage of a device. The evaluation of the

queue determines which message(s) should be on the device, based upon the priority of the

queue entries. When entries are added to the queue, they are assigned a priority level based

on the type of traffic event with which they are associated, and also upon the current

contents of the queue. The priority of the queue entries can be modified after they are

added to the queue. The queue is evaluated when the device is online and queue entries are

added or removed, when an entry's priority is modified, or when the device is put online.

10.3.1.3 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue, for a single message, and for a

single traffic event. (It is possible, in the case of HARNotifierArbQueueEntry objects, that

certain ArbQueueEntries can be on behalf of multiple TrafficEvents. In such cases, one

TrafficEvent among all those involved is picked to be the responsible TrafficEvent stored in

m_indicator, the ArbQueueEntryIndicator for the entry.)

10.3.1.4 Chart2DMS (Class)

The Chart2DMS class extends the DMS interface and defines a more detailed interface to

be used in manipulating the CHART-specific DMS objects within CHART. It provides an

interface for traffic events to provide input as to what each traffic event desires to be on the

sign via the ArbitrationQueue interface. Through the HARMessageNotifier interface, a

HAR can use a DMS to notify travelers to tune in to a radio station to hear a traffic

message. CHART business rules include concepts such as shared resources, arbitration

queues, and linking device usage to traffic events. These concepts go beyond industry-

standard DMS control. This includes an ability to enable and disable CHART traveler

information messages, which were added in R3B3.

10.3.1.5 Chart2DMSConfiguration (Class)

The Chart2DMSConfiguration class is an abstract class which extends the

DMSConfiguration class to provide configuration information specific to Chart II

processing. Such information includes how to contact the sign under Chart II software

control, the default SHAZAM message for using the sign as a HAR Notifier, and the

owning organization. Such data extends beyond what would be industry-standard

configuration information for a DMS. Parameters to support TCP/IP communications,

notifications and more alerts, and traveler information messages were added for R3B3.

10.3.1.6 Chart2DMSData (Class)

This class is used to store data associated with a DMS such as last contact time etc

10.3.1.7 Chart2DMSFactory (Class)

The Chart2DMSFactory interface extends the DMSFactory interface to provide additional

Chart II specific capability. This factory creates Chart2DMS objects (extensions of DMS

CHART R10 Detailed Design – Rev 3 10-26 08/14/2012

objects). It implements the SharedResourceManager capability to control DMS objects as

shared resources.

10.3.1.8 Chart2DMSFactoryImpl (Class)

The Chart2DMSFactoryImpl class provides an implementation of the Chart2DMSFactory

interface (and its DMSFactory and SharedResourceManager interfaces) as specified in the

IDL. The Chart2DMSFactoryImpl maintains a list of Chart2DMSImpl objects and is

responsible for publishing DMS objects in the Trader on startup and as new DMS objects

are created. Whenever a DMS is created or removed, that information is persisted to the

database. This class is also responsible for performing the checks requested by the timer

tasks: to poll the DMS devices, to look for DMS devices with timeout exceeded, to look

for DMS devices with no one logged in at the controlling operations center, and to initiate

recovery processing as needed.

10.3.1.9 Chart2DMSImpl (Class)

The Chart2DMSImpl class provides an implementation of the Chart2DMS interface, and by

extension the DMS, SharedResource, HARMessageNotifier, CommEnabled, GeoLocatable,

ArbitrationQueue and UniquelyIdentifiable interfaces, as specified by the IDL.

This class contains a CommandQueue object that is used to sequentially execute long

running operations (field communications to the device) in a thread separate from the

CORBA request threads, thus allowing quick initial responses. The Chart2DMSImpl also

contains a MessageQueue, which is used by the ArbitrationQueue interface methods to

handle requests from TrafficEvents to display or remove messages from the signs in online

mode. When the Chart2DMSImpl evaluates its messages in the MessageQueue, it

combines the highest priority messages into a single message which is placed into an

appropriate QueueableCommand object (subclass of QueueableCommand) and added to the

CommandQueue.

Also contained in this class are Chart2DMSConfiguration and Chart2DMSStatus objects

(used to store the configuration and status of the sign), and a Chart2DMSData object (used

to store internal status information which is persisted but not pushed out to clients), a list of

ArbQueueEntry objects from the MessageQueue that are currently active on the sign, and a

copy of the last QueueableCommand to put a message on the sign.

The Chart2DMSImpl contains *Impl methods that map to methods specified in the IDL,

including requests to put a message on the sign or remove a message (in maintenance mode

only), put the sign online, put the sign offline, put the sign in maintenance mode, or to

change (set) the configuration of the sign. All of these requests require (or potentially

require) field communications to the device, so each request is stored in a specific subclass

of QueueableCommand and added to the CommandQueue. The queueable command

objects simply call the appropriate Chart2DMSImpl method as the command is executed by

the CommandQueue in its thread of execution.

The Chart2DMSImpl also contains methods called by the Chart2DMSFactory to support

the timer tasks of the DMS Service: to poll the DMS devices, to look for DMS devices with

communications timeout exceeded, to look for maintenance mode DMS devices with no

one logged in at the controlling operations center, and to initiate recovery processing if

CHART R10 Detailed Design – Rev 3 10-27 08/14/2012

needed.

10.3.1.10 Chart2DMSStatus (Class)

The Chart2DMSStatus class is an abstract class which extends the DMSStatus class to

provide status information specific to CHART processing, such as information on the

controlling operations center for the sign. This data extends beyond what would be

industry-standard status information for a DMS. Status information for traveler information

messages was added in R3B3.

10.3.1.11 CheckCommLossTask (Class)

The CheckCommLossTask class is responsible for determining when communications to a

DMS device have been down long enough to decide that the sign is or should be blank or

considered to be blank. The anticipated time interval for making such a determination is on

the order of ten minutes (however, this task is called much more frequently than that, so

that the timeout can be detected soon after it has expired). This class implements the

java.util.TimerTask interface, and as such it contains one method, run(), which is invoked

by Java timer object on a regularly scheduled basis. This class contains a reference to the

Chart2DMSFactoryImpl, which is called upon to actually check the DMS objects each time

this task is called.

10.3.1.12 CheckForAbandonedDMSTask (Class)

The CheckForAbandonedDMSTask class is responsible for detecting any DMS device in

maintenance mode with a message on it which has no one logged it at the controlling

operations center. This would only occur as a result of an anomaly, such as a reboot of a

user's machine, because during a normal Chart II logout attempt, the logout is prohibited by

Chart II system if the user is the last user on his/her operations center and that operations

center is controlling a sign. However, because anomalies happen, this task runs

periodically to look for abandoned DMS devices. This class implements the

java.util.TimerTask interface, and as such it contains one method, run(), which is invoked

by Java timer object on a regularly scheduled basis. This class contains a reference to the

Chart2DMSFactoryImpl, which is called upon to actually check the DMS objects and

controlling operations centers of each DMS every time this task is called.

10.3.1.13 CommandQueue (Class)

The CommandQueue class provides a queue for QueueableCommand objects. The

CommandQueue has a thread that it uses to process each QueueableCommand in a first in

first out order. As each command object is pulled off the queue by the CommandQueue's

thread, the command object's execute method is called, at which time the command

performs its intended task.

10.3.1.14 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put

online, or put in maintenance mode through a standard interface. These states typically

apply only to field devices. When a device is taken offline, it is no longer available for use

through the system and automated polling (if any) is halted. When put online, a device is

CHART R10 Detailed Design – Rev 3 10-28 08/14/2012

again available for use by TrafficEvents within the system and automated polling is enabled

(if applicable). When put in maintenance mode a device is offline (i.e., cannot be used by

TrafficEvents), and maintenance commands appropriate for the particular type of device are

allowed to help in troubleshooting.

10.3.1.15 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database

connections. Any CHART II system thread requiring database access gets a database

connection from the pool of connections maintained by this manager class. The connections

are maintained in two separate lists namely, inUseList and freeList. The inUseList contains

connections that have already been assigned to a thread. The freeList contains unassigned

connections. This class assumes that an appropriate JDBC driver has been loaded either by

using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor

thread that is started by the constructor. This connection monitor thread periodically checks

the inuseList to see if there are connections that are owned by dead threads and move such

connections to the freeList. The connection monitor thread is started only if a non-zero

value is specified for the monitoring time interval in the constructor.

10.3.1.16 DictionaryWrapper (Class)

This singleton class provides a wrapper for the system dictionary that provides automatic

location of the dictionary and automatic re-discovery should the dictionary reference return

an error. This class also allows for built-in fault tolerance by automatically failing over to a

"working" dictionary without the user of this class being aware that this being done. In

addition, this class defers the discovery of the Dictionary until its first use, thus eliminating

a start-up dependency for modules that use the dictionary.

This class delegates all of its method calls to the system dictionary using its currently

known good reference to the system dictionary. If the current reference returns a CORBA

failure in the delegated call, this class automatically switches to another reference. When

there are no good references (as is true the first time the object is used), this class issues a

trader query to (re)discover the published Dictionary objects in the system. During a

method call, the trader will be queried at most one time and under normal circumstances

(other than the first use) the trader will not be queried at all.

10.3.1.17 DiscoveryManager (Class)

This SystemContextProvider interface defines some of the functionality required by a class

which provides discovery services for CHART services. It is used by both the CHART

GUI and the CHART backend services. A class which implements this interface must

provide "get" accessor methods for the system profile properties, the data model, and the

main processing queue for a service, for instance. It also provides access to the root

deployment path and dynamic image path, which is used only by the CHART GUI. For the

CHART GUI, this interface is known to be implemented by the MainServlet; for the back

end CHART services, this interface is known to be implemented by the Discovery

Manager.

CHART R10 Detailed Design – Rev 3 10-29 08/14/2012

10.3.1.18 DMS (Class)

The DMS class defines an interface to be used in manipulating Dynamic Message Sign

(DMS) objects within Chart II. It specifies methods for setting messages and clearing

messages from a sign (in maintenance mode), polling a sign, changing the configuration of

a sign, and resetting a sign. (Setting messages on a sign in online mode are not

accomplished by manipulating a DMS directly; that is accomplished by manipulating traffic

events, which use an ArbitrationQueue interface or by manipulating HARs, which use a

HARMessageNotifier interface. This activity involves the DMS extension, Chart2DMS,

which defines interactions with signs under Chart II business rules.)

10.3.1.19 DMSArbitrationQueue (Class)

This class provides the implementation of an arbitration queue tailored for DMS devices.

10.3.1.20 DMSControlDB (Class)

The DMSControlDB class provides an interface between the DMS service and the database

used to persist the DMS objects and their configuration and status in the database. It

contains a collection of methods that perform database operations on tables pertinent to

DMS Control. The class is constructed with a DBConnectionManager object, which

manages database connections. Methods exist to insert and delete DMS objects from the

database, and to get and set their configuration and status information. All information

about a sign is persisted, including its current displayed message, communications status,

and time of last contact, so that a momentary glitch or restart of the software will not

interrupt messages on signs.

10.3.1.21 DMSControlModule (Class)

The DMSControlModule class is the service module for the DMS devices and a DMS

factory. It implements the ServiceApplicationModule interface. It creates and serves a

single DMSFactoryImpl object, which in turn serves zero or more Chart2DMSImpl objects.

It also creates DMSControlDB, DictionaryWrapper, DMSControlModuleProperties, and

PushEventSupplier and NotificationChannel objects.

10.3.1.22 DMSControlModuleProperties (Class)

The DMSControlModuleProperties class is used to provide access to properties used by the

DMS Control Module. This class wraps properties that are passed to it upon construction.

It adds its own defaults and provides methods to extract properties specific to the DMS

Control Module.

10.3.1.23 DMSFactory (Class)

The DMSFactory class specifies the interface to be used to create DMS objects within the

Chart II system. It also provides a method to get a list of DMS devices currently in the

system.

CHART R10 Detailed Design – Rev 3 10-30 08/14/2012

10.3.1.24 DMSImpl (Class)

This abstract class implements the DMS interface. It provides methods to configure and

control DMS objects in CHART. This class was added in R3B3, when the concept of

external DMSs was added to CHART. The DMSImpl class is the base class for both

Chart2DMSImpl and ExternalDMSImpl, and provides methods shared by these two classes.

10.3.1.25 DMSTravInfoMsg (Class)

This class holds information necessary to put traveler information messages (containing

travel times and/or toll rates) on DMSs. Each TravelerInfoMsg contains the ID for the

template, and the IDs of the routes to use, as configured for its specific DMS. Each

TravelerInfoMsg can be enabled or disabled. The DMSControlModule will ensure that a

maxiumum of one TravelerInfoMsg is enabled at a time.

10.3.1.26 DMSTravInfoMsgDataSupplier (Class)

This interface provides data for travel routes used in a DMSTravInfoMsg. It will be used to

substitute the template tags with route-specific data, in order to format the template and

produce MULTI. This is needed in the GUI for true display, and is needed in the server for

formatting messages to send to a DMS. The routeNum parameter corresponds to route

numbers contained in the template data tags, and it is a 1-based index. These methods will

throw an exception if the requested data is not available.

10.3.1.27 DMSTravInfoMsgHandler (Class)

This class implements DMSTravInfoMsgDataSupplier interface. Class will provide data for

travel routes used in a DMSTravInfoMsg. It will be used to substitute the template tags

with route-specific data, in order to format the template and produce MULTI. This is

needed in the GUI for true display, and is needed in the server for formatting messages to

send to a DMS. The routeNum parameter corresponds to route numbers contained in the

template data tags, and it is a 1-based index. These methods will throw an exception if the

requested data is not available.

10.3.1.28 DMSTravInfoMsgTemplateModel (Class)

This class contains functionality for formatting and modelling DMS message templates.

During initialization a model of pages, rows, and elements (including the template tags) is

constructed. MULTI fragments (the MULTI outside of the template tags) are stored so that

they can be carried to the formatted MULTI. The tags can also be queried from the model,

which can be used to figure out what data will be required for each route by the template.

10.3.1.29 ExternalDMS (Class)

The ExternalDMS class extends the DMS interface and defines a more detailed interface to

be used in manipulating the External DMS objects within CHART.

10.3.1.30 ExternalDMSFactory (Class)

The ExternalDMSFactory interface extends the DMSFactory interface.. This factory

creates ExternalDMS objects (extensions of DMS objects).

CHART R10 Detailed Design – Rev 3 10-31 08/14/2012

10.3.1.31 ExternalDMSFactoryImpl (Class)

This class implements the ExternalDMSFactory interface. It provides the interface to create,

remove and list ExternalDMS objects in CHART mirroring the data from external agencies.

10.3.1.32 ExternalDMSImpl (Class)

This class implements the ExternalDMS interface. It provides the interface to ExternalDMS

objects in CHART.

10.3.1.33 FP9500DMS (Class)

The FP9500DMS class extends the Chart2DMS interface and defines a more detailed

interface to be used in manipulating FP9500 models of DMS signs. It is exemplary of

potentially a whole suite of subclasses specific to a specific brand and model of sign for

manufacturer-specific DMS control. For instance, the FP9500DMS has a performPixelTest

method, which knows how to invoke and interpret a pixel test as supported by the FP9500

model DMS.

10.3.1.34 FP9500DMSImpl (Class)

The FP9500DMSImpl class provides a specific implementation to implement the

FP9500DMS interface, providing any specific functionality unique to this brand and model

of sign. This class is exemplary of a whole suite of implementation classes which may be

created, on a case-by-case basis, to support specific capabilities of speciifc brands and

models of signs.

10.3.1.35 FP9500DMSStatus (Class)

The FP9500DMSStatus class provides additional storage for status information unique to

the FP9500 model of sign. It is exemplary of potentially a whole suite of Chart2DMSStatus

subclasses specific to a specific brand and model of sign.

10.3.1.36 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their

users.

10.3.1.37 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that

can be used to notify the traveler to tune in to a radio station to hear a traffic message being

broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device

to better determine if activation of the device is warranted for the message being broadcast

by the HAR. This interface can be implemented by SHAZAM devices and by DMS

devices which are allowed to provide a SHAZAM-like message.

10.3.1.38 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to

a stream or loaded from a stream. Each key and its corresponding value in the property list

is a string. A property list can contain another property list as its "defaults"; this second

CHART R10 Detailed Design – Rev 3 10-32 08/14/2012

property list is searched if the property key is not found in the original property list.

10.3.1.39 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or

recurring execution.

10.3.1.40 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one

or more times.

10.3.1.41 PollDMSTask (Class)

The PollDMSTask class is responsible for polling all the DMS devices. This class

implements the java.util.TimerTask interface, and as such it contains one method, run(),

which is invoked by Java timer object on a regularly scheduled basis. This class contains a

reference to the Chart2DMSFactoryImpl, which is called upon to request each DMS to poll

itself (its poll interval has expired) each time this task is called.

10.3.1.42 PortLocator (Class)

The PortLocator is a utility class that helps one to connect to the port used by the device.

The actual implementation of the operations is done by the derived classes depending on

what protocol is used for communication.

10.3.1.43 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.

The user of this class can pass a reference to the event channel factory to this object. The

constructor will create a channel in the factory. The push method is used to push data on

the event channel. The push method is able to detect if the event channel or its associated

objects have crashed. When this occurs, a flag is set, causing the push method to attempt to

reconnect the next time push is called. To avoid a supplier with a heavy supply load from

causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.

This interval specifies the quickest reconnect interval that can be used. The push method

uses this interval and the current time to determine if a reconnect should be attempted, thus

reconnects can be throttled independently of a supplier's push rate.

10.3.1.44 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a

CommandQueue for asynchronous execution. Derived classes implement the execute

method to specify the actions taken by the command when it is executed. This interface

must be implemented by any device command in order that it may be queued on a

CommandQueue. The CommandQueue driver calls the execute method to execute a

command in the queue and a call to the interrupted method is made when a

CommandQueue is shut down.

CHART R10 Detailed Design – Rev 3 10-33 08/14/2012

10.3.1.45 RecoveryTimerTask (Class)

This Timer Task runs on a regular basis (on the order of every 15-30 seconds) during the

life of the process. During normal operations, this task's sole purpose is to write a

timestamp to a file each time it is called. This timestamp file serves to provide, to an

approximation as accurate as its frequency of invocation, when the DMSService last went

down, an essential piece of information for recovery during DMSService startup. When the

DMSService has recently started up, this Task, in addition to maintaining an up-to-date

timestamp in the timestamp file, also calls a method in the Factory (checkDMSRecovery)

which requests all DMS objects to check and see if their recovery period has expired. (The

recovery period is defined to be their poll interval times a system-wide multiplier (expected

to be 2), or, if the DMS has no poll interval, a system-wide constant (on the order of 10-15

minutes.) Each DMS, therefore terminates its recovery period independently of the others.

(When all DMSes have terminated their recovery period, checkDMSRecovery is no longer

called.)

When each DMS checks its own recovery time, if it finds that it has just now exceeded the

recovery period, it calls its MessageQueue to take one last try at resolving traffic events on

its queue, then the DMS makes final a determination as to what message (or blank) belongs

on the sign, and it requests the DMS to set the sign appropriately.

10.3.1.46 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a

ChartII service application. These services include providing access to basic CORBA

objects that are needed by service applications, such as the ORB, POA, Trader, and Event

Service.

10.3.1.47 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing

classes are notified when their host service is initialized and when it is shutdown. The

implementing class can use these notifications along with the services provided by the

invoking ServiceApplication to perform actions such as object creation and publication.

10.3.1.48 SetDMSMessageFromQueueCmd (Class)

The SetDMSMessageFromQueueCmd class is a QueueableCommand subclass which

contains data necessary to send a request to a Chart2DMSImpl to put a message on the sign

during normal operations (online mode). It is created by the Chart2DMSImpl during

successful processing of its setMessageFromQueue and evaluateQueue methods. When the

CommandQueue invokes the execute method of this class, it merely calls the

setDMSMessageFromQueueImpl method of the appropriate Chart2DMSImpl object with

the data stored within this class.

10.3.1.49 SharedResource (Class)

The SharedResource interface is implemented by any object that may have an operations

center responsible for the disposition of the resource while the resource is in use.

CHART R10 Detailed Design – Rev 3 10-34 08/14/2012

10.3.1.50 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared

resources. Implementing classes must be able to provide a list of all shared resources under

their management. Implementing classes must also be able to tell others if there are any

resources under its management that are controlled by a given operations center. The

shared resource manager is also responsible for periodically monitoring its shared resources

to detect if the operations center controlling a resource doesn't have at least one user logged

into the system. When this condition is detected, the shared resource manager must push an

event on the ResourceManagement event channel to notify others of this condition.

10.3.1.51 TravelRouteConsumer (Class)

This interface allows other CHART objects to register as a direct consumer of travel route

statistical data. It provides operations for the travel route to call when the travel time or toll

rate for the route is updated. A DMS registers as a TravelRouteConsumer when a

TravelerInfoMsg is enabled.

10.3.1.52 TravInfoMsgSchedWatcherTask (Class)

10.3.1.53 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

10.3.2 DMSControlClassDiagram-ExternalDMS (Class Diagram)

This class diagram shows the relationship between classes that implement the ExternalDMS

functionality.

ExternalDMS

«interface»

See DMSControlClassdiagram
for details

1

*

ExternalDMSFactoryImpl

1

Chart2DMSImpl

ExternalDMSImpl

DMSControlModule

1

DMS

«interface»

DMSImpl

1

Chart2DMS

«interface»

DMSControlModuleProperties

1

ExternalDMSFactory

«interface»

R10
configuration methods will be
modified to use sign geometry in
ExternalDMSConfiguration
instead of from DMSConfiguration
or DMSDisplayConfig

1

ExternalDMSConfiguration

«valuetype»

1

createExternalDMStoken(token:AccessToken,
 externalDMSconfiguration:ExternalDMSConfiguration)raises(AccessDenied,CHART2Exception)

ExternalDMSFactoryImpl(extDMSFactoryId,
 svcApp,dmsControlDB, dmsPushEvtSupplier,
 dmsControlModuleProperties):ctor
createExternalDMS(token,
 externalDMSConfiguration):ExternalDMS
getDMSList():ExternalDMS[]
removeDMS(token, externalDMSImpl):void
addExternalDMSTypesToTrader():void
shutdown():void

m_extDMSVect:Vector<ExternalDMS>
m_serviceApp:ServiceApplication
m_properties:DMSControlModuleProperties
m_name:String
m_systemToken:AccessToken

initialize(svcApp:ServiceApplication):boolean
shutdown(svcApp:ServiceApplication):void
createEventChannel(name:string):
 PushEventSupplier
createChart2DMSFactory(timeDown):boolean
createExternalDMSFactory(): boolean
addDMSFactoryTypesToTrader():void
addExternalDMSFactoryTypesToTrader():void
registerValueTypeFactories():void

DMS_FACTORY_ID_FILENAME: string
EXT_DMS_FACTORY_ID_FILENAME:string

getID():byte[]
getLocationDesc():string
getLocationProfiles():LocationProfile[]
getName():string
setLocation(token:byte[], location:ObjectLocation):void
verifyDMSAccess(token, rightID,descPrefix, descSuffix,
 cmdStat, updateCmdStateFlag):void
validateCfg(dmsConfig, token):void
pushDMSStatus(desc,warnTxt):void
pushDMSConfig(desc,warnTxt):void
persistDMSStatus(desc,warnTxt):void
opLog(token,msg, action,devicename):void
logStackProd(method,txt,exception):void
log(flags,method,txt):void
initDMSStatus():void

m_idObj: Identifer
m_lockConfig:Object[]
m_lockStatus :Object[]
m_lockName:Object[]
m_logFlags:boolean[]
m_dmsPushEventSupplier:PushEventSupplier
m_systemToken:byte[]
m_svcApp:ServiceApplication

updateStatus(token : AccessToken,
 status : DMSStatus) : void
setExternalConfiguration(token : AccessToken,
 extdmsConfig:ExternalDMSConfiguration):void
getExternalConfiguration(token:AccessToken):
 ExternalDMSConfiguration

ExternalDMSImpl(externalDMSConfig, extDMSFactory,
 pushEventSupplier, serviceApp, dmsControlDB) :ctor
getExternalConfiguration(token : AccessToken):ExternalDMSConfiguration
setExternalConfiguration(token:AccessToken,
 extDMSConfig:ExternalDMSConfiguration):void
updateStatus(token : AccessToken, status : DMSStatus) : void
remove(token:AccessToken):void
getStatus(token:AccessToken):DMSStatus
validateCfg(extdmsConfig, token):void
persistDMSConfig(desc,warnTxt):void
initializeNewDMS(): void

m_extDMSConfiguration:ExternalDMSConfiguration
m_extFactoryImpl:ExternalFactoryImpl
m_dmsStatus:DMSStatus

factory createExternalDMSConfiguration() :
 ExternalDMSConfiguration

m_extID : ExternalObjectIdentificationData
m_owningOrgID: Identifier
-m_networkConnectionSite: NetworkConnectionSite
m_dmsSignType: SignType
m_dmsBeaconType: BeaconType
m_signMetrics : SignMetrics
m_pages

CHART R10 Detailed Design – Rev 3 10-35 08/14/2012

10.3.2.1 Chart2DMS (Class)

The Chart2DMS class extends the DMS interface and defines a more detailed interface to

be used in manipulating the CHART-specific DMS objects within CHART. It provides an

interface for traffic events to provide input as to what each traffic event desires to be on the

sign via the ArbitrationQueue interface. Through the HARMessageNotifier interface, a

HAR can use a DMS to notify travelers to tune in to a radio station to hear a traffic

message. CHART business rules include concepts such as shared resources, arbitration

queues, and linking device usage to traffic events. These concepts go beyond industry-

standard DMS control. This includes an ability to enable and disable CHART traveler

information messages, which were added in R3B3.

10.3.2.2 Chart2DMSImpl (Class)

The Chart2DMSImpl class provides an implementation of the Chart2DMS interface, and by

extension the DMS, SharedResource, HARMessageNotifier, CommEnabled, GeoLocatable,

ArbitrationQueue and UniquelyIdentifiable interfaces, as specified by the IDL.

This class contains a CommandQueue object that is used to sequentially execute long

running operations (field communications to the device) in a thread separate from the

CORBA request threads, thus allowing quick initial responses. The Chart2DMSImpl also

contains a MessageQueue, which is used by the ArbitrationQueue interface methods to

handle requests from TrafficEvents to display or remove messages from the signs in online

mode. When the Chart2DMSImpl evaluates its messages in the MessageQueue, it

combines the highest priority messages into a single message which is placed into an

appropriate QueueableCommand object (subclass of QueueableCommand) and added to the

CommandQueue.

Also contained in this class are Chart2DMSConfiguration and Chart2DMSStatus objects

(used to store the configuration and status of the sign), and a Chart2DMSData object (used

to store internal status information which is persisted but not pushed out to clients), a list of

ArbQueueEntry objects from the MessageQueue that are currently active on the sign, and a

copy of the last QueueableCommand to put a message on the sign.

The Chart2DMSImpl contains *Impl methods that map to methods specified in the IDL,

including requests to put a message on the sign or remove a message (in maintenance mode

only), put the sign online, put the sign offline, put the sign in maintenance mode, or to

change (set) the configuration of the sign. All of these requests require (or potentially

require) field communications to the device, so each request is stored in a specific subclass

of QueueableCommand and added to the CommandQueue. The queueable command

objects simply call the appropriate Chart2DMSImpl method as the command is executed by

the CommandQueue in its thread of execution.

The Chart2DMSImpl also contains methods called by the Chart2DMSFactory to support

the timer tasks of the DMS Service: to poll the DMS devices, to look for DMS devices with

communications timeout exceeded, to look for maintenance mode DMS devices with no

one logged in at the controlling operations center, and to initiate recovery processing if

needed.

CHART R10 Detailed Design – Rev 3 10-36 08/14/2012

10.3.2.3 DMS (Class)

The DMS class defines an interface to be used in manipulating Dynamic Message Sign

(DMS) objects within Chart II. It specifies methods for setting messages and clearing

messages from a sign (in maintenance mode), polling a sign, changing the configuration of

a sign, and resetting a sign. (Setting messages on a sign in online mode are not

accomplished by manipulating a DMS directly; that is accomplished by manipulating traffic

events, which use an ArbitrationQueue interface or by manipulating HARs, which use a

HARMessageNotifier interface. This activity involves the DMS extension, Chart2DMS,

which defines interactions with signs under Chart II business rules.)

10.3.2.4 DMSControlModule (Class)

The DMSControlModule class is the service module for the DMS devices and a DMS

factory. It implements the ServiceApplicationModule interface. It creates and serves a

single DMSFactoryImpl object, which in turn serves zero or more Chart2DMSImpl objects.

It also creates DMSControlDB, DictionaryWrapper, DMSControlModuleProperties, and

PushEventSupplier and NotificationChannel objects.

10.3.2.5 DMSControlModuleProperties (Class)

The DMSControlModuleProperties class is used to provide access to properties used by the

DMS Control Module. This class wraps properties that are passed to it upon construction.

It adds its own defaults and provides methods to extract properties specific to the DMS

Control Module.

10.3.2.6 DMSImpl (Class)

This abstract class implements the DMS interface. It provides methods to configure and

control DMS objects in CHART. This class was added in R3B3, when the concept of

external DMSs was added to CHART. The DMSImpl class is the base class for both

Chart2DMSImpl and ExternalDMSImpl, and provides methods shared by these two classes.

10.3.2.7 ExternalDMS (Class)

The ExternalDMS class extends the DMS interface and defines a more detailed interface to

be used in manipulating the External DMS objects within CHART.

10.3.2.8 ExternalDMSConfiguration (Class)

The ExternalDMSConfiguration class is an abstract class which extends the

DMSConfiguration class to provide configuration information specific to External DMS

objects.

10.3.2.9 ExternalDMSFactory (Class)

The ExternalDMSFactory interface extends the DMSFactory interface.. This factory

creates ExternalDMS objects (extensions of DMS objects).

10.3.2.10 ExternalDMSFactoryImpl (Class)

This class implements the ExternalDMSFactory interface. It provides the interface to create,

CHART R10 Detailed Design – Rev 3 10-37 08/14/2012

remove and list ExternalDMS objects in CHART mirroring the data from external agencies.

10.3.2.11 ExternalDMSImpl (Class)

This class implements the ExternalDMS interface. It provides the interface to ExternalDMS

objects in CHART.

10.3.3 DMSDisplayConfigClassDiagram (Class Diagram)

This Class Diagram shows the Display Configuration classes of the DMS Control Module.

Display Configuration objects contain all the information needed to correctly render a

message on a DMS.

10.3.3.1 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database

connections. Any CHART II system thread requiring database access gets a database

connection from the pool of connections maintained by this manager class. The connections

are maintained in two separate lists namely, inUseList and freeList. The inUseList contains

connections that have already been assigned to a thread. The freeList contains unassigned

connections. This class assumes that an appropriate JDBC driver has been loaded either by

DMSControlModule

DiscoveryManager

New for R10

1

1

1

*

1

DMSControlModuleProperties

New for R10

1

1

1

java.util.properties

ServiceApplicationModule

«interface»

DMSDisplayConfig

11

11

DMSDisplayConfigFactory

«interface»

DMSDisplayConfigFactoryImpl

DMSDisplayConfigDB

DBConnectionManager

ServiceApplication

«interface»

PushEventSupplier

1

1

1

1

1 1

1

1

1

1

1

1

1

1

getDMSDisplayConfigInfoList() : DMSDisplayConfigInfo[]
addDMSDisplayConfig(AccessToken, DMSDisplayConfigData) : DMSDisplayConfigInfo
setDMSDisplayConfig(AccessToken, Identifier, DMSDisplayConfigData) : void
removeDMSDisplayConfig(AccessToken, Identifier) : void

DMSDisplayConfigFactoryImpl(ServiceApplication,
 DMSDisplayConfigDB, PushEventSupplierl,
 DMSDisplayConfigListenerSupporter)
getDMSDisplayConfigInfo(Identifier : dmsDisplayConfigID) :
 DMSDisplayConfigInfo

m_DMSDisplayConfigList

DMSDisplayConfig(idlConfig : DMSDisplayConfigInfo)
compareTo(config : DMSDisplaySettings) : int
createCopy(id : Identifier) : DMSDisplayConfig
equals(obj : Object) : boolean
getDMSDisplayConfigInfo() : DMSDisplayConfigInfo
getDisplayProperties() : DisplayProperties
getFontTable() : DMSFontTable
getID():Identifier
getMaxCharsPerRowAllowed() : int
getMaxPagesAllowed() : int
getMaxRowsPerPageAllowed() :int
getMultiDefaults() : MultiDefaults
getName():String
hasBeacons() : boolean
isCompatible(fontNum:DMSFontNumber, charsPerRow:int,
 rowsPerPage:int, numPages:int):boolean
isSourceUser() : boolean
isSystemGenerated() : boolean
matches(config : DMSDisplayConfig,
 compareID : boolean,
 compareName : boolean) : boolean
setHasBeacons(hasBeacons : boolean) : void
setMaxCharsPerRowAllowed(charsPerRow : int) : void
setMaxPagesAllowed(maxPages : int) : void
setMaxRowsPerPageAllowed(maxRows: int) : void
setName(name : String) : void
update(config : DMSDisplayConfig) : void
update(idlConfig : DMSDisplayConfigInfo) : void
$createDefaultCharMatrixDisplayConfig(
 name : String, numRows : int, charsPerRow : int,
 hasBeacons : boolean) : DMSDisplayConfig

DMSControlModuleProperties(Properties props,
 Properties defaults)
getCommLossTimerDelaySecs() : int
getFactoryID() : byte[]
getPollPortWaitTimeSecs() : int
getPollTimerDelaySecs() : int
getRecoveryTimerIntSecs() : int
getSharedResourceMonInt() : int

DMSDisplayConfigDB(DBConnectionManager db)
getDMSDisplayConfigList(): DMSDisplayConfigInfo[]
setDMSDisplayConfig(DMSDisplayConfigInfo) : void
removeDMSDisplayConfig(Identifier) : void

DBConnectionManager m_db;

CHART R10 Detailed Design – Rev 3 10-38 08/14/2012

using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor

thread that is started by the constructor. This connection monitor thread periodically checks

the inuseList to see if there are connections that are owned by dead threads and move such

connections to the freeList. The connection monitor thread is started only if a non-zero

value is specified for the monitoring time interval in the constructor.

10.3.3.2 DiscoveryManager (Class)

This SystemContextProvider interface defines some of the functionality required by a class

which provides discovery services for CHART services. It is used by both the CHART

GUI and the CHART backend services. A class which implements this interface must

provide "get" accessor methods for the system profile properties, the data model, and the

main processing queue for a service, for instance. It also provides access to the root

deployment path and dynamic image path, which is used only by the CHART GUI. For the

CHART GUI, this interface is known to be implemented by the MainServlet; for the back

end CHART services, this interface is known to be implemented by the Discovery

Manager.

10.3.3.3 DMSControlModule (Class)

The DMSControlModule class is the service module for the DMS devices and a DMS

factory. It implements the ServiceApplicationModule interface. It creates and serves a

single DMSFactoryImpl object, which in turn serves zero or more Chart2DMSImpl objects.

It also creates DMSControlDB, DictionaryWrapper, DMSControlModuleProperties, and

PushEventSupplier and NotificationChannel objects.

10.3.3.4 DMSControlModuleProperties (Class)

The DMSControlModuleProperties class is used to provide access to properties used by the

DMS Control Module. This class wraps properties that are passed to it upon construction.

It adds its own defaults and provides methods to extract properties specific to the DMS

Control Module.

10.3.3.5 DMSDisplayConfig (Class)

This class represents display settings potentially used by multiple DMSs. It has all

information necessary for rendering the message, checking for message fit, etc.. It is based

on the DMSDisplayConfigInfo IDL structure, but does not necessarily store that structure

internally. It provides methods for manipulating and analyzing the display settings.

10.3.3.6 DMSDisplayConfigDB (Class)

This class performs all database persistence and depersistence for DMSDisplayConfig

objects.

10.3.3.7 DMSDisplayConfigFactory (Class)

This interface provides functionality for managing DMSDisplayConfig objects, each of

which may be used by multiple DMSs.

CHART R10 Detailed Design – Rev 3 10-39 08/14/2012

10.3.3.8 DMSDisplayConfigFactoryImpl (Class)

This class implements the DMSDisplayConfigFactory interface by handling CORBA

requests to get, add, set, and remove DMSDisplayConfigurations.

Unlike most factories which only manages the objects it creates, this one manages all

DMSDisplayConfig objects in the system. This was done because

DMSDisplayConfigurations rarely change and the GUI implementations was simplified by

only getting DMSDisplayConfig objects from a single place.

Because DMSDisplayConfigFactory needs to know about all DMSDisplayConfig objects in

the system, it leverages the collection of ProxyDMSDisplayConfig objects in the Data

Model that are already needed by the discovery process for its collection. That is, both the

discovery process (DMSDisplayConfigPushConsumer) and the normal CORBA calls to

this factory keep the ProxyDMSDisplayConfig objects in the Data Model up to date.

10.3.3.9 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.

The user of this class can pass a reference to the event channel factory to this object. The

constructor will create a channel in the factory. The push method is used to push data on

the event channel. The push method is able to detect if the event channel or its associated

objects have crashed. When this occurs, a flag is set, causing the push method to attempt to

reconnect the next time push is called. To avoid a supplier with a heavy supply load from

causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.

This interval specifies the quickest reconnect interval that can be used. The push method

uses this interval and the current time to determine if a reconnect should be attempted, thus

reconnects can be throttled independently of a supplier's push rate.

10.3.3.10 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a

ChartII service application. These services include providing access to basic CORBA

objects that are needed by service applications, such as the ORB, POA, Trader, and Event

Service.

10.3.3.11 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing

classes are notified when their host service is initialized and when it is shutdown. The

implementing class can use these notifications along with the services provided by the

invoking ServiceApplication to perform actions such as object creation and publication.

10.3.4 QueueableCommandClassDiagram (Class Diagram)

This class diagram shows the classes derived from QueueableCommand necessary for DMS

Control. A class exists for each type of command that can be executed asynchronously on a

DMS object.

CHART R10 Detailed Design – Rev 3 10-40 08/14/2012

10.3.4.1 BlankDMSCmd (Class)

The BlankDMSCmd class is a QueueableCommand subclass which contains data necessary

to send a request to a Chart2DMSImpl to blank the sign in maintenance mode. It is created

by the Chart2DMSImpl during successful processing of its blankSign and

deactivateHARNotice methods. When the CommandQueue invokes the execute method of

this class, it merely calls the blankSignImpl method of the appropriate Chart2DMSImpl

object with the data stored within this class.

10.3.4.2 BlankDMSFromQueueCmd (Class)

The BlankDMSFromQueueCmd class is a QueueableCommand subclass which contains

data necessary to send a request to a Chart2DMSImpl to blank the sign during normal

operations (online mode). It is created by the Chart2DMSImpl during successful

processing of its evaluateQueue method. When the CommandQueue invokes the execute

method of this class, it merely calls the blankSignFromQueueImpl method of the

appropriate Chart2DMSImpl object with the data stored within this class.

10.3.4.3 EnableTravInfoMsgCmd (Class)

The EnableTravInfoMsgCmd class is a QueueableCommand subclass, which contains data

necessary to send a request to a Chart2DMSImpl to activate Travel Info Message a message

on the sign. It is created by the DMSTravInfoHandler during setTravInfoMsgEnabledFlag

call.

10.3.4.4 PollDMSNowCmd (Class)

The PollDMSNowCmd class is a QueueableCommand subclass which contains data

Ver ifyFontCmd

EnableTravInfoMsgCmd

SetDMSConfigCmd

BlankDMSFromQueueCmd

SetDMSMessageCmd

UpdateTravInfoMsgCmd

SetDMSMessageFromQueueCmd

PollDMSNowCmd
BlankDMSCmd

TakeDMSOfflineCmd

ResetDMSCmd

NEW FOR R10.

PutDMSInMaintModeCmd

QueueableCommand

«interface»

PutDMSOnlineCmd

execute()
interrupted()

CommandStatus m_status
Chart2DMS m_dms
AccessToken m_token
DMSMessage m_DMSMsg
boolean m_beacon

execute()
interrupted()

CommandStatus m_status
Chart2DMS m_dms
AccessToken m_token
DMSMessage m_DMSMsg
boolean m_beacon
long reqID
ArbQueueEntry[] m_ArbQueueEntries

execute()
interrupted()

CommandStatus m_status
Chart2DMS m_dms
AccessToken m_token
boolean m_maintMode

execute()
interrupted()

execute()
interrupted()

m_infoMsgHandler: TravInfoMsgHandler

execute()
interrupted()

CommandStatus m_status
Chart2DMS m_dms
AccessToken m_token

execute()
interrupt()

CommandStatus m_status
Chart2DMS m_dms
AccessToken m_token
long reqID

execute()
interrupted()

m_infoMsgHandler: TravInfoMsgHandler

execute()
interrupted()

CommandStatus m_status
Chart2DMS m_dms
AccessToken m_token

execute()
interrupted()

CommandStatus m_status
Chart2DMS m_dms
AccessToken m_token

execute()
interrupted()

CommandStatus m_status
Chart2DMS m_dms
AccessToken m_token

execute()
interrupted()

CommandStatus m_status
Chart2DMS m_dms
AccessToken m_token
Chart2DMSConfiguration m_config

execute()
interrupted()

CommandStatus m_status
Chart2DMS m_dms
AccessToken m_token

execute()
interrupted()

CommandStatus m_status
Chart2DMS m_dms
AccessToken m_token
DMSFontAndSpacingInfo m_fontAndSpacing

CHART R10 Detailed Design – Rev 3 10-41 08/14/2012

necessary to send a request to a Chart2DMSImpl to poll its device. It is created by the

Chart2DMSImpl during successful processing of its pollNow method in maintenance mode

(triggered by a user request) or during processing of the pollIfNecessary method (triggered

by the automatic polling of the PollDMSTask object). When the CommandQueue invokes

the execute method of this class, it merely calls the pollNowImpl method of the appropriate

Chart2DMSImpl object with the data stored within this class.

10.3.4.5 PutDMSInMaintModeCmd (Class)

The PutDMSInMaintModeCmd class is a QueueableCommand subclass which contains

data necessary to send a request to a Chart2DMSImpl to put the sign in maintenance mode

(from either offline or online mode). It is created by the Chart2DMSImpl during successful

processing of its putInMaintMode method. When the CommandQueue invokes the execute

method of this class, it merely calls the putInMaintModeImpl method of the appropriate

Chart2DMSImpl object with the data stored within this class.

10.3.4.6 PutDMSOnlineCmd (Class)

The PutDMSOnlineCmd class is a QueueableCommand subclass which contains data

necessary to send a request to a Chart2DMSImpl to put the sign online (from either offline

or maintenance mode). It is created by the Chart2DMSImpl during successful processing

of its putDMSOnline method. When the CommandQueue invokes the execute method of

this class, it merely calls the putDMSOnlineImpl method of the appropriate

Chart2DMSImpl object with the data stored within this class.

10.3.4.7 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a

CommandQueue for asynchronous execution. Derived classes implement the execute

method to specify the actions taken by the command when it is executed. This interface

must be implemented by any device command in order that it may be queued on a

CommandQueue. The CommandQueue driver calls the execute method to execute a

command in the queue and a call to the interrupted method is made when a

CommandQueue is shut down.

10.3.4.8 ResetDMSCmd (Class)

The ResetDMSCmd class is a QueueableCommand subclass which contains data necessary

to send a request to a Chart2DMSImpl to put reset the sign (in maintenance mode only). It

is created by the Chart2DMSImpl during successful processing of its resetController

method. When the CommandQueue invokes the execute method of this class, it merely

calls the resetControllerImpl method of the appropriate Chart2DMSImpl object with the

data stored within this class.

10.3.4.9 SetDMSConfigCmd (Class)

The SetDMSConfigCmd class is a QueueableCommand subclass which contains data

necessary to send a request to a Chart2DMSImpl to update its configuration (in

CHART R10 Detailed Design – Rev 3 10-42 08/14/2012

maintenance mode only). It is created by the Chart2DMSImpl during successful processing

of its setConfiguration method. When the CommandQueue invokes the execute method of

this class, it merely calls the setConfigurationImpl method of the appropriate

Chart2DMSImpl object with the data stored within this class.

10.3.4.10 SetDMSMessageCmd (Class)

The SetDMSMessageCmd class is a QueueableCommand subclass which contains data

necessary to send a request to a Chart2DMSImpl to put a message on the sign in

maintenance mode. It is created by the Chart2DMSImpl during successful processing of its

setMessage and activateHARNotice methods. When the CommandQueue invokes the

execute method of this class, it merely calls the setMessageImpl method of the appropriate

Chart2DMSImpl object with the data stored within this class.

10.3.4.11 SetDMSMessageFromQueueCmd (Class)

The SetDMSMessageFromQueueCmd class is a QueueableCommand subclass which

contains data necessary to send a request to a Chart2DMSImpl to put a message on the sign

during normal operations (online mode). It is created by the Chart2DMSImpl during

successful processing of its setMessageFromQueue and evaluateQueue methods. When the

CommandQueue invokes the execute method of this class, it merely calls the

setDMSMessageFromQueueImpl method of the appropriate Chart2DMSImpl object with

the data stored within this class.

10.3.4.12 TakeDMSOfflineCmd (Class)

The TakeDMSOfflineCmd class is a QueueableCommand subclass which contains data

necessary to send a request to a Chart2DMSImpl to put the sign offline (from either online

or maintenance mode). It is created by the Chart2DMSImpl during successful processing

of its takeOffline method. When the CommandQueue invokes the execute method of this

class, it merely calls the takeOfflineImpl method of the appropriate Chart2DMSImpl object

with the data stored within this class.

10.3.4.13 UpdateTravInfoMsgCmd (Class)

TheUpdateTravInfoMsgCmd class is a QueueableCommand subclass, which contains data

necessary to send a request to a Chart2DMSImpl to activate Travel Info Message a message

on the sign. The DMSTravInfoHandler creates it during checkMessage call.

10.3.4.14 VerifyFontCmd (Class)

The VerifyFontCmd class is a QueueableCommand subclass which contains data necessary

to send a request to a Chart2DMSImpl to verify the font contained in the DMS display

configuration. It is created by the Chart2DMSImpl during successful processing of its

verifyFonts method. When the CommandQueue invokes the execute method of this class,

it merely calls the verifyFontsImpl method of the appropriate Chart2DMSImpl object with

the data stored within this class.

CHART R10 Detailed Design – Rev 3 10-43 08/14/2012

10.3.5 Chart2DMSImpl:addDMSTravInfoMsg (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl responds to a request to add

TravInfoMsg to DMS TravInfoMsg config. Requesting operator must have proper

functional rights.

10.3.6 Chart2DMSImpl:modifyDMSTravInfoMsg (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl responds to a request to modify

TravInfoMsg in DMS TravInfoMsg config. Requesting operator must have proper

functional rights.

RollBack if db operation failed

[pushNeeded]

push(DMSTravInfoMsgConfigChanged)

DMSTravInfoHandler

setTravInfoMsgConfig(TravInfoMsgConfig)

Chart2DMS OperationsLog

checkAccessRights()

[no rights]
AccessDenied

PushEventSupplier

[dmsTravInfoMsgId]

addToList(dmsTravInfoMsg)

throw
CHART2Exception

IdentifierGenerator

addDMSTravInfoMsg
(token, dsmTravInfoMsg)

create

operator
TokenManipulator DMSControlDB

[no rights]
log

validateTravInfoMsg(dmsTravInfoMsg)

createIdentifier()

throw
CHART2Exception

pushNeeded = true

Not diagrammed. Include tests for:
template matches s ign s ize.

pushNeeded = false

R10
Update to use dmsDisplayConfig
parameters

save travInfoMsg to memory

pushNeeded = true

RollBack if db operation failed

pudh(DMSTravInfoMsgConfigChanged)

PushEventSupplier

travInfoMsg = getTravInfoMsg(dmsTravInfoMsg)
find dmsTravInfoMsg
in travInfoMsgList by travInfoMsgId

else

operator

Chart2DMSImpl TokenManipulator OperationsLog DMSControlDB

modifyDMSTravInfoMsg
(token, dsmTravInfoMsg)

checkAccessRights()
[no rights]

log

setTravInfoMsgConfig(m_msgConfig)

[no rights]
AccessDenied

validateTravInfoMsg(dsmTravInfoMsg)

pushNeeded = false

[throw
CHART2Exception]

modify dmsTravInfoMsg

[travInfoMsg is null]
[throw

CHART2Exception]

R10
Update to use dmsDisplayConfig
parameters

[pushNeeded]

CHART R10 Detailed Design – Rev 3 10-44 08/14/2012

10.3.7 DMSControlModule:AddEntry (Sequence Diagram)

The addEntry method defined in the ArbitrationQueue interface is used to queue a message

for a DMS to display when the DMS is online. This method delegates the storage of the

entry to the MessageQueue, then, if the DMS is online, the evaluateQueue() method is

called to determine whether this new entry should result in a new message being displayed

on the DMS. The details of the evaluateQueue processing are shown in the

DMSControlModule:evaluateQueue sequence diagram. AddEntry can be called while the

DMS is in any mode. If the DMS is not online, the queue will be evaluated the next time

the queue is placed online.

10.3.8 DMSControlModule:CreateDMS (Sequence Diagram)

This Sequence Diagram shows how the DMSFactoryImpl creates a new DMS on behalf of

an operator. The operator must possess the proper functional rights to create a DMS. The

request to create a new DMS contains all data necessary to create it in a DMSConfiguration

object, most likely one of some specific subclass, such as FP9500DMSConfiguration

(unless it is to be a truly generic Chart2DMS, one which has no extended capabilities, or

one of a new type whose extended capabilities are not yet encoded in Chart II software).

When a request to create DMS is received by the DMSFactory, the DMSControlDB is

asked to create and persist it to the database. A (subclassed) Chart2DMSImpl object and its

corresponding MessageQueue, ProtocolHdlr, PortLocator and CommandQueueImpl are

created, and the CommandQueue thread is started (see DMSControlModule:restoreDMS

sequence diagram for details). The object is connected to the ORB and is ready for

operations. A DMSAddedEvent is then pushed into the event channel. A DMS is initially

in offline mode when it is created.

R10
Uses dmsDisplayConfig
for display parameters to determine
if message can be put on the DMS

set m_recoveryMode to false

[no rights]
AccessDenied

[invalid message]
report("disapproved content", true, true, null, arbQueueEntry)

[m_recoveryMode true & validateEntries rtnd false]
purgeUnresolvedEntries

[m_recoveryMode true]
validateEntries

Chart2DMSImpl

ResponsePlanItem

TokenManipulator

[no rights]
report("no rights", true, true, null, arbQueueEntry)

evaluateQueue(false)

addEntry(arbQueueEntry)

addEntry(token, arbQueueEntry)

report("ArbQueueEntry added", false, true, null, arbQueueEntry)

checkAccess

[not online]

notify(ArbQueueEntryList)

getEntries

[no rights]
log

[invalid message]
DisapprovedContent

validateMessageContent

NotificationChannelOperationsLog Message

update rather than complete (complete flag is flase)
as the command status remains until the ArbQueueEntry is removed
from the messageQueue.

See sequence diagram
DeviceUtility \MessageQueue:addEntry
for details .

MessageQueue

See DMSControlModule:evaluateQueue
for details .

Calls complete on command status
in arbQueueEntry (complete flag is true).

CHART R10 Detailed Design – Rev 3 10-45 08/14/2012

10.3.9 DMSControlModule:EvaluateQueue (Sequence Diagram)

This diagram shows the processing done by the Chart2DMSImpl's implementation of the

ArbitrationQueue interface's evaluateQueue abstract method. The evaluate queue evaluates

the ArbQueueEntry messages on the message queue and determines the message (or

messages) to put on the device or determines if the device should be blanked. The

maximum number of pages worth of messages which can be combined on a sign is a DMS

property expected to be set at two. Assume for discussion that two messages can be

combined together. If the highest priority message is more than two pages but within the

maximum number of pages displayable on the sign (say, 3 for an FP9500), then that

message will be displayed and can not be combined with any other message, as that would

exceed the maximum number of pages (2) that can be displayed by a combined message.

When told to evaluate the queue, the Chart2DMSImpl looks at the ordered (by priority) list

of ArbQueueEntries returned from the MessageQueue to decide the processing that must

occur. If there are no entries and there is still a message on the sign, the last message that is

on the sign is in the process of being removed. A BlankDMSFromQueueCmd is created to

blank the sign and added to the CommandQueue. Later, when the sign is blanked, the

appropriate TrafficEvents will be notified that their message has been removed from the

sign.

If there are any entries, the first entry is always to be displayed on the sign (if it is not there

already). Subsequent entries may be combined with the first according to the "matrix"

approach defined for combining messages on a sign:

 U I R C S Urgent(U) x x x Incident

(I) x x x Planned Roadwork (R) x x x Congestion (C) x

x x SHAZAM (S) x x x x

That is, only five types of events may be combined: Urgent, Incident, Planned Roadwork,

Congestion, SHAZAM (in order of priority) and only in pairs indicated by the x's in the

matrix above. For example, an Urgent message can be combined with another Urgent

message, an Incident message, or a SHAZAM message, but not with a Roadwork or a

getDMSDisplayConfigInfo(dmsDisplayConfigID)

DMS

OperationsLogPOA ServiceApplicationDMSFactoryImpl TokenManipulator PushEventSupplier

insertDMS returns the specific Impl object
as a generic Chart2DMSImpl.

See DMSControlModule:RestoreDMS for constructor details

[no rights]
log(token, "no rights")

[DB error]
CHART2Exception

[success]
log(token, "DMS created")

push(DMSAddedEvent)

Chart2DMSImpl

DMSControlDB

R10
Modify to use config.m_dmsDisplayConfigID
remove references to parameters removed
from config.insertDMS(new id, config)

checkAccess
[no rights]

Access Denied

[DB error]

This is really a subclass of Chart2DMSImpl (such as FP9500DMSImpl).
The DMSControlDB knows what subclass to create based on the subclass
of Chart2DMSConfiguration passed in (such as FP9500DMSConfuguration).
(The DMSControlDB also has to use this sort of logic on startup when creating
DMS Impl objects from persisted DMS information stored in the database.

activate_object (DMS)

create

createDMS(token, config)

registerObject (DMS)

ORB

DMSDisplayConfigFactoryImpl

CHART R10 Detailed Design – Rev 3 10-46 08/14/2012

Congestion message.

Once the (combined) message is complete, a DMSMessageImpl object is created with the

new message. Steps are taken to ensure that duplicate messages are not sent to the sign.

The new message and the trafficEvents from the corresponding ArbQueEntries are

compared to the last SetDMSMessageFromQueueCmd. If they are the same, the new

message is identical to what is already queued and it is not queued again. If there is no

m_lastSetDMSMessageFromQueueCmd, the currently displayed message and its

corresponding active ArbQueueEntries are compared to the new message and its

ArbQueEntries. If they are the same, the new message is already being displayed. This last

check is skipped if the skipMessageCheck flag is true (during some recovery operations

when the persisted state is not being trusted).

If the new message and its corresponding TrafficEvents is unique, a

SetDMSMessageFromQueueCmd is created and the message and the corresponding

ArbQueEntries are passed to it. Any previous SetDMSMessageFromQueueCmd's in the

CommandQueue are removed, and the new conmand is added to the CommandQueue.

Finally, a copy of the SetDMSMessageFromQueueCmd is stored in the Chart2DMSImpl

object. At some point later, the CommandQueue will execute the

SetMessageFromQueueImpl or BlankSignFromQueueImpl methods to actually blank the

sign or display the requested message.

get max # combinable pages

[m_lastQueuedSetMsgCmd is not null]
equals(DMS msg in m_lastQueuedSetMsgCmd)

getMessageLength

[list empty and
DMS not blank]

[list empty and DMS not blank]
addCommand

[list empty and DMS not blank]
create

[list empty and DMS blank]

List returned consists of 0..* ArbQueueEntry
objects, each with a DMSMessage object. This
list is ordered by Priority

Remove any SetDMSMessageFromQueueCmds
already queued if they have not started execution yet.
We don't want to set one message when we already
know we have another message queued up to replace it
immediately. (There would only ever be one to remove,
so keep reference to it in m_queuedSetMsgFromQueueCmd
and pass to new CommandQueue.remove() method.

SetDMSMessageFromQueueCmd

Search list in order
(already in priority order)
for next one that will fit
according to its length and
event type.

If a BlankDMSCmd or SetDMSMessageCmd was created
above, the command queue executes it (whichever
one was created) here, asynchronously.Refer to setMessageFromQueueImpl and

blankSignFromQueueImpl sequence diagrams
for details on processing that occurs when the
SetDMSMessageFromQueueCmd and
BlankDMSFromQueueCmd are executed.

Don't care if it succeeds or
fails. If it fails, it's too late,
but at least we tried.

Message is combinable if it is the first message OR it may be paired
with the first message according to the "matrix" approach without
exceeding the maximum # pages for combiining msgs

Builds new list of ArbQueueEntries
to add to SetDMSMessageFromQueueCmd

ArbQueueEntry

BlankDMSFromQueueCmd

DMSMessageImpl

CommandQueue

DMSMessage

MessageQueueDMSImpl

DMSImpl

ArbQueueEntry

Compares traffic events

Verify that the new
message is not a duplicate.

execute

[new ArbQueueEntry list
"equals" current

ArbQueueEntry list]

[m_lastQueuedSetMsgCmd not null]
removeCommand(m_lastQueuedSetMsgCmd)

[If message is combinable]
append message to final message

[last SetMsgCmd message equals new one]
for each ArbQEntry in m_lastQueuedSetMsgCmd

getTrafficEventType

matches(ArbQEntry in Cmd)

create

create

[while messages left
AND <= max # combinable pages]

evaluateQueue(skipMessageCheck)

[current message equals new one]
for each in

m_activeArbQueueEntries

matches(current ArbQEntry)

[m_lastQueuedSetMsgCmd is null and skipMessageCheck is false]
equals(current message)

store command in
m_lastQueuedSetMsgCmd

addCommand

create(new message, new ArbQueueEntries)

[new ArbQueueEntry list
"equals" pending

ArbQueueEntry list]

getEntries

until message
is combinable

Currently set to 2, different than
the max number of pages on a sign.

Message is converted to Multi and then
combined with <NP> separating the messages

R10
Uses dmsDisplayConfig
for display parameters to determine
if message can be put on the DMS

Truncated messages will not be
displayed.

CHART R10 Detailed Design – Rev 3 10-47 08/14/2012

10.3.10 DMSControlModule:Initialize2 (Sequence Diagram)

This Sequence Diagram shows how the DMSControlModule is started. This module is

created by a service application that will host this module's objects. A ServiceApplication

is passed to this module's initialize method and provides access to basic objects needed by

this module. This module creates a DMSDisplayConfig which depersist all known display

configs for use by the DMS Factory. It then creates the DMSFactory, which creates the

known DMS objects which have been persisted into the database. Two PushEventSupplier

objects, one for status, configuration, and existence changes and one for abandoned DMSs

(active DMSs with no one logged in at the controlling operations center), are created. In

addition, NotificationChannel, DMSDisplayConfigDB and DMSControlDB objects are

created.

The DMSDisplayConfig, DMSFactory and DMS objects are published via the CORBA

Trading Service to make them available for general status updates and as candidates for

control (given the proper access rights). In addition, this service also performs regularly

recurring maintenance functions controlled by timer tasks started by this initialize method.

The DMSControlModule also creates the ExternalDMSFactory and ExternalDMS objects

that import DMS data from external agencies.

DMSDisplayConfigList

create

create

create

registerObject(DMS)

create

getProperties

getPOA

[* for each
DMS object]

create

getExternalDMSList()

for each
DMS in DB

create

[2]

schedule

create

create

create

getOperationsLog

for each
DMSDisplayConfigInfo in DB

activate_object(DMSDisplayConfigFactory)

DMSDisplayConfigFactoryImpl

dms:
DMSDisplayConfig

create

getDMSDisplayConfigInfoList()

create

add(ID, dms)

getDBConnectionManager

ServiceApplication

DMSControlModule ServiceApplication

PushEventSupplier

Time DMSSerivce last went down. (Technically, it is
the last time the Service was known to be running.)

timeDown passed to factory
during construction.

Two -- one for DMSs for status/config/existence changes,
one for the Module for abandoned DMSs (active DMSs with
no one logged in at the controlling Op Ctr) (resourceMgtEventChannel).

ExternalDMSFactory is
created only when
EnableExternalDMS property
is set to true.

NotificationChannel

DMSControlDB

Schedule RecoveryTimerTask,
which was instantiated at
top of constructor.

RecoveryTimerTask

This is really a subclass of Chart2DMSImpl (such as FP9500DMSImpl).
The DMSControlDB knows what subclass to create based on data
stored in the database when the DMS was initially created and
persisted. (At the DMS creation time, the DMSControlDB knows what
specific type of Impl to create based on the dmsModelID and subclass of
Chart2DMSConfiguration passed in (such as FP9500DMSConfiguration).)

POA

TIMER TASK: Writes current time to a file so that upon
startup task can determine the time DMSService went down.
Additionally, for a period of time upon startup, queries DMS
objects to have them check if their own recovery period has
expired. (After all DMS recovery periods have expired,
this responsibility of the task ends.)
This object is needed now, to get timeDown, but will not be
scheduled until after all DMSes are created. See below.

Schedule checkTravInfoMsg
Timer task

DMSControlModuleProperties

DMSFactoryImpl

java.util.timer

Chart2DMSImpl
See DMSControlModule:
RestoreDMS
for details.

CheckCommLossTask

DictionaryWrapper

ExternalDMSFactoryImpl

TIMER TASK: To periodically
check for comm loss timeout
and blank the sign.

PollDMSTask

ExternalDMSImpl

TIMER TASK: To periodically have each DMS
check to see if it is time to poll (poll interval
expired) andpoll if necessary.

Timer tasks apply
 to CHART2DMS only.

TIMER TASK: To periodically
check for active DMSs with
 no one logged
in at the controlling Op Ctr.

CheckForAbandonedDMSTask

* for each
extDMS

* for each extDMS

registerObject(ExternalDMSFactory)

activate_object(ExternalDMSFactory)

activate_object(extDMS)
registerObject(extDMS)

create

schedule

create

create

getDefaultProperties

[externalDMSFactoryenabled=true]

registerObject
(DMSFactory)

activate_object
(DMS)

getEventChannelFactory

schedule

schedule

getTimeDown

create

getEventChannel

initialize()

schedule

getDMSList

added for R10

DMSDisplayConfigDB

activate_object (DMSFactory)

registerEventChannel
(EventChannel)

get(DMSDisplayConfigID)

dmsDisplayConfigList[]

CHART R10 Detailed Design – Rev 3 10-48 08/14/2012

10.3.11 DMSControlModule:PutDMSInMaintMode (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object responds to a request by a

user to go into maintenance mode. The requesting operator must have proper functional

rights. If the DMS is in maintenance mode already, the request is immediately returned as

successful. Otherwise, a PutDMSInMaintModeCmd (a QueueableCommand) is created

and added to the DMS's CommandQueue. The CommandQueue is required since field

communications to the sign are relatively slow and can queue up. When the

CommandQueue is ready, it executes the PutDMSInMaintModeCmd, which calls the

putInMaintModeImpl method, also shown on this diagram. The putInMaintModeImpl

method double checks to make sure it is not already in maintenance mode (from some other

queued command). Assuming no problems, the method blankSignNow is called to request

FMS to actually blank the sign, update the database, and handle any status change, and push

a CurrentDMSStatus event into the event channel, so that any user can immediately see that

the sign is now blank. Regardless of whether blankSignNow works, the method continues

on, since the sign may likely be non-functional when it is put in maintenance mode. If this

DMS is an NTCIPDMS then the verifyFont method is executed. If verifyFont determines

that the font is not valid then the uploadFont method is executed to place the font in the

proper slot on the DMS. If uploadFont fails the putInMaintModeImpl process reports the

failure but does not halt. If uploadFont is successful the method reports that the font update

was successful and putInMaintModeImpl continues as normal. The DMSStatus is updated

to show that the sign is in maintenance mode, it is persisted to the database, and it is pushed

into the event channel. Additionally, the controlling operations center is stored. The

requesting user is kept abreast of progress of the request all the while, via a

CommandStatus object viewable by the user.

CHART R10 Detailed Design – Rev 3 10-49 08/14/2012

10.3.12 DMSControlModule:PutDMSOnline (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object responds to a request by a

user to go online. The requesting operator must have proper functional rights, and if there is

a (maintenance mode) message on the sign from another operations center, the user must

have override authority. A PutDMSOnlineCmd (a QueueableCommand) is created and

added to the DMS's CommandQueue. The CommandQueue is required since field

communications to the sign are relatively slow and can queue up. When the

CommandQueue is ready, it executes the PutDMSOnlineCmd, which calls the

putOnlineImpl method, also shown on this diagram. The putOnlineImpl method double

checks to make sure it is not already online (from some other queued command). Assuming

no problems, the method blankSignNow is called to request FMS to actually blank the sign,

update the database, and handle any status change, and push a CurrentDMSStatus event

into the event channel. If blankSignNow does not work, the sign cannot be brought online,

and the method ends. If this DMS is an NTCIPDMS then the verifyFont method is

executed. If verifyFont determines that the font does not match the font specified in the

DMS display configuration, then the uploadFont method is executed to place the font in the

proper slot on the DMS. If uploadFont fails the putDMSOnlineImpl process will halt at this

point and report failure. If uploadFont is successful the putOnlineImpl method reports that

the font update was successful and continues as normal..The DMSStatus is updated to show

that the sign is online, it is persisted to the database, and it is pushed into the event channel.

* for each font

[already in maint mode]
push(currentStatus)

[no rights]
log

execute

addCommand(PutDMSInMaintModeCmd)

OperationsLogCommandQueue

We continue on regardless of whether blankSignNow() works. We don't want
to stop a sign from going into maintenance mode because it doesn't work.

TokenManipulator DMSControlDB

DMSEvent

CommandStatusChart2DMSImpl

ORB

PushEventSupplier

CommandQueue executes
command asynchronously.

PutDMSInMaintModeCmdcreate

[already in maint mode]
completed("already in maint mode")

blankSignNow
(cmdStat)

DMSDisplayConfig

getDMSDisplayConfig()

New for R10
We override
putOnlineImpl at NTCIPDMSImpl
so these methods are only
called on NTCIP DMS

[font not valid]
upLoadFont(dmsDisplayInfo)

update("uploading DMS font")

update("verifying DMS font")

[NTCIPDMS]
verifyFont(fontIndex)

[failure]
update("could not upload font to DMS")

putInMaintModeImpl

update("putting in maint mode")

[already in maint mode]

checkAccess(token)

delete

[already in maint mode]

log(token, "DMS put in maint mode")

setStatus(m_status)

create "Any" DMSEvent of type CurrentDMSStatus

[no rights]
completed("no rights")

completed("now in maint mode")

update("command queued")

putInMaintMode(token, cmdStat)

push(CurrentDMSStatus)

[already in maint mode]

[already in maint mode]
completed("arealdy in maint mode")

[no rights]
AccessDenied

m_status.m_opStatus=
MAINT_MODE

set controlling op ctr

NTCIPProtocolHdlr

configureFont(dataPortWrapper, fontIndex, dmsDisplayInfo)

validateFont(fontIndex, port)

CHART R10 Detailed Design – Rev 3 10-50 08/14/2012

In addition, the stored operations center is cleared. The requesting user is kept abreast of

progress of the request all the while, via a CommandStatus object viewable by the user. The

MessageQueue is re-evaluated so the Chart2DMSImpl can determine if it has a message to

display on the sign.

10.3.13 DMSControlModule:RestoreDMS (Sequence Diagram)

This Sequence Diagram shows how a DMSImpl is initialized (whether being depersisted or

created from scratch). DMSProtocolHdlr, ModemPortLocator, CommandQueue, and

MessageQueue objects are created. If the DMS is being depersisted, after the

MessageQueue is depersisted, the MessageQueue method validateEntries() is called to

attempt to contact the TrafficEvent IDs on the list to validate their existence. If not in

recovery mode, this is the only chance the TrafficEvents get. If still within the recovery

mode, another attempt to contact the traffic events will be made when the recovery period is

over. This diagram also shows a summary of what happens when an entry is added to or

reprioritized in the message queue during recovery mode, and what happens when the

R10
Uses dmsDisplayConfig
for display parameters to determine
if message can be put on the DMS

Truncated messages will not be
displayed.

DMSDisplayConfig

getDMSDisplayInfo()

update('verifying DMS font")

configureFont(dataPortWrapper, fontIndex, dmsDisplayInfo)

New for R10
We override
putOnlineImpl at NTCIPDMSImpl
so these methods are only
called on NTCIP DMS

If font not valid and we can't upload
the font return with failure.

[failure]

[failure]

[NTCIPDMS]verifyFont(fontIndex, cmdStat)

[font not valid]
uploadFont(dmsDisplayInfo)

[failure]
completed("could not upload font to DMS")

CommandStatus

Updates
cmdStat

If we can not even blank the sign,
no point in putting it online. Return.

CommandQueue OperationsLog

Updates cmdStatus
if conflict found
(completed() call).

DMSEvent

PushEventSupplierDMSControlDB

CommandQueue executes
command asynchronously.

PutDMSOnlineCmd

TokenManipulatorChart2DMSImpl

Operator

evaluateQueue(false)

putOnlineImpl

[already online]
push(currentStatus)

clear controling op ctr

completed("success")

delete

execute

addCommand(PutDMSOnlineCmd)

create

[already online]

[already online]
completed("already online")

[no rights]
AccessDenied

[no rights]
completed("no rights")

checkAccess(token)

putOnline(token, cmdStat)

delete

log(token, "DMS put online")

m_status.m_opStatus= ONLINE

create

checkResourceConflict
(token, cmdStat)

[no rights]
log(token, "unauth. attempt to put DMS <name> online")

setStatus(m_status)

push (DMSStatusChanged)

create "Any" DMSEvent of type DMSStatusChanged

return from putOnlineImpl()

[failure]
[failure]

[already online]
completed("already online")

update("command queued")

[already online]

[failure]
completed("could not blank sign")

blankSignNow
(cmdStat)

update("putting online")

[already online]

validateFont(fontIndex, port)

update("uploading DMS font")

NTCIPProtocolHdlr

CHART R10 Detailed Design – Rev 3 10-51 08/14/2012

recovery mode period expires.

10.3.14 DMSControlModule:RunPollDMSTask (Sequence Diagram)

This Sequence Diagram shows how the PollDMSTask object executes its task when

directed to run by the Java timer object. The run method of PollDMSTask calls the

pollDMSObjects method of Chart2DMSFactoryImpl, which calls pollIfNecessary on each

DMS. Each Chart2DMSImpl object immediately returns if its m_lastContactTime variable

indicates that it has had some (any) communication with the device within the poll interval

period. If it has been longer than the poll interval since the last communication with the

device, this method creates a PollDMSNowCmd (a QueueableCommand) and adds it to the

DMS's CommandQueue. The CommandQueue is required since field communications to

the sign are relatively slow and can queue up. Requests to communicate with the sign are

processed on a first-come, first-served basis. Most likely, the CommandQueue is empty

DMSDisplayConfigFactoryImpl

getDMSDisplayConfigInfo(dmsDisplayConfigID)

R10
Modify to use DMS
config's m_dmsDisplayConfigID
to initialize protocol handler
configuration in DMSImpl ctor and
any other place display parameters
are needed. Ref of display config
is kept for later use.

Remove references to parameters removed
from config.

getTravInfoMsgConfig()

DMSProtocolHdlr

When the RecoveryTimerTask calls a DMS which discovers that its recovery period has just expired, the following occurs. (Summary provided here, see DMSControlModule:RunRecoveryTimerTask also.)

DMSImpl

DMSFactoryImpl

[recoveryMode true && validateEntries rtnd false]
purgeUnresolvedEntries

[recoveryMode == true]
validateEntries

create

[invalid request]
exception

[depersisting]
depersist

[depersisting &
recoveryMode false & validateEntries rtnd false]

purgeUnresolvedEntries

purgeUnresolvedEntries

create

run

create

[being depersisted]
getTimeDown

validateEntries

addEntry or changePriority

DMSImpl

ModemPortLocator

CommandQueue

DMSControlDB creates DMSImpl objects via depersistence and also as
new DMS objects are created by operators. In the latter case (distinguishable
via parameter list) recovery timer processing is not relevant.

If validateEntries() returns true, all entries were resolved.
There is no unresolved stuff to recover, so we no longer
need to be in recoveryMode now.

DMSControlDB

recoveryMode
initialized to
false

If we are depersisting, but we are not supposed to be in recovery mode and we called validateEntries
only to be nice, we purge any entries we could not recover right now.

Returns true if all entries have now been validated (positively or negatively).
Returns false if one or more entries still have unknown status (could not be contacted).

If addEntry or changePriority request is valid, and we are in recovery
mode, at this point our hand is forced, we better give all traffic events
one last chance to validate themselves and then we purge any
traffic events we still haven't heard from.

Even if we are beyond the recovery time, to be nice
we still give the ArbQueueEntries this one chance to
be validated. Any that fail here right now are purged.

[being depersisted & timeDown within recovery period]
recoveryMode = true

create(ID, depersisting flag)

create

addEntry or changePriority

[depersisting]
validateEntries

[validateEntries rtnd true]
recoveryMode = false

MessageQueue

If a Traffic Event is added or reprioritized while the DMS is in recoveryMode, the following occurs. (Summary provided here, see DMSControlModule:AddEntry and ChangePriority for full details).

TrafficEvent

set recoveryMode false

[online]
evaluateQueue(false)

set recoveryMode false

[online]
evaluateQueue(true)

CHART R10 Detailed Design – Rev 3 10-52 08/14/2012

(which is why we now feel a need to poll), but any communication with the device will

have the desired effect, so if there are one or more requests to communicate with the device

on the queue ahead of this PollDMSNowCmd, that is fine, too. When the CommandQueue

is ready, it executes the PollDMSNowCmd, which calls the pollNowImpl method.

10.3.15 DMSControlModule:SetConfiguration (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl responds to a request to change the

configuration of a DMS. The DMS must be in maintenance mode, the requesting operator

must have proper functional rights, and if there is a (maintenance mode) message on the

sign from another operations center, the user must have override authority. This method

creates a SetDMSConfigCmd (a QueueableCommand) and adds it to the DMS's

CommandQueue. The CommandQueue is required since some configuration changes

require field communications to the sign, and field communications are relatively slow and

can queue up. Requests to communicate with the sign are processed on a first-come, first-

served basis. When the CommandQueue is ready, it executes the SetDMSConfigCmd,

which calls the setConfigurationImpl method, also shown on this diagram. When the

setConfigurationImpl method runs, it checks that the DMS is still in maintenance mode (a

previously queued command could have changed it), and that there is no resource conflict

For details, see sequence diagram
DMSControlModule:VerifyFonts

R10
NTCIPDMSs will have
downloaded font verified
at least once a day.

Dummy CommandStatus object. No human or process
is watching it, but the pollDMSNowCmd still needs one.

CommandStatus

PollDMSNowCmd

AccessToken

CommandQueueChart2DMSImplTokenManipulatorChart2DMSFactoryImplPollDMSTask

java.util.Timer

For details, see sequence diagram
DMSControlModule:pollNowImpl.

Each CommandQueue executes
its commands asynchronously.

Return immediately if we have
had any communications with
the device within the poll interval.

[*for each
DMS]

addCommand(PollDMSNowCmd)

[now - m_lastContactTime < m_config.m_pollInterval]

pollIfNecessary(token, cmdStatus)

"give token rights to poll"

create

pollDMSObjects

create

execute

delete

run()

pollNowImpl

addCommand(VerfyFontCmd)

verifyFonts(this, token cmdStat)

VerifyFontCmd

[now - m_lastTimeFontVerified < m_verifyFontInterval]

[NTCIPDMS]
verifyFontIfNecessary()

create(this, token cmdStat)

execute

delete

CHART R10 Detailed Design – Rev 3 10-53 08/14/2012

(a previously queued command could have written a message from an operator at another

operations center). Assuming no problems, the Chart2DMSConfiguration is locked down,

and all parameters which need to change are changed. If any of these parameter changes

require communications to the sign (e.g., setting the Comm Loss Timeout in an FP9500), a

new PortLocator is created using the new parameters. Then, FMS is requested to make the

specified change(s). The method handleOpStatus handles and responds to any changes to

the operational status of the sign (OK, comms failure, or hardware failure) reported by FMS

during this operation. The new configuration is persisted and pushed into the event

channel. The requesting user is kept abreast of progress of the request all the while, via a

CommandStatus object viewable by the user.

R10
Reference to object in DMSDisplayConfigFactoryImpl
is always up to date.

getDMSDisplayInfo()

[no change to existing config]
completed("nothing changes")

update("setting config")

[not in maint mode]
CHART2Exception

[not in maint mode]
completed("wrong mode")

create

[resource conflict]
ResourceControlConflict

checkResourceConflict
(token, cmdStatus)

setConfigurationImpl

[no rights]
completed("no rights")

create "Any" DMSEvent of type DMSConfigChanged

[no rights]
AccessDenied

create

execute

handleOpStatus
(result, cmdStatus)

DMSDisplayConfig

getDMSDisplayConfigInfo()

initProtoHdlrCfg(protoHdlrCfg, config)

R10
Modify to use new m_dmsDisplayConfig
to get display parameters moved to the
DMSDisplayConfig. Also will remove code
no longer needed. If necessary,

create the appropriate
PortLocator by checking the
passed in config.

DMSProtocolHndlr

setConfiguration
(token, config, cmdStatus)

log(token, "DMS <name>, "configuration changed")

update("command queued")

Updates CommandStatus
(completed() call)
if necessary.

addCommand(SetDMSConfigCmd)

[resource conflict]
ResourceControlConflict

end synchronize

delete

fmsReleasePort

checkResourceConflict
(token, cmdStatus)

If any changes
require comms to
sign,e.g., for
FP9500, derived class
implementation will
do more, such as this.

DMSControlDB OperationsLogPushEventSupplier
m_dmsConfig:

Chart2DMSConfiguration

CommandStatus

Chart2DMSImpl

Operator

If any changes
actually occured...

Happens if user from
another op ctr has msg
on DMS in maint mode.

CommandQueue executes
command asynchronously.

CommandQueue

DMSEvent

Writes to CommandStatus
if necessary.

SetDMSConfigCmd

PortLocator

PortLocator

completed("success or failure")

push (DMSConfigChanged)

setConfiguration

"set data as requested"

[failure]
[failure]

fmsGetConnectedPort

[not in maint mode]
push(currentStatus)

[no rights]
log

[comm parameter changed]
create

[comm parameter changed]
delete

[not in maint mode]

[change to commLossTimeout requested]
setCommLossTimeout

[not in maint mode]
completed("wrong mode")

synchronized

[no chng]
[no change to existing config]

CHART R10 Detailed Design – Rev 3 10-54 08/14/2012

10.3.16 DMSControlModule:SetMessage (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object processes a request to change

its message in maintenance mode. (For setting messages online, see addEntry and

evaluateQueue.) The DMS must be in maintenance mode, and the requesting operator must

have proper functional rights. This method asks the message to validate itself one last time

(for banned words, and to ensure that the beacons are not set on with an empty message).

Then a SetDMSMessageCmd (a QueueableCommand) is created and added to the DMS's

CommandQueue. The CommandQueue is required since field communications to the sign

are relatively slow and can queue up. Requests to communicate with the sign are processed

on a first-come, first-served basis. When the CommandQueue is ready, it executes the

SetDMSMessageCmd, which calls the setMessageImpl method. The requesting user is kept

abreast of progress of the request all the while, via a CommandStatus object viewable by

the user.

CommandQueue executes
command asynchronously.

CommandQueue OperationsLog

execute

[no rights]
log(token, "unauth. attemp to set DMS <name> to message <text>t")

checkResourceConflict
(token, cmdStat)

setMessageImpl

[resource conflict]
ResourceControlConflict

[bad words or beacons]
DisapprovedMessageContent

[bad words, or beacons on with no msg]
completed("invalid message or beacons")

R10
Uses m_dmsDisplayConfig
where display parameters are
accessed.

validateMessageContent

[not in maint mode]
CHART2Exception

[not in maint mode]
completed("wrong mode")

SetDMSMessageCmd

This method is used in
maintenance mode only.
SetMessageFromQueue is
used online.

For details, see sequence diagram
DMSControlModule:setMessageImpl.

MessageCommandStatus TokenManipulator

Updates cmdStat
if conflict found
(completed() call).

Chart2DMSImpl

ORB

update("command queued")

addCommand(SetDMSMessageCmd)

create

[no rights]
AccessDenied

[no rights]
completed("no rights")

checkAccess(token)

setMessage(token,
msg, cmdStat)

CHART R10 Detailed Design – Rev 3 10-55 08/14/2012

10.3.17 DMSControlModule:SetMessageFromQueueImpl (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object executes a command to

change its message while it is online. (The analogous method in online mode is

setMessageImpl.) This command is created and added to the CommandQueue in the

evaluateQueue method. When the setMessageFromQueueImpl method runs, it checks that

the DMS is still online (a previously queued command could have changed it). It gets a

port via the fmsGetConnectedPort method and sets the message on the sign via

DMSProtocolHndlr's setMessage method. The method handleOpStatus handles and

responds to any changes to the operational status of the sign (OK, comms failure, or

hardware failure) reported during this operation. RequestFailed is called in failure cases to

notify all of the TrafficEvents involved of the error. The port is released via the helper

method fmsReleasePort and the new status is persisted and pushed into the event channel.

If everything works, requestSuccessful is called to notify all of the TrafficEvents involved.

This includes TrafficEvents for any message that was removed from the sign by the

successful display of the new message. The TrafficEvents for the new message are also

kept up to date via calls to the report() helper method.

fm s Releas ePort

report("s uc c es s ", fa ls e, true, nu l l , arbQEntries)

[fa i lure]
report("fa i led putting m es s age on DM S", fa ls e, true, nu l l , arbQEntries)

[fa i lure]
report("port fa i lure", fa ls e, true, nu l l , arbQEntries)

report("got port", fa ls e, true, nu l l , arbQEntries)

[fa i lure]

[fa i lure]
reques tFai led(arbQEntries)

fm s GetConnec tedPort()

[th is is m _las tQueuedSetM s gCm d]
c lear m _las tQueuedSetM s gCm d

Noti fic ationChannel

Updates or c om pletes the c om m andStatus of eac h in m _ac tiv eArbQueueEntries that hav e
jus t been rem ov ed from the s ign by the s uc c es s fu l d is p lay of th is m es s age (bas ed on
ex is tenc e of the arbQEntry in the M es s ageQueue). Updates the c om m andStatus of
eac h in arbQEntries that were jus t s uc c es s fu l ly d is p lay ed.

R10
Us es param eters from the
dm s Dis play Config
to c reate the M ULTI m es s age
and c onfigure protoc ol handler.
Us e font to c hec k for fi t.

DM SDis play Fac tory Im p

DM SDis play Config

m ul tiM s g = dm s M s gToM ul ti (m s g)

getDM SDis play Config Info()

Pus h the fac t that th is entry is bec om m ing ac tiv e
out to the noti fic ation c hannel .

Noti fic ationChannelChart2DM SIm pl

Chart2DM SImpl

m _s tatus :
Chart2DM SStatus DM SContro lDB

Updates & pus hes
new DM SStatus i f nec es ary .

Operations LogDM SProtoc olHndl r

On fa i lure, c a l ls handleOpStatus whic h updates ,
pers is ts , and pus hes s tatus i f nec es s ary . See
DM SContro lM odule:handleOpStatus for deta i ls .

Pus hEv entSuppl ier

DM SEv ent

s etM es s ageFrom QueueIm pl is us ed only
when in on l ine m ode. In m aint
m ode, s etM es s age/s etM es s ageIm pl is us ed.

handleOpStatus
(res ul t)

report("s etting m es s age", fa ls e, true, nu l l , arbQEntries)

[not on l ine]
report("wrong m ode", fa ls e, true, nu l l , arbQEntries)

noti fy (ArbQueueEntry L is t)

getEntries

[not on l ine]
reques tFai led(arbQEntries)

[fa i lure]
reques tFai led(arbQEntries)

[not on l ine]

s etStatus (m _id, m _s tatus)

log(tok en, "DM S <nam e> m es s age s et to <tex t>")

s etM es s age(port, m ul tiM s g, beac on)

s etM es s ageFrom QueueIm pl(tok en, m s g,
arbQEntries , reqID, th is)

[fa i lure]

pus h(CurrentDM SStatus)

c reate "Any " DM SEv ent o f ty pe CurrentDM SStatus

s etCurrentM es s age(m s g that was s et)

[not on l ine]
pus h(c urrentStatus)

reques tSuc c es s fu l (arbQEntries , true)

M es s ageQueue

Cal ls to report here update the
c om m andStatus of the arbQEntries .
The c om m andStatus is not c om pleted
bec aus e noth ing is rem ov ed from the
M es s ageQueue

CHART R10 Detailed Design – Rev 3 10-56 08/14/2012

10.3.18 DMSControlModule:SetMessageImpl (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object executes a command to

change its message in maintenance mode. (The analogous method in online mode is

SetMessageFromQueueImpl.) An operator request to set the message has already been

received and pre-processed by the setMessage or activateHARNotice methods. When the

setMessageImpl method runs, it checks that the DMS is still in maintenance mode (a

previously queued command could have changed it) and that there is no resource conflict (a

previously queued command could have written a message from an operator at another

operations center). A port is obtained via the fmsGetConnectedPort helper method. Then

the message is displayed on the sign via the DMSProtocolHdlr's setMessage method. The

method handleOpStatus handles and responds to any changes to the operational status of

the sign (OK, comms failure, or hardware failure) reported during this operation. The port

is released via the fmsReleasePort helper method. If successful, the current status is

persisted and a CurrentDMSStatus event is pushed into the event channel, so that any user

(with rights) can immediately see the new content of the sign. The requesting user is kept

abreast of progress of the request all the while, via a CommandStatus object viewable by

the user.

Updates cmdStatus
if conflict found.

SetDMSMessageCmd

PushEventSupplier DMSProtocolHdlr OperationsLog
m_status:

Chart2DMSStatus

This method is used in maint mode only. Online,
setMessageFromQueue/setMesageFromQueueImpl
is used.

completed

push (CurrentDMSStatus)

SetMessage(port, multiMsg, beacon)

setStatus(m_status)

[resource conflict]

[not in maint mode]
completed("wrong mode")

[DMS not in maint mode]

setMessageImpl
(token, msg, beacon, cmdStatus)

Updates cmdStatus, updates & pushes
new DMSStatus if necesary. result is
the result from the SetMessage call.

DMSMessage

DMSEvent

TokenManipulator DMSControlDBCommandStatusChart2DMSImpl

create "Any" DMSEvent of type CurrentDMSStatus

create(multiMsg, beacon)

setCurrentMessage(msg)

[failure]

handleOpStatus
(result, cmdStatus)

setControllingOpCenter(op ctr)

checkResourceConflict
(token, cmdStatus)

[success]
log(token, "DMS <name> message set to <text>")

getOpCenter(token)

fmsReleasePort

[failure]

fmsGetConnectedPort

R10
Uses parameters from the
DMSDisplayConfiguration
to create the MULTI message
and configure protocol handler.

Modify to make sure message fits
on the sign using display parameters.

If messages does not fit prevent it
from being displayed.

multiMsg = dmsMsgToMulti(msg)

DMSDisplayConfig

getDMSDisplayConfigInfo()

CHART R10 Detailed Design – Rev 3 10-57 08/14/2012

10.3.19 DMSControlModule:VerifyFont (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object processes a request to verify

the fonts of a display configuration on a CHART DMS.

10.3.20 DMSDisplayConfigFact:addDMSDisplayConfig (Sequence Diagram)

This sequence diagram describes how the DMSDisplayConfigFactoryImpl adds a new

DMSDisplayConfig object to the local collection and how it notifies other

DMSDisplayConfigFactories of its existence..

R10
DMSProtocol:setConfiguration()
modified to include display parameters

DMSDisplayConfig

getDMSDisplayConfig()
setConfiguration(config)

* for each font in
dmsDisplayConfig

true

configureFont(dataPortWrapper, fontIndex, fontInfo)

[font not valid]
update("setting font X to sign")

completed("font matches display font on DMS")

completed("font added to the DMS")

For details, see sequence diagram
NTCIPProtocolHdlr:ConfigureFont.

VerifyFontCmd

Chart2DMSImpl CommandStatus

[validate failed]
CHART2Exception

TokenManipulator

completed(failed,"font does not match expected font and could not be added to DMS")

For details, see sequence diagram
NTCIPProtocolHdlr:ValidateFont.

OperationsLog NTCIPProtocolHdlr

verifyFontsImpl(token,
dmsConfig, cmdStat)

[no rights]
AccessDenied

checkAccess(token)

[no rights]
log(token, "unauth. attempting to verify fonts on DMS <name>")

[no rights]
completed("no rights")

[valid font]
true

validateFont(port, fontIndex)

[invalid font]
uploadFont(port, fontIndex,
cmdStat,complete, fontInfo)

[configure font successful]
true

update("verify font X on DMS"]

[failed to update font]
CHART2Exception

true

fasle

[already exists]
log(token, "DMS DisplayConfig <dc.getName()> already exists)

DMSDisplayConfigList

matches(*.getDMSDisplayConfig()
compareID = true, compareName = true)

dc
DMSDisplayConfig

ctor(dcInfo)

[* in DMSDisplayConfigList

dc.getDMSDisplayConfigInfo()

ctor(ID, dcData)

ID=m_svcApp.
getIdentifierGenerator().

createIdentifier()

put(ID, dc)

ORB

DMSDisplayConfigFactoryImpl TokenManipulator DMSDisplayConfigDB PushEventSupplier OperationsLog

[could not persist]
CHART2Exception

[no rights]
AccessDenied

[no rights]
log(token, "unauth. attempt to add DMS Display Configuration <dcData.name>")

[already exists]
Chart2Exception

push (DMSDisplayConfigAdded, dcInfo)

setDMSDisplayConfig(dc.getDMSDisplayConfigInfo())

checkAccess
system token &

CONFIGURE_DMS

addDMSDisplayConfig(token,
dcData : DMSDisplayConfigData)

log(token, "DMS Display Configuration <dc.getName()> added")

dcInfo
DMSDisplayConfigInfo

bool

CHART R10 Detailed Design – Rev 3 10-58 08/14/2012

10.3.21 DMSDisplayConfigFact:downloadFont (Sequence Diagram)

This sequence diagram shows the process of how an admin user downloads a font from a

field DMS that has now been put into the CHART system yet. The user provides all

parameters necessary to connect to the DMS and download the font. These parameters

include IP address, TCP/IP port, community string, HDLC framing required, and font

number. The ChartDMSFactory creates a connection port and protocol handler on the fly.

It then uses the port and protocol handler to connect to the DMS and retrieve the specified

font.

Chart2DMSFactory OperationsLog

queryNTCIPDMSFont(token, ntc ipDMSFontQueryParams):DMSFontInfo

[no rights]
AccessDenied

checkAccess(token)

[fail to get font]
CHART2Exception

NTCIPProtocolHdlr

DMSFontInfo

DMSFontInfo

create
DataPortWapper

Admin

retrieveFont(dataPortWrapper, fontIndex)

TokenManipulator

For details, see sequence diagram
NTCIPProtocolHdlr:RetrieveFont

[port not created]
CHART2Exception

[no rights]
log(token, "unauth. attemp to download fonts")

Create protocol handler and query
DMS for font on the
fly using parameters from the user
ntcipDMSFontQueryParams.

create()

[fail to get font]
DMSProtocolHandlerException

CHART R10 Detailed Design – Rev 3 10-59 08/14/2012

10.3.22 DMSDisplayConfigFact:removeDMSDisplayConfig (Sequence Diagram)

This sequence diagram describes how the DMSDisplayConfigFactoryImpl removes a

DMSDisplayConfig object from the local collection and how it notifies other

DMSDisplayConfigFactories of the deletion.

10.3.23 DMSDisplayConfigFact:setDMSDisplayConfig (Sequence Diagram)

This sequence diagram describes how the DMSDisplayConfigFactoryImpl updates a

DMSDisplayConfig object in its local collection and how it notifies other

DMSDisplayConfigFactories of the change.

remove(ID)

DataModel

cannot remove a
DMSDisplayConfig
that has assoc. DMSs

getObjectsOfType(ProxyDMS)

proxyDMSList

[*.getConfiguration().m_dmsConfigID.equals(dc.getID())]

add *.getName() to
referDMSList

[referDMSList.s ize() > 0]
log(token,"DMSDisplayConfig <dc.getName()> not removed;DMSs <referDMSList> still refer")

race condition between when
DMS is tested and when push
is received. Consumer must
handle possible non-existent
DMS Display Config ID

get(ID)

for * in proxyDMSList

dc
DMSDisplayConfigdc

log(token, "DMS Display Configuration <dc.getName()> removed")

DMSDisplayConfigList

[referDMSList.s ize() > 0]
Chart2Exception

ORB

TokenManipulator

Systemtoken and
CONFIGURE_DMS
 tokens only.

DMSDisplayConfigFactoryImpl PushEventSupplier OperationsLog

[no rights]
AccessDenied

[no rights]
log(token, "unauth. attempt to remove DMS Display Configuration <dc.name()>")

checkAccess

[dc == null]

removeDMSDisplayConfig(token, ID : Identifier)

push (DMSDisplayConfigRemoved, ID)

DMSDisplayConfigDB

removeDMSDisplayConfig(ID)
[db error]

CHART2Exception

return lis t of
online DMSs?

add to notOfflineDMSList

[* in proxyDMSList]

get(ID)

[notOfflineDMSList.s ize > 0]
log("<dcData.name> update rejected - non-offline DMSs")

ctor(ID, dcData)

DMSDisplayConfigList

proxyDMSList

[dc == null
Chart2Exception

push (DMSDisplayConfigChanged, dcInfo)

setDMSDisplayConfig(dcInfo)

[no rights]
AccessDenied

checkAccess
system token && CONFIGURE_DMS

setDMSDisplayConfig(token,
ID:Identifier, dcData: DMSDisplayConfigData)

log(token, "DMS Display Configuration <dcData.name> updated")

ORB

DMSDisplayConfigFactoryImpl DataModelTokenManipulator

dcInfo
DMSDisplayConfigInfo

DMSDisplayConfigDBPushEventSupplier OperationsLog

[could not persist]
CHART2Exception

[no rights]
log(token, "unauth. attempt to update DMS Display Configuration <dcData.name>")

proxyDMSList: getObjectsOfType(ProxyDMS)

dc

[if *.getConfiguration().m_displayConfigID == ID &&
getStatus.m_commMode != OFFLINE

get(ID).update(dcInfo)

dcInfo

[notOfflineDMSList.s ize > 0]
CHART2Exception

race condition between offline test
and receipt of set results. Consumer
must handle update while DMS is
not offline.

dc:
DMSDisplayConfig

CHART R10 Detailed Design – Rev 3 10-60 08/14/2012

10.3.24 DMSTravInfoMsgHandler:checkMessage (Sequence Diagram)

This Sequence Diagram shows how a DMSTravInfoMsgHandler responds to request

checkMessage. DMSTravInfoMsgHandler call checkMessage on itself. checkMessage

queues a UpdateTravInfoMsgCmd on dms queue.

R10
Methods updated to use
dmsDisplayConfig parameters

delete

addEntry(token, level, arbQueueEntry)

addCommand(UpdateTravInfoMsgCmd)

[m_arbQueueEntryKey is null]

CommandQueue
executes commands
asynchronously

UpdateTravInfoMsgCmd

[m_userEnabled &&
(m_scheduleEnabled || has toll rate tag(s))]

[DMSMessage not null]

DMSTravInfoHandler

DMSTravInfoTemplateFormatter

[m_arbQueueEntryKey is not null]

[m_arbQueueEntryKey is null]

[string DMSMessage = formatMulti(travMsgTemplateConfig, this, false, true)]

else

Chart2DMSImpl

CommandQueue

checkMessageImpl()

addEntry(token, level, arbQueueEntry)

execute

create

removeEntries(token, m_arbQueueEntryKey)

else()

DMSTravInfoMsgHandler

checkMessage()

OperationsLog

[msg removed automatically due to missing data]
log("message removed due to missing data")

Add to m_tollRateQueueLevel
if any toll rate tags present,
otherwise add to
m_travelTimeQueueLevel.

Same here, but in this case the
addEntry() is treated as an
update. If a message for the
given entry key already exists
on the queue, addEntry updates
the entry in place (preserving
where the entry has been
manually moved to, etc.).

CHART R10 Detailed Design – Rev 3 10-61 08/14/2012

10.3.25 ExternalDMS:SetExternalConfiguration (Sequence Diagram)

This diagram shows the sequence of setting the configuration of External DMS.

R10
Display parameters removed from
DMS Configuration to a new DMS Display
Configuration structure. External DMSs
have an ExternalDMSConfigurationwith
just enough params to render a
message using a generic font, as was
done pre-R10.

The SetConfiguration method of the
 DMS Interface will be implemented
 in ExternalDMSImpl to throw
 "unsupported" CHART2Exception.

log(token,"success")

[invalid config]
CHART2Exception

validateCfg(config)

m_externalDMSConfig

m_externalDMSConfig=config

ORB

ExternalDMSImpl TokenManipulator OperationsLog

Only System Token
is allowed.

[no rights]
log(token, "unauth. access attempt")

setExternalConfiguration(
token,config)

synchronized(
 m_lockConfig)

[no rights]
AccessDenied

checkAccess(token)

[DB Exception]
CHART2Exception

Set individual members of m_extDMSConfig,
if it needs to be set,

updateExternalDMSConfig(dmsID, extDMSConfig)

DMSControlDB

Persist and Push only if
something changed in the
configuration.

pushDMSConfig()

CHART R10 Detailed Design – Rev 3 10-62 08/14/2012

10.4 DMSNTCIPComplianceTester

10.4.1 NTCIPDMSComplianceTesterClasses (Class Diagram)

This diagram shows the classes for the NTCIP DMS Compliance Tester, a stand alone tool

that can be used to check if an NTCIP DMS is compatible with the CHART system.

10.4.1.1 ApplicationExitListener (Class)

This interface is implemented by objects that wish to be notified when the user has

requested to exit the application. This interface was introduced to keep the main

application class from having to implement the awt action listener and window listener

interfaces, most of which do not apply to the main application class (it just needs to know

when the user wants to close).

10.4.1.2 AsyncCommandExecuter (Class)

This class is a queueable command used to execute a DMS command asynchronous to the

main GUI thread, allowing the GUI to process events as a test is running. When the

command is run, it notifies the test activation listener based on the command type that was

specified during construction.

R10
Added DMSFontInfo

The ORB and POA are required
to allow the use of a CHART
direct rs232 port, which is normally
served v ia a port manager on an
FMS server, but is used "in process"
in the compliance tester.

javax.swing.JFileChooser

1

1

uses when
user chooses

to save
results 11

javax.swing.JDialog

javax.swing.JDialog

11

11

javax.swing.JDialog

java.awt.event.ActionListener

«interface»

java.awt.event.WindowListener

«interface»

1

1

calls on c lose

1

1

11

1

1

CommSettingsDlg

SignSettingsDlg

SetMessageDlg

CommSettings

SignSettings

SetMessageSettings

1

11

1
1 1

1

1

11

NTCIPProtocolHdlr

1

1

uses

1

1

1

uses

1

11

These are the same c lasses used
within the CHART system to communicate
with an NTCIP DMS.

1

ORB

«interface»

POA

«interface»

TestRunner

1 1

1 1

ApplicationExitListener

«interface»

1

1

1

1

1

1

NTCIPDMSComplianceTester NTCIPDMSTesterMainWindow

javax.swing.JFrame

java.awt.Component

11

1

1

CommSettings

SignSettings

SetMessageSettings

The main window has a menu
bar with menu items and its
main display area is a scroll pane
with a text area for the test output.

n, *

1

n, *

1

NTCIPProtocolHdlrConfig

DataPortUtility

TCPIPPort

1

1

uses

1

1

uses
1

1

uses

1

1

uses

DirectPortImpl

CommPortConfig

«typedef»

TestResultRecorder

«interface»

1

1

1

1

TestActivationListener

«interface»
1

1

QueueableCommand

«interface»

AsyncCommandExecuter

CommandType

«enumeration»

*

1

1

1

CommandQueue

1

R10
Added new methods
for font management.

R10
Added new types
for font management.

getters()
setters()
save():void

m_selectedPortType:PortType
m_commPortName:String
m_commPortConfig:CommPortConfig
m_tcpipPortConfig:IPPortLocationData
m_snmpCommunity:String
m_hdlcFrameRequired:boolean
m_deviceDropAddress:int
m_recvInitialTimeoutMillis :int
m_recvInterCharTimeoutMillis :int

ex itApplication():void

main(args:String[]):void

getters()
setters()
save():void

m_defaultFont:int
m_lineSpacing:int
m_defLineJustification:int
m_defPageOffTime:int
m_defPagOnTime:int
m_hasBeacons:boolean
m_maxPages:int
m_vmsCharacterHeightPixels:int
m_vmsCharacterWidthPixels:int
m_vmsSignHeightPixels:int
m_vmsSignWidthPixels:int
m_defPageJustification:int
m_interCharSpacing:int
m_deviceCommLossTimeoutMins:int
m_dmsFontInfo:DMSFontInfo

setVis ible(v is ibile:boolean):void

getters()
setters()
save():void

m_useMULTI:boolean
m_messageText:String

writeln(message:String):void

testAll():void
testPollNow():void
testSetMessage(setMsgSettings:SetMessageSettings):void
testBlank():void
testPixelTest():void
testGetExtendedStatus():void
testSetCentralControlMode():void
testReset():void
testConfigureFont():void
testRetreiveFont():void
testDeleteFont():void
testVerifyFont():void m_cmd:CommandType

m_lis tener:TestActivationListener

All
PollNow
Blank
SetMessage
PixelTest
GetExtendedStatus
SetCentralControlMode
Reset
ConfigureFont
RetreiveFont
DeleteFont
VerifyFont

CHART R10 Detailed Design – Rev 3 10-63 08/14/2012

10.4.1.3 CommandQueue (Class)

The CommandQueue class provides a queue for QueueableCommand objects. The

CommandQueue has a thread that it uses to process each QueueableCommand in a first in

first out order. As each command object is pulled off the queue by the CommandQueue's

thread, the command object's execute method is called, at which time the command

performs its intended task.

10.4.1.4 CommandType (Class)

This is an enumeration of the types of commands that can be tested.

10.4.1.5 CommPortConfig (Class)

This structure is used to pass comm port configuration values during a connection request.

10.4.1.6 CommSettings (Class)

This class holds communication related settings for the NTCIPDMSComplianceTester.

The settings are persisted in a .props file and are loaded on construction (or set to default

values if .props file doesn't yet exist). The save method saves the settings to a .props file.

Getters and Setters exist for each of the members in this class.

10.4.1.7 CommSettingsDlg (Class)

This class is a dialog that allows the user to modify and save the communications settings

used by the compliance tester.

10.4.1.8 DataPortUtility (Class)

This class is a wrapper used to hide the underlying port being used to communicate (tcp/ip

,FMS, or DataPortEnabled port).

10.4.1.9 DirectPortImpl (Class)

This class implements the DirectPort interface as defined in the IDL. Its connect method

opens a javax.comm.SerialPort object and sets the port settings according to the baud, data

bits, stop bits, and parity that was passed. Its disconnect method closes the

javax.comm.SerialPort. This class also implements the send and receive functions as

specified in the DataPort IDL interface. The send and receive methods use the read and

write methods of the javax.comm.SerialPort object to send and receive bytes on the com

port. While the send method contains little processing other than calling the

javax.comm.SerialPort object's write method, the receive method contains logic that allows

it to receive a burst of bytes before returning. This causes the receive method to return all

available bytes on the port and thus helps to prevent the need for multiple calls to receive

for a single command response. This class updates a timestamp each time send or receive is

called. When its isInactive() method is called, it checks the current time vs. the last

send/receive time and if the difference is greater than the current inactivity timeout, it

returns true.

CHART R10 Detailed Design – Rev 3 10-64 08/14/2012

10.4.1.10 java.awt.Component (Class)

This class is the base class for all graphical user interface components such as buttons and

panels.

10.4.1.11 java.awt.event.ActionListener (Class)

This interface listens for actions such as when a menu item or button is clicked. For menu

items, it is attached to menu items when the menu is built.

10.4.1.12 java.awt.event.WindowListener (Class)

Listener interface that a class must implement for receiving window events

10.4.1.13 javax.swing.JDialog (Class)

This class is part of the JDK and provides functionality for dialog windows.

10.4.1.14 javax.swing.JFileChooser (Class)

This class is part of the JDK and provides functionality to allow the user to choose a file

from their local file system.

10.4.1.15 javax.swing.JFrame (Class)

Java class that displays a frame window.

10.4.1.16 NTCIPDMSComplianceTester (Class)

This class contains the main entry point for the NTCIP DMS Compliance tester. Its main

method instantiates an instance of the class, whose constructor initializes the application.

Initialization includes initializing the ORB and POA, instantiating the various setting

objects (which depersist their settings from props files), creating a TestRunner object

(which executes the actual tests on command), and creates the main window used to interact

with the application.

10.4.1.17 NTCIPDMSTesterMainWindow (Class)

This class is the main window for the NTCIP DMS Compliance Tester. It has a JFrame

which it populates with various GUI objects, such as a menu bar with menu items, and a

scroll pane with a text area so it can show test results. It implements the ActionListener and

WindowListener interfaces and handles events for each menu click in addition to the

window closing event that is fired if the user closes the window using the X.

10.4.1.18 NTCIPProtocolHdlr (Class)

This object contains the protocol for communication with a NTCIP DMS.

10.4.1.19 NTCIPProtocolHdlrConfig (Class)

This class contains configuration values specific to the NTCIPProtocolHdlr.

CHART R10 Detailed Design – Rev 3 10-65 08/14/2012

10.4.1.20 ORB (Class)

The CORBA ORB (Object Request Broker) provides a common object oriented, remote

procedure call mechanism for inter-process communication. The ORB is the basic

mechanism by which client applications send requests to server applications and receive

responses to those requests from servers.

10.4.1.21 POA (Class)

This interface represents the portable object adapter used to activate and deactivate servant

objects.

10.4.1.22 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a

CommandQueue for asynchronous execution. Derived classes implement the execute

method to specify the actions taken by the command when it is executed. This interface

must be implemented by any device command in order that it may be queued on a

CommandQueue. The CommandQueue driver calls the execute method to execute a

command in the queue and a call to the interrupted method is made when a

CommandQueue is shut down.

10.4.1.23 SetMessageDlg (Class)

This class is a dialog that allows the user to specify the message to be displayed on the sign

for the set message test. The message can be specified as MULTI or plain text.

10.4.1.24 SetMessageSettings (Class)

This class holds settings related to the set message test for the

NTCIPDMSComplianceTester. The settings are persisted in a .props file and are loaded on

construction (or set to default values if .props file doesn't yet exist). The save method saves

the settings to a .props file. Getters and Setters exist for each of the members in this class.

The persistence of these settings allows the user to utilize the setMessage() test without

having to type in a message every time.

10.4.1.25 SignSettings (Class)

This class holds settings related to the sign being tested by the

NTCIPDMSComplianceTester. The settings are persisted in a .props file and are loaded on

construction (or set to default values if .props file doesn't yet exist). The save method saves

the settings to a .props file. Getters and Setters exist for each of the members in this class.

10.4.1.26 SignSettingsDlg (Class)

This class is a dialog that allows the user to modify and save the sign settings.

10.4.1.27 TCPIPPort (Class)

This class provides access to a TCP/IP port for device communications.

CHART R10 Detailed Design – Rev 3 10-66 08/14/2012

10.4.1.28 TestActivationListener (Class)

This interface specifies methods to be implemented by objects that are to be notified when

the user activates a test.

10.4.1.29 TestResultRecorder (Class)

This interface specifies methods to be implemented by objects that can record the results of

tests.

10.4.1.30 TestRunner (Class)

This class provides the capability to execute a test. It is notified when it is time to run a test

through the TestActivationListener interface, and records all results to its associated

TestResultRecorder. This class makes use of existing CHART communications and

protocol handler classes to ensure its tests are using the exact code being used by the

CHART system to perform this functionality. There is no CHART business logic within

this class, it is simply a controller that creates a communications port and passes it to the

CHART protocol handler to perform the requested command.

10.4.2 NTCIPDMSTester:configureFont (Sequence Diagram)

This diagram shows the processing that takes place when the user chooses to execute the

configure font test. Other font methods not diagramed deleteFont() and verifyFont() follow

a similar process. When the user clicks one of the test menu items, the main window is

notified via its ActionListener interface via the actionPerformed() method. The main

window's actionPerformed() method determines which test was selected based on the menu

item name and creates an AsyncCommandExecuter using the appropriate CommandType

enumeration value. This AsyncCommandExecuter is then added to the CommandQueue

where it will be executed asynchronously, and the actionPerformed() method returns,

allowing the GUI to remain responsive to events (such as the update of its text area where it

shows test progress). The CommandQueue calls the AsyncCommandExecuter execute()

method which calls the proper TestActivationListener method based on the command type

specified during construction of the AsyncCommandExecuter. The TestRunner, which

implements the TestActivationListener, performs processing specific to the test that was

activated. In the diagram, the configureFont test is shown, however processing for the

other font tests is very similar. The TestRunner first gets a connected port. The type of

port and the specifics of how the connection is made are based on the settings specified in

the CommSettings object. When this method returns, either a direct RS232 port is available

for use or a TCP/IP port is ready. If any error occurred while connecting, the test result

listener is notified and the test ends. Otherwise, an NTCIP protocol handler is created and

the appropriate font method is called to execute the desired test. If the test succeeds an

appropriate message (or messages) are passed to the TestResultListener via the writeln()

method. In the case of a configure font test, the configure font test succeeded is also sent to

the TestResultListener for display to the user. Similarly, if the test fails, one or more

messages are written to the TestResultListener via the writeln() method. The

CHART R10 Detailed Design – Rev 3 10-67 08/14/2012

TestResultListener is the main window, and its writeln method writes data to its text area

which allows the user to track test progress.

10.4.3 NTCIPDMSTester:retrieveFont (Sequence Diagram)

This diagram shows the processing that takes place when the user chooses to execute the

retrieve font test. Other font methods not diagramed deleteFont() and verifyFont() follow

a similar process. When the user clicks one of the test menu items, the main window is

notified via its ActionListener interface via the actionPerformed() method. The main

window's actionPerformed() method determines which test was selected based on the menu

item name and creates an AsyncCommandExecuter using the appropriate CommandType

enumeration value. This AsyncCommandExecuter is then added to the CommandQueue

where it will be executed asynchronously, and the actionPerformed() method returns,

allowing the GUI to remain responsive to events (such as the update of its text area where it

shows test progress). The CommandQueue calls the AsyncCommandExecuter execute()

method which calls the proper TestActivationListener method based on the command type

specified during construction of the AsyncCommandExecuter. The TestRunner, which

implements the TestActivationListener, performs processing specific to the test that was

activated. In the diagram, the retrieveFont test is shown, however processing for the other

font tests is very similar. The TestRunner first gets a connected port. The type of port and

the specifics of how the connection is made are based on the settings specified in the

CommSettings object. When this method returns, either a direct RS232 port is available for

use or a TCP/IP port is ready. Next a DMSDisplayConfig is created for use to set the

display parameters. If any error occurred while connecting, the test result listener is

notified and the test ends. Otherwise, an NTCIP protocol handler is created and the

appropriate font method is called to execute the desired test. If the test succeeds an

appropriate message (or messages) are passed to the TestResultListener via the writeln()

method. In the case of a retrieve font test, a dmsFontConfigInfo and the retrieve font test

succeeded is also sent to the TestResultListener for display to the user. Similarly, if the test

fails, one or more messages are written to the TestResultListener via the writeln() method.

protocol hdlr config ctor and
setCofiguration() will set all of the
font parameters needed by the
font methods.

setDisplayParameters(dmsDisplayConfig)

User clicks the
Configure Font test menu
item, causing action
event to be fired.User

NTCIPDMSTesterMainWindow
(ActionListener interface)

CommandQueue

AsyncCommandExecuter

TestRunner
(TestActivationListener interface)

NTCIPDMSTesterMainWindow
(TestResultListener interface)

DataPortUtility

NTCIPProtocolHdlr

DMSProtocolHdlrConfig

writeln("Configuring Font...")

configureFont(DataPortUtility)

DMSDeviceStatus or Exception

[success]
writeln("SUCCESS" + DMSDeviceStatus data)

createConnectedPort

create

create

create

setConfiguration()

execute

writeln("Testing Configure Font")

actionPerformed()

addCommand()

create

testConfigureFontNow()

[Exception]
writeln("FAILED:" + details)

CHART R10 Detailed Design – Rev 3 10-68 08/14/2012

The TestResultListener is the main window, and its writeln method writes data to its text

area which allows the user to track test progress.

protocol hdlr config ctor and
setCofiguration() will set all of the
font parameters needed by the
font methods.

dmsDisplayConfig

User clicks the
Retrieve Font test menu
item, causing action
event to be fired.User

NTCIPDMSTesterMainWindow
(ActionListener interface)

AsyncCommandExecuter

CommandQueue
TestRunner

(TestActivationListener interface)

DataPortUtility

NTCIPDMSTesterMainWindow
(TestResultListener interface)

NTCIPProtocolHdlr

DMSProtocolHdlrConfig

setDisplayParameters(dmsDisplayConfig)

writeln("Retrieve Font...")

retrieveFont(DataPortUtility)

DMSDeviceStatus or Exception

[success]
writeln("SUCCESS" + DMSDeviceStatus data)

createConnectedPort

create

create

create

setConfiguration()

execute

writeln("Testing Retrieve Font")

actionPerformed()

addCommand()

create

[Exception]
writeln("FAILED:" + details)

testRetrieveFontFont()

CHART R10 Detailed Design – Rev 3 10-69 08/14/2012

10.5 DMSProtocolsPkg

10.5.1 DMSProtocolsPkg (Class Diagram)

This class diagram shows the protocol handler classes that are related to DMS control.

10.5.1.1 ADDCOProtocolHdlr (Class)

This protocol handler contains the protocol for communicating with an ADDCO portable

DMS.

10.5.1.2 DataPort (Class)

A DataPort is a port that allows binary data to be sent and received. Ports of this type

support a receive method that allows a chunk of all available data to be received. This

method prevents callers from having to issue many receive calls to parse a device response.

Instead, this receive call returns all available data received within the timeout parameters.

The caller can then parse the data within a local buffer. Using this mechanism, device

command and response should require only one call to send and one call to receive.

Modified for R10

NTCIPProtocolHdlrConfig
1

1

Modified for R10

NTCIPDMSDeviceStatus

PCMSProtocolHdlr

DataPort

«interface»

DMSHardwarePage

MultiConverter

MultiParseListener

«interface»

DMSProtocolHdlrConfig

DMSDeviceStatus

FP9500DMSDeviceStatus PCMSDMSDeviceStatus SylviaDMSDeviceStatus TS3001DMSDeviceStatus

DMSProtocolHandlerException

DMSProtocolHdlr

«interface»

FP9500ProtocolHdlr
FP2001ProtocolHdlr FP1001ProtocolHdlr

ADDCOProtocolHdlr

TS3001ProtocolHdlr

SylviaProtocolHdlr

*

1

NTCIPProtocolHdlr

1

1

1

*

1

1

11

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

char[][] m_pageText
int m_pageOnTime
int m_pageOffTime

messageTxt(text)
lineJustification(justify)
newLine(pixelSkip)
newPage()
pageDisplayTime(timeOn, timeOff)
unknownTag(tag)
parseComplete()

multiToPlainText(multi)
plainTextToMulti(text, formatter)
parseMulti(multi, listener)
hardwareMsgToMulti(DMSHardwarePage[] msg):String

performPixelTest():bool
setCommLossTimeout(int):
 void

short m_signType
SignMetrics m_signMetrics
int m_maxPages
int m_dropAddress
int m_defLineJustification
int m_defPageOnTime
int m_defPageOffTime

setConfiguration(DMSProtocolHdlrConfig):void
setMessage(DataPort port,
 string MULTI,
 boolean beacons):void
blank(DataPort):void
getStatus(DataPort):DMSDeviceStatus
reset(DataPort):void

m_communityString:String
m_hdlcFrameRequired:boolean
defaultFont:int
lineSpacing:int
lineSpacingFont:int
m_defaultJustificationPage:int
m_interCharacterSpacing:int
m_ntcipDMSFontInfo:DMSFontInfo[]

BitMap m_pixelStatusMap
byte[] m_primaryLampStatusMap
byte[] m_secondaryLampStatusMap
int m_currentMsgNum
FP9500MsgSource m_currentMsgSource
int m_frontPhotocellLight
int m_backPhotocellLight
int m_topPhotocellLight
FP9500LastError m_lastError
int m_errorValue
int m_errorLoc
int m_pixelOnFailuresCount
int m_pixelOffFailuresCount
int m_moduleFailuresCount
int m_illegalAccessCount
FP9500BBRamStatus m_bbRAMStatus
FP9500ExtBBRamStatus m_extbbRAMStatus
FP9500PWRFailureStatus m_pwrFailStatus
FP9500SerialCommStatus m_commPortStatus
FP9500CmdMsgStatus m_commandStatus
FP9500DisplayStatus m_displayStatus
FP9500HWStatus m_hwStatus
int m_ledIntensity
int m_ttlState
int m_lineVolts
int m_lampLife

send(byte[] data):void
receive(long initialTimeoutMillis,
 long interCharTimeoutMillis,
 long maxReadDurationMillis):byte[]

String m_messageMulti;
boolean m_beaconState;
ShortErrorStatus m_shortErrorStatus;

boolean m_batteryBackup
PCMSDeviceMobility
PCMSPowerType
PCMSSignType
PCMSSignColorType
PCMSDispModule
PCMSSignStatus
PCMSGeneratorStatus
PCMSGeneratorMode
int m_sequenceNo
byte m_rate
int m_messageSource
int m_dispPriority
int m_signBatteryVoltage
int m_engineBatteryVoltage
int m_linePowerVoltage
int m_photocellReading
in m_brightnessLevel
int m_rpm
int m_fuelLevel
PCMSMessageType m_defMsgType
int m_defMsgNum
int m_lowTempThresh
int m_numOfBadDots
int m_ambientTemp

int m_dispTimeRemaining
boolean m_signBlank
SylviaSignStatus
SylviaControllerStatus
SylviaMessageSource
SylviaDNSensorStatus
SylviaOBSensorStatus
SylviaDNCmdStatus
SylviaOBCmdStatus
SylviaSensorFunctionStatus m_dnFunctionStatus
SylviaSensorFunctionStatus m_obFunctionStatus
SylviaShutterServiceStatus
boolean m_defaultDisplayActive
boolean m_powerSupplyBad
SylviaLocalDisplayMessage
int m_localDispMessageNumber

performPixelTest(DataPortUtility):bool
setCentralControlMode(DataPortUtility,int):void
setCommLossTimeout(int):void
setDefaultFont(DataPortUtility, int):void
setDefaultPageJustificationt(DataPortUtility, int):void
setInterCharacterSpacing(DataPortUtility,int):void
setLineSpacing(DataPortUtility, int, int):void
getExtendedStatus(DataPortUtility)
retrieveFont(DataPortUtility,int):DMSFontAndSpacingInfo
configureFont(DataPortUtility, DMSFontAndSpacingInfo): void
validateFont(DataPortUtility, int):boolean
deleteFont(int):void

BitMap m_pixelStatusMap
BitMap m_lampStatusMap
TS3001Mode m_currentMode
boolean m_programFault
boolean m_commLossStatus
boolean m_commandError
boolean m_pwrFailure
boolean m_backupPwrFailure
boolean m_primaryLampFailure
boolean m_secondaryLampFailure
boolean m_signDisplayFailure
boolean m_pixelFailure
boolean m_illumSystemFailure
boolean m_PLCState
TS3001IlluminationMode m_illumControlMode
boolean m_pwrRecovery
boolean m_temperatureWarning
boolean m_signDriverFailure
byte m_signIllumLevel

string reason

m_dmsControlMode : int
m_dmsMsgSourceMode : int
m_dmsMessageOwner : String
m_powerSource : int
m_fuelLevel : String
m_signVolts : String
m_engineRPM : String

CHART R10 Detailed Design – Rev 3 10-70 08/14/2012

10.5.1.3 DMSDeviceStatus (Class)

This class contains data returned by all DMS protocol handlers getStatus() method. DMSs

that support more detailed status return a derivation of this class.

10.5.1.4 DMSHardwarePage (Class)

This class holds data that specifies the layout of one page of a DMS message on the actual

DMS hardware. A two dimensional array that is the same size as the sign's display (rows

and columns) specifies the character displayed in each cell, including blank if the cell has

no character. This format maps well to the way DMS protocols return the current message

being displayed in a status query. This class can then be passed to a MultiConverter object

to convert the message into MULTI format.

10.5.1.5 DMSProtocolHandlerException (Class)

This exception is thrown when a DMS device fails to respond to a command or a protocol

error is detected in the response packet.

10.5.1.6 DMSProtocolHdlr (Class)

This interface defines the methods that must be supported by DMS prototocol handlers.

Note - some handlers support methods in addition to these standard methods.

10.5.1.7 DMSProtocolHdlrConfig (Class)

This class contains the configuration parameters for the DMS Protocol handlers.

10.5.1.8 FP1001ProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with an FP1001 DMS.

10.5.1.9 FP2001ProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with an FP2001 DMS.

10.5.1.10 FP9500DMSDeviceStatus (Class)

This class contains status data that is returned from the FP9500 protocol handler in the

getStatus call.

10.5.1.11 FP9500ProtocolHdlr (Class)

This protocol handler implements the protocol used to command an FP9500 DMS. The

performPixelTest method causes a pixel test to be run on the sign. The status of pixels

reported in the getStatus method contains the status since the last time a pixel test was run.

10.5.1.12 MultiConverter (Class)

This class provides methods which perform conversions between the DMS MULTI mark-

up language and plain text. It also provides a method which will parse a MULTI message

and inform a MultiParseListener of elements found in the message.

CHART R10 Detailed Design – Rev 3 10-71 08/14/2012

10.5.1.13 MultiParseListener (Class)

A MultiParseListener works in conjunction with the MultiConverter to allow an

implementing class to be notified as parsing of a MULTI message occurs. An exemplary

use of a MultiParseListener would be the MessageView window which will need to have

the MULTI message parsed in order to display it as a pixmap.

10.5.1.14 NTCIPDMSDeviceStatus (Class)

This class contains data returned from the NTCIP DMS protocol handler's getStatus()

method.

10.5.1.15 NTCIPProtocolHdlr (Class)

This object contains the protocol for communication with a NTCIP DMS.

10.5.1.16 NTCIPProtocolHdlrConfig (Class)

This class contains configuration values specific to the NTCIPProtocolHdlr.

10.5.1.17 PCMSDMSDeviceStatus (Class)

This class contains status data that is returned from the Display Solutions PCMS protocol

handler in the getStatus call.

10.5.1.18 PCMSProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with a Display Solutions

(Winkomatic) Portable DMS.

10.5.1.19 SylviaDMSDeviceStatus (Class)

This class contains status data that is returned from the Sylvia protocol handler in the

getStatus call.

10.5.1.20 SylviaProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with a Sylvia DMS.

10.5.1.21 TS3001DMSDeviceStatus (Class)

This class contains data returned from the TS3001 protocol handler's getStatus() method.

10.5.1.22 TS3001ProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with a Telespot 3001

series DMS.

10.5.2 NTCIPProtocolHdlr:ConfigureFont (Sequence Diagram)

This sequence diagram shows the steps involved in configuring a font on a NTCIP DMS

CHART R10 Detailed Design – Rev 3 10-72 08/14/2012

sign. configureFont() calls various functions to complete the task. The display parameters

are set on the protocol handler using the dmsDisplayConfig. Then configureFont() is called

on the NTCIPProtocolHdlr for each font in the display config. It first gets the font status

based on font index. If there is an exception or if the font status is inUse, permanent or

unmanaged the method reports failed to complete and throws an CHART2Exception. If the

font status is not in Use, permanent or unmanaged configureFont then sets the font status to

"modifyReq" and does another getFontStatus to verify the font is in modifyReq state. Next

configFont sets font height, font number, font name, font character spacing, and font line

spacing using their respective functions. If any of these methods fail the configureFont

method reports failed to complete and throws an CHART2Exception. Else it sets the

character width and character bit map for each character of the font if needed. Finally if the

font is successfully configured the verifyFont method is executed to validate the font. If this

method fails a command status of failed is retuned and a CHART2Exception is thrown Any

other exceptions thrown by helper method is returned to the calling object as a

CHART2Exception after updating the command status as failed. Otherwise upon

completion of configueFont the command status is set to completed successfully.

CHART R10 Detailed Design – Rev 3 10-73 08/14/2012

10.5.3 NTCIPProtocolHdlr:DeleteFont (Sequence Diagram)

This sequence diagram shows the steps involved in deleting a font from a NTCIP DMS

sign. deleteFont() calls various functions to complete the task. deleteFont() is called on the

NTCIPProtocolHdlr for the font requested to be deleted. It first gets the font status based on

font index. If there is an exception or if the font status is inUse or permanent the method

reports failed to complete and throws an CHART2Exception. If the font status is not in Use

or permanent deleteFont then sets the font status to "modifyReq" and does another

getFontStatus to verify the font is in modifyReq state. Next deleteFont sets font height = 0.

update("setting font Number "X" to s ign")

DMSDisplayConfig
Uses dmsDisplayConfig
reference to update protocol
handler configuration

getDMSDisplayConfig()

[*for each font]

setConfiguration(dmsProtoHdlrConfig)

verifyFont(fontIndex)

completed(FAILED)[failed to verify font or font not valid]
CHART2Exception

update("verify ing newly configured font on sign")

validateFont(dataPortWrapper, fontIndex)

setFontName(dataPortWrapper, fontIndex, name)

[if any exception]
DMSProtocolHandlerException

completed(FAILED)
[failed to set font name]

CHART2Exception

putOnline
putInMaintMode

NTCIPDMSImpl CommandStatus

DataPortWrapper

NTCIPProtocolHdlr

configureFont
execution

[failed to get font status or bad font state]
CHART2Exception

[if any exception]
DMSProtocolHandlerException

[failed to set font character spacing]
CHART2Exception

[if any exception]
DMSProtocolHandlerException

[failed to set font line spacing]
CHART2Exception

uploadFonts(port
cmdStat,complete)

completed(FAILED)
[failed to set font number]

CHART2Exception

[if any exception]
DMSProtocolHandlerException

setFontNumber(dataPortWrapper, fontIndex, number)

completed(FAILED)

completed(FAILED)

completed(FAILED)

[if any exception]
DMSProtocolHandlerException

setFontHeight(dataPortWrapper, fontIndex, height)

setFontLineSpacing(dataPortWrapper, fontIndex, fontLineSpacing)

getFontStatus(dataPortWrapper, fontIndex)

[fontNumberStatus != inUse, permanent, or unmanaged]
setFontStatus(dataPortWrapper, fontIndex, modifyReq)

setFontCharSpacing(dataPortWrapper, fontIndex, fontCharSpacing)

[failed to set font status]
CHART2Exception

[if any exception]
DMSProtocolHandlerException

true

configureFont(dataPortWrapper, dmsFontInfo, fontIndex, fontName)

[if any exception]
DMSProtocolHandlerException

[any exception]
CHART2Exception

complete(OK or FAILED)

[if any exception]
DMSProtocolHandlerException

[state not modify ing or any exception]
completed(FAILED)

[failed to set font height]
CHART2Exception

completed(FAILED)

super.handleOpStatus()

[inUse, permanent, unmanaged or any exception]
complete("failed")

update("new font is valid")

see NTCIPProtocolHdlr:ValidateFont
for details

update("setting fonts to s ign")

[failed to get font status or bad font state]
CHART2Exception

completed(FAILED)

setCharacterWidth(dataPortWrapper,fontIndex, charNum, width)

[failed to set character width]
CHART2Exception

setCharacterBitMap(dataPortWrapperfontIndex, charNum, bitMap)[if any exception]
DMSProtocolHandlerException

completed(FAILED)
[failed to set character bit map]

CHART2Exception

for each character in the font

getFontStatus(dataPortWrapper, fontIndex)
[if any exception]

DMSProtocolHandlerException

CHART R10 Detailed Design – Rev 3 10-74 08/14/2012

If any method fails the deleteFont method reports failed to complete and throws an

CHART2Exception. Otherwise the method then sets the font status to notUsedReq. Finally

if the font is successfully deleted the command status is set to completed successfully.

10.5.4 NTCIPProtocolHdlr:RetrieveFont (Sequence Diagram)

This sequence diagram shows the steps involved in retrieving a font on a NTCIP DMS sign.

retrieveFont() is called on the NTCIPProtocolHdlr. retrieveFont() calls various functions to

complete the task. It first gets the font number status based on font index. If there is an

exception or if the font status is not ready for Use, permanent or unmanaged the method

reports failed to complete and throws an CHART2Exception. If the font status is ready for

Use, permanent or unmanaged retrieveFont then gets the font number, font name, font

height, font character spacing, font line spacing, and font version ID using their respective

functions. If any of these methods fail the retrieveFont method reports failed to complete

and throws an CHART2Exception. Else it gets the character width and character bit map

for each font character if needed. Finally if the font is successfully retrieved the method

ORB

Chart2DMSFactoryImpl CommandStatus

DataPortWrapper

NTCIPProtocolHdlr

configureFont
execution

setDMSFontStatus(dataPortWrapper, fontIndex, notUsedReq)

[if any exception]
DMSProtocolHandlerException

completed(FAILED)
[failed to set font status]

CHART2Exception

[failed to get font status or bad font state]
CHART2Exception

deleteFont(port, fontIndex,
cmdStat,complete, fontInfo)

completed(FAILED)
[failed to set font status]

CHART2Exception

setDMSFontStatus(dataPortWrapper, fontIndex, modifyReq)

completed(FAILED)

completed(FAILED)

[if any exception]
DMSProtocolHandlerException

setDMSFontHeight(dataPortWrapper, fontIndex, height = 0)

getDMSFontStatus(dataPortWrapper, fontIndex)

[dmsFontNumberStatus != inUse or permanent]
setDMSFontStatus(dataPortWrapper, fontIndex, notUsedReq)

[failed to set font status]
CHART2Exception

[if any exception]
DMSProtocolHandlerException

true

deleteFont(dataPortWrapper, fontIndex)

[if any exception]
DMSProtocolHandlerException

[any exception]
CHART2Exception

complete(OK or FAILED)

[if any exception]
DMSProtocolHandlerException

[state not notUsed or any exception]
completed(FAILED)

[failed to set font height]
CHART2Exception

update("delete font was successful")

super.handleOpStatus()

[inUse, permanent, or any exception]
complete("failed")

update("deleting font number "X" from sign")

[failed to get font status or bad font state]
CHART2Exception

getDMSFontStatus(dataPortWrapper, fontIndex)
[if any exception]

DMSProtocolHandlerException

CHART R10 Detailed Design – Rev 3 10-75 08/14/2012

updates the status. Any other exceptions thrown by helper method is returned to the calling

object as a CHART2Exception after updating the command status as failed. Upon

completion of retrieveFont the command status is set to completed successfully. Finally the

font is returned in a DMSFontAndSpacing object.

[if any exception]
DMSProtocolHandlerException

[if any exception]
DMSProtocolHandlerException

getFontNumberStatus(fontIndex,)
[if any exception]

DMSProtocolHandlerException

getCharacterWidth(fontIndx, charNum)

[if any exception]
DMSProtocolHandlerException

getCharacterBitMap(fontIndx, charNum)

* for each needed character in the font

[if any exception]
DMSProtocolHandlerException

getFontVersionID(dataPortWrapper, fontIndex)

Chart2DMSFactory NTCIPProtocolHdlr

[if any exception]
DMSProtocolHandlerException

getFontHeight(dataPortWrapper, fontIndex,

getFontLineSpacing(dataPortWrapper, fontIndex,)

getFontName(dataPortWrapper, fontIndex,)

[fontNumberStatus = readyForUse, permanent, or unmanaged]
getFontNumber(dataPortWrapper, fontIndex,)

getFontCharSpacing(dataPortWrapper, fontIndex,)

[if any exception]
DMSProtocolHandlerException

dmsFontInfo

retrieveFont(dataPortWrapper, fontIndex)

[if any exception]
DMSProtocolHandlerException

[if any exception]
DMSProtocolHandlerException

CHART R10 Detailed Design – Rev 3 10-76 08/14/2012

10.5.5 NTCIPProtocolHdlr:SetMessage (Sequence Diagram)

This sequence diagram shows the steps involved in setting a message on a NTCIP DMS

sign. fmsSetMsgViaPort first updates the command status with the message

"communicating with sign". The function then uses the dmsDisplayConfig to update

protocol handlers configuration with the latest display parameters.dmsMsgToMulti() is then

called. If an exception occurs as a result of this call the function reports the failure via the

CommandStatus and throws an CHART2Exception.Then setMessage() is called on the

NTCIPProtocolHdlr. setMessage() calls various functions to complete the task. It first sets

message defaults based on parameters contained in the protocol handler's configuration

object. If the sign is Online it forces the DMS into central control mode. It then sets the

default font, line spacing, page justification, and inter-character spacing using their

respective functions. Any exception throw by these functions is caught and the command

status is updated and a CHART2Exception is thrown. Any other exceptions thrown by

helper function is return to the calling object as a CHART2Exception after updating the

command status as failed. Upon completion of setMessage the command status is set to

completed successfully.

setDMSDisplayParameters(dmsDisplayConfig)

DMSDisplayConfig

getDMSDisplayConfig()

Use dmsDisplayConfig to get display
parameters.
The fonts was verified and/or loaded when
the DMS was putOnline or in Maint Mode.
No Font tags in R10 so addDisplayFontToMulti()
will not be coded.

New for R10
The default font and the message
display font will always be the same
for R10

addDisplayFontToMulti(fontIndex)

[if any exception]
DMSProtocolHandlerException

[if any exception]
DMSProtocolHandlerException

setPageJustification(dataPortWrapper, justification)

[failed to set central control mode]
CHART2Exception

completed(FAILED)

completed(FAILED)

setDefaultFont(dataPortWrapper, fontNumber)

[if any exception]
DMSProtocolHandlerException

[if any exception]
DMSProtocolHandlerException

[if any exception]
DMSProtocolHandlerException

setLineSpacing(dataPortWrapper, fontIndex, lineSpacing

setInterCharacterSpacing(dataPortWrapper, numberOfPixels)

completed(FAILED)

setMessageImpl
setMessageFromQueue

processResult

true

completed(FAILED)

completed(FAILED)

setMessage
execution

[if any exception]
DMSProtocolHandlerException

[if OnLine]
setCentralControlMode

[failed to set page justification]
CHART2Exception

[failed to set inter-char spacing]
CHART2Exception

super.handleOpStatus()

setMessage(dataPortWrapper, multiMsg,
dmsMsg. beaconState)

[any exception]
CHART2Exception

complete(OK or FAILED)

update("communicating with sign")

 adjustMultiTagsCaseForSign(multiMsg)

[Message will not fit on sign.]
CHART2Exception

NTCIPDMSImpl CommandStatus

[failed to set line spacing]
CHART2Exception

[failed to set default font]
CHART2Exception

DataPortWrapper

NTCIPProtocolHdlr

complete(failed, "Message will not fit on sign.")

fmsSetMsgViaPort(port, dmsMsg,desc,
cmdStat,complete)

dmsMsgtoMulti(dmsMsg)

CHART R10 Detailed Design – Rev 3 10-77 08/14/2012

10.5.6 NTCIPProtocolHdlr:ValidateFont (Sequence Diagram)

This sequence diagram shows the steps involved in verifying a font on a NTCIP DMS sign.

The validateFont method is called on the NTCIPProtocolHdlr. validateFont() calls various

functions to complete the task. It first calculates the font's version ID based on font index.

Next the method gets the font status. If there is an exception or if the font status is not ready

for Use, permanent or unmanaged the method reports failed to complete and throws an

CHART2Exception. If the font status is ready for Use, permanent or unmanaged

validateFont then gets the font version ID with the getFontVersionId method. If

getFontVersionId fails the validateFont method reports failed to complete and throws an

CHART2Exception. Else it compares the calculated version ID to the retrieved version ID.

If they don't match the command status is updated notifying the caller. Finally if the font

version IDs match the method updates the status to completed successfully. Any other

exceptions thrown by helper methods is returned to the calling object as a

CHART2Exception after updating the command status as failed. Upon completion of

validateFont the command status is set to completed successfully. Finally true or false is

returned based on whether the font is valid or not.

*for each font

supportsFonts()

[does not support fonts]
DMSProtocolHandlerException

compareFontVersionIDs()

putOnline
putInMaintMode

NTCIPDMSImpl CommandStatus

DataPortWrapper

NTCIPProtocolHdlr

validateFont
execution

[failed to calculate version ID]
CHART2Exception

verifyFonts(port, fontIndx[],
cmdStat,complete)

completed(FAILED)

[don't match]
update("this font does match as expected")

[if any exception]
DMSProtocolHandlerException

getFontVersionId(dataPortWrapper, fontIndex,)

getFontStatus(dataPortWrapper, fontIndex,)

[failed to get font number]
CHART2Exception

[not readyForUse, permanent, or unmanaged]]
DMSProtocolHandlerException

[valid font]
true else false

validateFont(dataPortWrapper, fontIndex)

[any exception]
CHART2Exception

complete(OK or FAILED)

completed(FAILED)

[helper failed]
CHART2Exception

super.handleOpStatus()

complete("failed")

update("verifying font on sign")

[failed to get font name]
CHART2Exception

calculateVersionId(fontIndex)
[if any exception]

DMSProtocolHandlerException

CHART R10 Detailed Design – Rev 3 10-78 08/14/2012

10.6 DMSUtilityPkg

10.6.1 MULTIProcessingClasses (Class Diagram)

This diagram shows utility classes involved in conversion to or from MULTI or for fit

checking a MULTI message.

10.6.1.1 DMSMsgFitCheckResults (Class)

This class is used to store the results of a DMS message fit check.

10.6.1.2 DMSMsgUtil (Class)

This class contains utility methods for working with DMS messages.

SHAMultiFormatter2

MultiFormatter2

MultiConverter2

MultiFormatPageException

Changed for R10 to accept an optional DMSDisplayConfig
for calculating the size of the text in pixels
(rather than just characters) as it would be rendered on
the display. If the DMSDisplayConfig is not specified,
the pixel statistics will not be calculated.

MultiStatsAccumulator

MultiMessageStats

Changed for R10 to include
the max pixel width / height used,
taking into account the formatting
for a specific DMSDisplayConfig.

MultiParseListener

«interface»

For R10, the plain-text-to-multi conversion is being changed
to accept a font number argument (which may be the default
font). The formatting algorithm will be changed to fully
account for the font size and spacing pulled from the
DMSDisplayConfig's font table. The getMessageStats()
method is also changing to take into account the font and spacing
as appropriate for full / line / char matrix signs when calculating
pixel s izes.

New for R10.

DMSMsgUtil

DMSMsgFitCheckResults

*1

creates

*1
creates

MultiFormatRowException

$checkMessageFit(DMSDisplayConfig, msgText : String,
 isMulti : boolean, maxColsSupported : Integer) : DMSMsgFitCheckResults

$getMessageStats(multi : String,
 optDispConfig : DMSDisplayConfig) : MultiMessageStats

getErrMsgs() : String[]
getFittingMulti() : String
hasError() : boolean
hasFittingMulti() : boolean
lineTooLong() : boolean
tooManyPages() : boolean
tooManyRows() : boolean

MultiMessageStats()
MultiMessageStats(rows : int, chars : int,
 pages : int, longestText : String,
 pixelWidth : int, pixelHeight : int)

+m_pages : int
+m_maxChars : int
+m_maxRows : int
+m_longestLineOfText : String
+m_maxWidthPixels : int
+m_maxHeightPixels : int

+plainTextToMulti(text : String, fontNum : DMSFontNumber) : String

SHAMultiFormatter(dispConfig : DMSDisplayConfig)

m_displayConfig : DMSDisplayConfig

+m_requiredPages : int
+m_fullyParsed : String

+m_requiredPixels : int
+m_fullyParsed : String
+m_problemText : String

$getMessageStats(multi : String, optDispConfig : DMSDisplayConfig) : MultiMessageStats
$multiToExactPlainText(multi : String) : String
$multiToPlainText(multi : String) : String
$parseMulti(multi : String, listener : MultiParseListener) : void
$plainTextToMulti(msgText : String, MultiFormatter, fontNum : DMSFontNumber) : String

CHART R10 Detailed Design – Rev 3 10-79 08/14/2012

10.6.1.3 MultiConverter2 (Class)

This class contains methods which will convert the DMS message between the MULTI

mark-up language and plain text.

10.6.1.4 MultiFormatPageException (Class)

This exception is thrown when the message does not fit due to not enough pages.

10.6.1.5 MultiFormatRowException (Class)

This exception is thrown when one or more lines was too long to fit on a row of the display.

10.6.1.6 MultiFormatter2 (Class)

Interface which must be implemented by any class providing an algorithm that converts

plain text to MULTI. This will be called by the MultiConverter.

10.6.1.7 MultiMessageStats (Class)

This class is used by MultiStatusAccumulator to store statistics about the size of a MULTI

message in terms of pages, rows, and characters per row. It also stores the longest line of

text, for showing to the user if a line is too long to fit on the sign. The pixel width and

height required for the message are also stored, and will be calculated if a

DMSDisplayConfig object is passed to MultiStatsAccumulator.

10.6.1.8 MultiParseListener (Class)

A MultiParseListener works in conjunction with the MultiConverter to allow an

implementing class to be notified as parsing of a MULTI message occurs. An exemplary

use of a MultiParseListener would be the MessageView window which will need to have

the MULTI message parsed in order to display it as a pixmap.

10.6.1.9 MultiStatsAccumulator (Class)

This class parses a MULTI string to find out statistics of how many rows, character per

row, and pages the message requires. It also accepts an optional DMSDisplayConfig object

to allow it to calculate the display size (width / height) in pixels that is required for the

message.

10.6.1.10 SHAMultiFormatter2 (Class)

This class is used to format plain text messages to MULTI for a given DMS display

configuration. It implements SHA business rules such as keeping certain combinations of

words on the same line and performing line and page justification.

10.6.2 DMSDisplayClasses (Class Diagram)

This diagram contains classes related to DMS Display configurations.

CHART R10 Detailed Design – Rev 3 10-80 08/14/2012

10.6.2.1 DisplayProperties (Class)

This class contains functionality related to the geometry and capacity of a DMS display.

The width and height in pixels represent the pixels on the sign, not pixels in the "true

display" rendered graphic. Character width is non-zero for char matrix signs only.

Character height is non-zero for char and line matrix signs. If character width or height are

specified, the overall height or width of the sign must be a multiple of the character size.

10.6.2.2 DMSDisplayConfig (Class)

This class represents display settings potentially used by multiple DMSs. It has all

information necessary for rendering the message, checking for message fit, etc.. It is based

on the DMSDisplayConfigInfo IDL structure, but does not necessarily store that structure

internally. It provides methods for manipulating and analyzing the display settings.

10.6.2.3 DMSDisplayConfigDefaultComparator (Class)

This comparator compares two DMSDisplayConfig objects (based on sign type, rows, and

characters per row) for the purposes of sorting.

All classes on this diagram are new for R10.

DMSDisplayConfigDefaultComparator

DMSFontTable
1

MultiDefaults

getCharsPerRow() and
getCharWidthPixels() are
only applicable for char matrix signs.
For line and full matrix, these return 0.

getCharHeightPixels() and
getRowsPerPage() are only
applicable for char and line matrix.
For full matrix, these return 0.

11

1

DMSDisplayConfigPageFontInfo

java.util.Comparator
«interface»

DMSDisplayConfig

DisplayProperties

11

LineJustification
«enumeration»

PageJustification
«enumeration»

DMSDisplayConfig(idlConfig : DMSDisplayConfigInfo)
compareTo(config : DMSDisplaySettings) : int
createCopy(id : Identifier) : DMSDisplayConfig
equals(obj : Object) : boolean
getDMSDisplayConfigInfo() : DMSDisplayConfigInfo
getDisplayProperties() : DisplayProperties
getFontTable() : DMSFontTable
getID():Identifier
getMaxCharsPerRowAllowed() : int
getMaxPagesAllowed() : int
getMaxRowsPerPageAllowed() :int
getMultiDefaults() : MultiDefaults
getName():String
hasBeacons() : boolean
isCompatible(fontNum:DMSFontNumber, charsPerRow:int,
 rowsPerPage:int, numPages:int):boolean
isSourceUser() : boolean
isSystemGenerated() : boolean
matches(config : DMSDisplayConfig,
 compareID : boolean,
 compareName : boolean) : boolean
setHasBeacons(hasBeacons : boolean) : void
setMaxCharsPerRowAllowed(charsPerRow : int) : void
setMaxPagesAllowed(maxPages : int) : void
setMaxRowsPerPageAllowed(maxRows: int) : void
setName(name : String) : void
update(config : DMSDisplayConfig) : void
update(idlConfig : DMSDisplayConfigInfo) : void
$createDefaultCharMatrixDisplayConfig(
 name : String, numRows : int, charsPerRow : int,
 hasBeacons : boolean) : DMSDisplayConfig

createCopy() : DisplayProperties
getCharHeightPixels() : int
getCharsPerRow() : int
getCharWidthPixels() : int
getDesc() : String
getHeightPixels() : int
getRowsPerPage() : int
getWidthPixels() : int
isCharMatrix() : boolean
isFullMatrix() : boolean
isLineMatrix() : boolean
matches(dispProperties : DisplayProperties) : boolean
setSizes(width, height, charWidth, charHeight) : void
update(dispProps : DisplayProperties) : void
verifyFontDisplayableOnSign(font : Font) : boolean

m_widthPixels : int
m_heightPixels : int
m_charWidthPixels : int
m_charHeightPixels : int

getLineJustification() : LineJustification
getPageJustification() : PageJustification
getPageOffTimeTenths() : int
getPageOnTimeTenths() : int
setLineJustification(just : LineJustification) : void
setPageJustification(just : PageJustification) : void
setPageOffTimeTenths(timeTenths : int) : void
setPageOnTimeTenths(timeTenths : int) : void

getCharsPerRowEffectiveDesc() : String
getCharsPerRowFittingDesc() : String
getFontAndSpacing() : FontAndSpacing
getMaxCharsPerRowEffective() : int
getMaxCharsPerRowFitting() : int
getMaxRowsPerPageEffective() : int
getMaxRowsPerPageFitting() : int
getMinCharsPerRowEffective() : int
getMinCharsPerRowFitting() : int
getTextWidthPixels(text : String) : int
isEffectiveMaxCharsPerRowLimited() : boolean
isEffectiveMaxRowsPerPageLimited() : boolean
textFitsOnLine(text : String) : boolean

m_config : DMSDisplayConfig
m_fontAndSpacing : FontAndSpacing

getDMSFontTableInfo() : DMSFontTableInfo
getEntries() : LIst<DMSFontTableEntry>
get(fontNumber : DMSFontNumber) : DMSFontAndSpacing
put(fontNumber : DMSFontNumber,
 entry : DMSFontAndSpacing) : void
remove(fontNumber : DMSFontNumber) : void
update(fontTable : DMSFontTable) : void

isCenter() : boolean
isFull() : boolean
isLeft() : boolean
isRight() : boolean
isDefault() : boolean
isOther() : boolean
getIDLValue() : int

Center
Full
Left
Right
Default
Other

isBottom() : boolean
isMiddle() : boolean
isTop() : boolean
getIDLValue() : int

Bottom
Middle
Top

CHART R10 Detailed Design – Rev 3 10-81 08/14/2012

10.6.2.4 DMSDisplayConfigPageFontInfo (Class)

This class contains functionality for analyzing how much text fits on a page of a given

DMSDisplayConfig, assuming only one font is used on the page. This supports character,

line, and full matrix signs.

10.6.2.5 DMSFontTable (Class)

This class is a table of fonts that may be used in messages on a DMS.

10.6.2.6 java.util.Comparator (Class)

This interface is implemented by classes that can be sorted.

10.6.2.7 LineJustification (Class)

An enumeration of the line justification values for DMS messages.

10.6.2.8 MultiDefaults (Class)

This class describes the default behavior of a DMS when certain tags are not specified in

the MULTI message. Currently it supports default values for line / page justification and

page on/off times.

10.6.2.9 PageJustification (Class)

An enumeration of the page justification values for DMS messages.

CHART R10 Detailed Design – Rev 3 10-82 08/14/2012

10.6.3 SHAMultiFormatterClasses (Class Diagram)

This diagram shows the classes involved in formatting plain text messages into MULTI

using the SHA business rules for formatting DMS messages.

10.6.3.1 FormatterMessage (Class)

This class is used internally by the SHAMultiFormatter to model a message that is being

formatted.

10.6.3.2 FormatterPage (Class)

This class is used internally by the SHAMultiFormatter to model a page of a message that is

being formatted.

10.6.3.3 FormatterPageFull (Class)

This exception is used internally by SHAMultiFormatter to signal that a page of the

message being formatted is full.

10.6.3.4 FormatterRow (Class)

This class is used internally by the SHAMultiFormatter to model a row of a page that is

being formatted.

MultiFormatter2

creates

SHAMultiFormatter2

For R10 this is being changed to support all sign types,
as represented by the DMSDisplayConfig, and to consider
the specified font when formatting.

Changed for R10 to
use the DMSDisplayConfig
for checking the max characters
per line allowed, and also to
check whether the text fits on the row
given the specified font, sign type,
and char spacing.

Changed for R10 to consider
line spacing (full matrix only)
and to determine how many rows
there are (considering sign type,
font height, line spacing,
and max number of rows allowed).

Changed for R10 to get the
default page on/off times from
the DMSDisplayConfig, and also
to check how many pages are
allowed.

For R10, all of these classes are being
moved from CHART2.DMSUtility to
CHART2.DMSUtility.shaFormatter.

FormatterMessage
FormatterPage

FormatterPageFull

FormatterRow

FormatterRowFull

*1 *1

*

1

throws

1

1

throws

1

1

throws

*

1

SHAMultiFormatter(dispConfig : DMSDisplayConfig)

m_displayConfig : DMSDisplayConfig

add(text : String) : void
checkPageOverflow() : int
checkRowOverflow() : String
getMulti() : String

m_displayConfig : DMSDisplayConfig
m_font : DMSFont

add(text : String) : void
checkRowOverflow() : String
getMulti() : String

m_displayConfig : DMSDisplayConfig
m_font : DMSFont

m_spacesUsed : int

add(text : String) : void
checkForEmptyLine() : void
checkOverflow() : String
containsWord(words : Vector) : boolean
getMulti() : String
removeTrailingSpace() : void

m_displayConfig : DMSDisplayConfig
m_font : DMSFont

CHART R10 Detailed Design – Rev 3 10-83 08/14/2012

10.6.3.5 FormatterRowFull (Class)

This exception is used internally by SHAMultiFormatter to signal that a row of the page

being formatted is full.

10.6.3.6 MultiFormatter2 (Class)

Interface which must be implemented by any class providing an algorithm that converts

plain text to MULTI. This will be called by the MultiConverter.

10.6.3.7 SHAMultiFormatter2 (Class)

This class is used to format plain text messages to MULTI for a given DMS display

configuration. It implements SHA business rules such as keeping certain combinations of

words on the same line and performing line and page justification.

CHART R10 Detailed Design – Rev 3 10-84 08/14/2012

10.6.4 FontClasses (Class Diagram)

This diagram contains classes related to DMS fonts.

10.6.4.1 DaktronicsDMSFontLoader (Class)

This class loads fonts encoded in the Daktronics font file format.

10.6.4.2 DMSFont2 (Class)

This interface specifies functionality supported by a DMS font.

10.6.4.3 DMSFontAndSpacing (Class)

This contains a font and the specified line and character spacing to use with that font. The

line and character spacing values specified here are specified by an administrator and

override any spacing values in font itself.

DMSFontUtil

*

JSONDMSFontLoaderDaktronicsDMSFontLoader

Refactored / moved for R10
(These replace DMSUtility.DMSFont,
which was a Daktronics-specific c lass).

DMSFont2

«interface»

1

1

DMSFontLoader

«interface»

1

*

1

1

1

DMSFontTable

DMSFontInfo

«typedef»

All c lasses on this diagram
are new for R10 unless noted otherwise.

creates

DMSFontImpl

DMSFontCharInfo

«typedef»

1

1

1

*

DMSFontTableEntry

DMSFontNumber

«enumeration»

DMSFontAndSpacing

getDMSFontTableInfo() : DMSFontTableInfo
getEntries() : LIst<DMSFontTableEntry>
get(fontNumber : DMSFontNumber) : DMSFontAndSpacing
put(fontNumber : DMSFontNumber,
 entry : DMSFontAndSpacing) : void
remove(fontNumber : DMSFontNumber) : void
update(fontTable : DMSFontTable) : void

getFontNumber() : DMSFontNumber
getFontAndSpacing() : DMSFontAndSpacing
getDMSFontTableEntryInfo() : DMSFontTableEntryInfo

fontNumber : DMSFontNumber
fontAndSpacing : DMSFontAndSpacing

getFont() : DMSFont
getCharSpacing() : int
getLineSpacing() : int
setFont(font : DMSFont) : void
setCharSpacing(spacing : int) : void
setLineSapcing(spacing : int) : void
getDMSFontAndSpacingInfo() :
 DMSFontAndSpacingInfo

fromNumber(fontNumber : int) : DMSFontNumber
getNumber() : int

DefaultFont

loadFont(stream : InputStream, name : String) : DMSFont

getDefaultCharSpacing() : int
getCharWidth(ch : char) : int
getHeight() : int
getDefaultLineSpacing() : int
getMaxCharWidth() : int
getMinCharWidth() : int
getName() : String
getPixelWidth(text : String, optCharSpacing : Integer) : int
isFixedWidth() : boolean
renderChar(ch : char, pixMap : byte[][],
 xOffset : int, yOffset : int,
 minX : int, minY : int,
 maxX : int, maxY : int,
 foreground : byte, optBackground : Byte) : void
getDMSFontInfo() : DMSFontInfo

DMSFontImpl(fontInfo : DMSFontInfo)

m_fontInfo : DMSFontInfo
m_charMap : HashMap<Char><DMSFontCharInfo>

$dmsFontInfoToFormattedJSONString(font : DMSFontInfo) : String
$dmsFontInfoToMinimizedJSONString(font : DMSFontInfo) : String
$getDefaultCharMatrixFont() : DMSFont
$isForegroundPixel(DMSFontChartInfo, x : int, y : int) : boolean
$loadFont(File)DMSFont()
$parseDMSFontInfoFromJSON(jsonStr : String) : DMSFontInfo
$setForegroundPixel(DMSFontCharInfo, x : int, y : int) : void

name : string
heightPixels : long
fontDefaultCharSpacingPixels : long
fontDefaultLineSpacingPixels : long
charInfo : DMSFontCharInfo[]

ch : wchar
widthPixels : long
bitmap : byte[]

CHART R10 Detailed Design – Rev 3 10-85 08/14/2012

10.6.4.4 DMSFontCharInfo (Class)

This structure fully defines a character in a font. It has the font character, the width in

pixels, and the bitmap containing the character shape. The first bit in the bitmap is the

upper left corner pixel. The next widthPixels bits are the first row, the next widthPixels bits

are the second row, etc.. (NOTE this is compatible with NTCIP character definition).

10.6.4.5 DMSFontImpl (Class)

This provides an implementation of the DMSFont interface. It wraps the DMSFontInfo

struct.

10.6.4.6 DMSFontInfo (Class)

This structure contains information about a DMS font.

10.6.4.7 DMSFontLoader (Class)

This class knows how to create fonts, including loading them from a supported file or input

stream.

10.6.4.8 DMSFontNumber (Class)

This enumeration contains font numbers that are allowed to be used in DMS messages. It

closely mirrors the DMSFontNumberValues IDL interface. By enumerating the font

numbers, it will ensure that any fonts used in messages applicable to more than one DMS

display configuration will be compatible in purpose. (In R10 only one font is supported,

the default font. In the future if multiple fonts are supported the font numbers will be

specified in the MULTI, such as "[fo5]", and this enumeration will ensure that all DMS

display configurations interpret such a number to have the same meaning). For NTCIP

signs, the number will also specify the slot number on the sign that will be used to store the

fonts.

10.6.4.9 DMSFontTable (Class)

This class is a table of fonts that may be used in messages on a DMS.

10.6.4.10 DMSFontTableEntry (Class)

This contains an entry in a table of DMS fonts. It has a font number, and font and spacing

information.

10.6.4.11 DMSFontUtil (Class)

This class contains utility methods for DMS font-related functionality.

10.6.4.12 JSONDMSFontLoader (Class)

This reads a font from an input stream, where the data is in JSON format, with encoding as

defined in DMSFontUtil (dmsFontInfoToFormattedJSONString() or

dmsFontInfoToMinimizedJSONString).

CHART R10 Detailed Design – Rev 3 10-86 08/14/2012

10.7 MonitorControlModule

10.7.1 MonitorControlModule (Class Diagram)

This diagram shows the classes that comprise the MonitorControlModule. The

MonitorControlModule is an installable module that serves the monitor objects and factory

to the rest of the CHART II system. It also serves workstations, sites, tours, and their

factories. This diagram shows how the implementation of these CORBA interfaces relies on

other supporting classes to perform their functions. The MonitorImpl object is the primary

class operating in this module. This object provides all access to the monitor status, and

configuration. Every request to display an image on a monitor comes to the MonitorImpl

object first, through the Monitor interface. When a new image is displayed on a monitor,

the Monitor's status is updated to indicate the new camera is being displayed on it, and the

new Camera's status and old Camera's status will be updated correspondingly. The

MonitorControlModule also includes factory implementations responsible for providing

lists of monitors, sites, workstations, and tours to interested clients. Tours and their

configurations are maintained in the TourFactory, but execute within the Monitor(s) that

they are running on.

AORM anager

Added for R10. The AORM anager
is c ons truc ted to not m ainta in a
c ac he of AORs . It is us ed to m anage
as s oc iated AORs for the m oni tors .

1

1

Updated in R10

AutoM odeTourEntryCleanUpTaskAutoM odeTourStartTask

AutoM odeTourTimerTask

java.util.TimerTask
AutoM odeTourEntry

java.lang.Comparable

«interfac e»

*

1

New for R10

AutoM odeTourEntryInfo

«ty pe»

1

1

1

1

VideoTransmissionDevice

«interfac e»

1

1

VideoCollector

«interfac e»

1

1

1

1

ServiceApplication

«interfac e»

M onitorControlDB

1

DBConnectionM anager

1

1

VideoSink

«interfac e»

1

M onitorControlProperties

M onitorImpl

1

1

M onitor

«interfac e»

1

1

1

M onitorFactory

«interfac e»

1

M onitorStatus

«ty pe»

VideoSinkImpl

VideoReceivingDevice

«interfac e»

DecoderImpl

iM PathDecoderImpl

1

VideoCollectorImpl

Decoder

«interfac e»

CoreTecDecoderImpl

1

1

M onitorControlM odule

M onitorConfiguration

1

ServiceApplicationM odule

«interfac e»

M onitorFactoryImpl

+getM oni torL is t():M oni tor[]
+getM oni tors WithAc tiv eTours ():M oni tor[]

in i tia l iz e(Serv ic eAppl ic ation app):boolean
getVers ion() : Com ponentVers ion
traderGroupUpdated() : v o id
s hutdown(Serv ic eAppl ic ation app):boolean

Serv ic eAppl ic ation m _s v c App;
Defaul tServ ic eAppl ic ationProperties m _props ;

-addM oni torTy pes ToTrader() : v o id ;
+c reateM oni tor(by te[] M oni torConfig):M oni tor
+ findM oni torGroup(Identi fier id) : M oni torGroup
+ findVideoProv ider(Identi fier id): VideoProv ider
+ findVideoSourc e(String s i te): VideoSourc e
+ findVideoSwi tc h(by te[] s wi tc hId): VideoSwi tc h;
+ findVideoTour(Identi fier id)VideoTour;()
getAl lowSim ulation() : v o id ;
+getCol lec torIn foL is t VideoCol lec torIn fo[];()
getHos tNam e() : String;
-getID() : by te[];
-getLogFlags boolean;()
getM oni torGroupRefs From Trader v o id;()
+ getM oni torIn foL is t M oni torIn fo[]()
+getM oni torPus hEv entSuppl ier Pus hEv entSuppl ier;()
-getNam e() : String;
+ getNoVideoAv ai lab le VideoProv iderIn fo;()
+ getProperties M oni torContro lM oduleProperties ;()
+ getSink InfoL is t VideoSink Info[];()
+ getSink s WithAc tiv eTours VideoSink Info[;()
getVideoProv iderRefs From Trader v o id;()
getVideoSourc eFac tory Refs From Trader v o id;()
getVideoSwi tc hRefs From Trader v o id;()
getVideoTourFac tory Refs From Trader v o id;()
getVideoTourRefs From Trader v o id;()
log(String flags , String m ethod, String tx t)v o id;()
logProd(String m ethod, String tx t)v o id;()
logStac k Prod (String m ethod, String tx t, Ex c eption e)v o id;()
opLog(by te[] tok en, String m s g, in t ac tion, String dev ic eID,
 String dev ic eNam e)v oid;()
+pus hM oni torAdded(M oni tor m nt, M oni torConfig c onfig ,
 String s tatM s g): boolean;
+ pus hM oni torDeleted(M oni torIm pl m ntIm pl , String s tatM s g):
 v o id;
rem ov eM oni tor(M oni torIm pl m ntIm pl , by te[] tok en)v o id()
res tartVideoTours v o id;()
res um eAl lTours (by te[] tok en, by te[] m oni torGroupID,
 Com m andStatus c m dStat)v o id;()
+ s hutdown(): boolean;
+s tartAutoM odeTours IfNec es s ary ()
s us pendAl lTours (by te[] tok en, by te[] m oni torGroupID,
 Com m andStatus c m dStat)v o id;()
v a l idateCfg(M oni torConfig c nfg)v o id;()

boolean m _al lowSim ulation;
Vec tor m _M oni torIm plVec t;
Vec tor m _pendingDeleteM oni torIm plVec t;
M oni torContro lDB m _db;
Pus hEv entSuppl ier m _m oni torPus hEv entSuppl ier;
LogFi le m _m oni torStatus LogFi le ;
String m _hos tNam e;
Identi fier m _idObj ;
boolean m _logFlags []
String m _nam e;
boolean m _s hutdown;
Has htable m _v ideoProv iderRefs ;
Has htable m _v ideoSourc eFac tory Refs ;
Has htable m _v ideoTourRefs ;
Has htable m _v ideoSwi tc hRefs ;
Has htable m _v ideoTourFac tory Refs ;
Has htable m _nv aSourc es ;
Has htable m _m oni torGroupRefs ;
VideoSourc eInfo m _nv aSourc eInfo;
VideoSourc eInfo m _loc alNv aSourc eInfo;
Has htable m _loc alNv aSourc eInfoHas h;
boolean m _nv aSrc Is Loc al ;
in t m _s haredRes M onInt;
Serv ic eAppl ic ation m _s v c App;
M oni torContro lM oduleProperties m _props
Vec tor m _c onnec tionSi tes ;
m _aorM gr: AORM anager

+getCol lec torStatus ():VideoCol lec torStatus
+getCol lec torConfig(tok en):VideoCol lec torConfig
+rem ov eCol lec tor(tok en)
+c onnec tRec eiv ingToSendingDev ic e(by te[],VideoProv iderIn fo,
 by te[],Com m andStatus ,boolean,
 StringHolder) : boolean
+dis c onnec tRec eiv ingFm SendingDev ic e(by te[],Com m andStatus ,
 boolean,StringHolder) : boolean

-getAl lowSim ulation(): boolean;
-getFul lTourOps LoggingFlag(): boolean
-getFul lTourStatus UpdateFlag(): boolean
-getLogFlags (): String;
-getNum OfTraderLook ups ForNVASourc e(): in t
-getTourRefres hInterv a lSec s (): in
-getAutoM odeTourStartTim erInterv a lSec s () : in tt
-has Loc alNVASourc e(): boolean;

String PROP_KEY_ALLOW_SIM ULATION ;
String PROP_KEY_LOG_FLAGS;
String
PROP_KEY_NUM _OF_TRADER_LOOKUPS_FOR_NVA_SOURCE
String DEFAULT_ALLOW_SIM ULATION;
String DEFAULT_LOG_FLAGS;
String
DEFAULT_NUM _OF_TRADER_LOOKUPS_FOR_NVA_SOURCE
String PROP_KEY_HAS_LOCAL_NVA_SOURCE ;
String DEFAULT_HAS_LOCAL_NVA_SOURCE;
String PROP_KEY_FULL_TOUR_STATUS_UPDATE
String DEFAULT_FULL_TOUR_STATUS_UPDATE
String PROP_KEY_FULL_OPS_LOGGING
String DEFAULT_TOUR_REFRESH_INTERVAL_SECS;
String DEFAULT_FULL_TOUR_OPS_LOGGING;
Properties m _props ;
Serv ic eAppl ic ation m _s erv ic eApp;
Properties m _defaul ts

+dis p lay Im age(VideoSourc e)
+dropIm age()
+getStatus ()
+getStatus ():VideoSink Status
+getConfiguration(tok en):VideoSink Configuration
+s etConfiguration(tok en,VideoSink Configuration)
+rem ov e(tok en)

in i tCol lec torStatus () : v o id
+getCol lec torStatus Im pl() : VideoCol lec torStatus
#getCol lec torConfig Im pl () : VideoCol lec torStatus Im pl
#debugPrin tVideoCol lec torConfig(String, String,
 VideoCol lec torConfig) : v o id
#debugPrin tVideoCol lec torStatus (String, String,
 VideoCol lec torStatus) : v o id
is OnVideoFabric (by te[]) : boolean
#getOwningOrgID() : by te []
+getID() : by te []
#getAl lowSim ulation() : boolean
#s etSim ulationFlag() : boolean
getIDString() : String
+getIdenti fier() : Identi fier
#getLogFlags () : boolean []
+getNam e() : String
+getCom m M ode() : Com m unic ationM ode
#c om m M odeIs (Com m unic ationM ode) : boolean
getSv c App() : Serv ic eAppl ic ation
#in i tia l iz eLogFlags (String) : v o id
#opLog(by te[], String, in t, String, String) : v o id
#opLog(by te[], String, in t, String, String, String, String) : v o id
logLoc k Rqs t(String) : v o id
logLoc k Rc v d(String) : v o id
logLoc k Done(String) : v o id
logProd(String, String) : v o id
logStac k Prod(String, String, Ex c eption) : v o id
log(String, String, String) : v o id
addM y s el fToProv iderStatus (by te[], StringBuffer) : boolean
rem ov eM y s el fFrom Prov iderStatus (by te[], StringBuffer) : boolean
#c m dStatus Com pleted(Com m andStatus , String, boolean) : boolean
#c m dStatus Fai lure(Com m andStatus , String) : boolean
#c m dStatus Fai lureM ay be(Com m andStatus , String, boolean) : boolean
#c m dStatus Suc c es s (Com m andStatus , String) : boolean
#c m dStatus Suc c es s M ay be(Com m andStatus , String, boolean) : boolean
#c m dStatus Update(Com m andStatus , String) : boolean
+getCol lec torNam e() : String
+getCol lec torTy pe() : VideoCol lec torTy pe
getCol lec torTy peNam e() : String
+getCol lec torIn fo() : VideoCol lec torIn fo
is Sim ulated() : boolean
#s etOpStatus (OperationalStatus) : v o id
#updateLas tContac tTim e() : v o id
#updateStatus ChangeTim e() : v o id
#v eri fy Ac c es s (by te[], in t, String, String, Com m andStatus) : v o id
#v eri fy Ac c es s (by te[], in t[], String, String, Com m andStatus) : v o id
#v eri fy Ac c es s Al l (by te[], in t[], String, String, Com m andStatus) : v o id
#v eri fy Com m M ode(Com m unic ationM ode, String,
 Com m andStatus ,boolean) : v o id
#v eri fy Com m M odeNot(Com m unic ationM ode,
 Com m andStatus , boolean) : v o id
#v eri fy Com m M odeNotOffl ine(String, Com m andStatus) : v o id
#pers is tAndPus hConfig(String, StringBuffer) : boolean
#pers is tAndPus hStatus (String, StringBuffer) : boolean
#pers is tConfig(String, StringBuffer) : boolean
#pers is tStatus (String, StringBuffer) : boolean
#pus hConfig(String, StringBuffer) : boolean
#pus hStatus (String, StringBuffer) : boolean
#findVideoProv ider(by te[]) : VideoProv ider
#findVideoSwi tc h(by te[]) : VideoSwi tc h
+c onnec tRec eiv ingToSendingDev ic e(by te[], VideoProv iderIn fo,
 by te[], Com m andStatus , boolean, StringHolder)

#m _c reateLogFlag : String
#m _c ol lec torConfig : VideoCol lec torConfig
#m _dateFm tYYYYM M DDHHM M SS : Sim pleDateForm at
-m _idObj : Identi fier
#m _s v c App : Serv ic eAppl ic ation
-m _network Connec tionSi te : String
#m _loc k Nam e : Objec t[]
#m _loc k Config : Objec t[]
#m _loc k Status : Objec t[]
#m _c ol lec torStatus : VideoCol lec torStatus
#m _props : M oni torContro lM oduleProperties
-m _rec v Dev ic e : VideoRec eiv ingDev ic eOperations
#m _logFlags : boolean[]
-m _s im ulationAl lowed : boolean
-m _s im ulateCom m s : boolean
-SIM ULATE_M ONITOR_COM M S_KEYWORD : String
#m _s y s tem Right : Func tionalRightTy pe
#m _s y s tem Tok en : by te[]

addM oni torFac tory Ty pes ToTrader v o id;()
addM oni torGroupFac tory Ty pes ToTrader v o id;()
addVideoTourFac tory Ty pes ToTrader v o id;()
+c reateEv entChannel (String): Pus hEv entSuppl ier;
+c reateM oni torFac tory () : boolean;
+c reateM oni torGroupFac tory (): boolean
+c reateVideoTourFac tory (): boolean;
-getVers ion(): Com ponentVers ion;
+in i tia l iz e(Serv ic eAppl ic ation): boolean;
+s hutdown(Serv ic eAppl ic ation): boolean;
traderGroupUpdated v o id;()

String M ONITOR_FACTORY_ID_FILENAM E =
"M oni torFac tory .id";
String M ONITORGROUP_FACTORY_ID_FILENAM E =
"M oni torGroupFac tory .id";
String VIDEOTOUR_FACTORY_ID_FILENAM E =
"VideoTourFac tory .id";
String VERSION_NAM E = "M oni tor Contro l M odule";
M oni torContro lDB m _m oni torDb;
M oni torGroupContro lDB m _m oni torGroupDb;
VideoTourContro lDB m _v ideoTourDb;
Pus hEv entSuppl ier m _m oni torEv entSuppl ier;
M oni torFac tory Im pl m _m oni torFac tory
M oni torGroupFac tory Im pl m _m oni torGroupFac tory ;
VideoTourFac tory Im pl m _v ideoTourFac tory ;
M oni torContro lM oduleProperties m _props ;
Serv ic eAppl ic ation m _s v c App;

getM oni torStatus () : M oni torStatus
getM oni torConfig(by te[] tok en) : M oni torConfig
s etM oni torConfig(by te[] : tok en, M oni torConfig : c fg ,
 Com m andStatus : c m dStat)
s etAutoM ode(by te[] : tok en, boolean enabled)
addAutoM odeTourL is tEntries (by te[] : tok en,
 AutoM odeTourVideoSourc eInfo[] : entries ,
 AutoM odeTourEntry OwnerInfo : ownerInfo)
rem ov eAutoM odeTourL is tEntries (by te[] : tok en,
 AutoM odeTourEntry Info[] : entries)
rem ov eAutoM odeTourL is tEntries ForOwner(by te[] : tok en,
 Identi fiery : ownerId)

+deleteM oni tor(Identi fier):v o id
+deleteM oni torFrom M oni torGroup(Identi fier,
 Connec tion): boolean
deleteM oni torWi thConnec tion(Identi fier ,Connec tion)v o id()
+getM oni torL is t() : M oni torIm pl ;
-getConfiguration(Identi fi fer M oni torID) : M oni torConfiguration;
-getConfigWithConnec tion(Identi fier ,Connec tion):
 M oni torConfig
-getIPM oni torConfigWithConnec tion(Identi fier,Connec tion):
 M oni torConfig
-getM oni torL is t(): M oni torInp l [];
-getStatus (Identi fier M oni torID) : M oni torStatus ;
-getStatus WithConnec tion(Identi fier , Connec tion):
 M oni torStatus ;
-getV1500M oni torConfigWithConnec tion(Identi fier,
 Connec tion): M oni torConfig ;
+ins ertM oni tor(m oni torID, M oni torConfid): M oni torIm pl ;
+s etConfiguration(Identi fier, M oni torConfiguration) : v o id ;
s etConfigWithConnec tion(Identi fier, M oni torConfig ,
 Connec tion)v o id;()
s etM oni torFac tory Im pl (M oni torFac tory Im pl);()
+s etStatus (Identi fier M oni torID) : v o id ;
s etStatus WithConnec tion(Identi fier, M oni torStatus ,
 Connec tion)v o id;()

DBConnec tionM anager m _dbConnM gr;
M oni torFac tory Im pl m _c am eraFac tory Im pl ;
Com m Fai lureDB m _c om m Fai lDB;
Serv ic eAppl ic ation m _s v c App;

getDev ic eStatus () : VideoTrans m is s ionDev ic eStatus
getDev ic eConfig(by te[]) : VideoTrans m is s ionDev ic eConfig

+c al lAddDis p lay (by te[] ,VideoSourc e ,
 boolean ,Com m andStatus): booleal ;
+c reatePOATie()Serv ant;()
debugPrin tConfig(String, String, M oni torConfig)v o id;()
debugPrin tConfig(String,String, M oni torStatus)v o id;()
-getAl lowSim ulation(): boolean;
+getCol lec torTy pe(): VideoCol lec torTy pe;
-getM oni torConfig(by te[]): M oni torConfig ;
-getM oni torConfig Im pl (): M oni torConfig ;
getM oni torNam e String;()
-getM oni torStatus M oni torStatus ;()
in i tia l iz eNewM oni tor v o id ;()
in i tStatus v o id;()
+pers is tConfig(String , StringBuffer): boolean;
+pers is tStatus (String , StringBuffer): boolean;
+pus hConfig(String , StringBuffer): boolean;
+pus hStatus (String , StringBuffer): boolean;
putInM aintenanc eM ode(by te[] ,Com m andStatus)v o id()
putOnl ine(by te[] , Com m andStatus)v o id()
putOnl ineIm pl(by te[] , Com m andStatus)v o id()
rem ov eCol lec tor(by te[])v o id()
s etM oni torConfig(by te[] ,M oni torConfig)v o id()
s hutdown()v o id;()
s hutdown(by te[]);()
s hutdownIm pl(by te[]);()
s leep(in t , String)v o id;()
tak eOffl ine(by te[], Com m andStatus)v o id;()
tak eOffl ineIm pl(by te[], Com m andStatus)v o id;()
v a l idateCfg(by te[], M oni torConfig);()
s tartAutoM odeTourIfNec es s ary ()

M oni torContro lDB m _db
Pus hEv entSuppl ier m _m oni torPus hEv entSuppl ier
M oni torStatus m _m oni torStatus
M oni torConfig m _m oni torConfig
Com m andQueue m _s hutdown
Array Lis t<AutoM odeTourEntry > : m _autoM odeTourL is t
Objec t[] : m _autoM odeTourLoc k
int : m _autoM odeTourL is tCurrentIndex
Tim er : m _autoM odeTourTim er

getRec eiv ingDev ic eStatus () : VideoRec eiv ingDev ic eStatus
c onnec tFrom (by te[], by te[],
 VideoTrans m is s ionDev ic eConfig) : boolean
dis c onnec tFrom (by te[],
 VideoTrans m is s ionDev ic eConfig) : boolean
dis c onnec t(by te[]) : boolean

+getConnec tion() : jav a.s q l .Connec tion
+getCurrentOpenCurs ors () : in t
+re leas eConnec tion() : v o id
+s hutdown() : v o id
+v eri fy DBIn i tia l iz ed() : boolean

+addM oni torGroup(by te[], by te[]) : v o id
+dropRoutedIm ageDis p lay (by te[], Com m andStatus , boolean,
 boolean, StringHolder) : boolean
+getSink Status () : VideoSink Status
+Has Ac tiv eTour() : boolean
+Has Sus pendedTour() : boolean
+getM oni torTourConfig() : VideoTourConfig
+s etM oni torTourConfig(VideoTourConfig) : v o id
+has Ac tiv eOrSus pendedTour() : boolean
+getCurrentTourOnM oni tor() : by te []
+is CurrentTour(Identi fier) : boolean
#getSink Status Im pl() : VideoSink Status
+getSink Config(by te[]) : VideoSink Config
#getSink Config Im pl () : VideoSink Config
+rem ov eM oni torGroup(by te[], by te[]) : v o id
-c onv ertIDToVideoProv ider(by te[]) : VideoProv ider
#debugPrin tVideoSink Config(String, String, VideoSink Config) : v iod
#debugPrin tVideoSink Status (String, String, VideoSink Status) : v o id
#getAl lowSim ulation() : boolean
+s tartTour(by te[], by te[], by te[], Com m andStatus) : v o id
+s tartTourIm pl (by te[], Com m andStatus , boolean) : v o id
+s topTour(by te[], by te[], by te[], Com m andStatus) : v o id
+s topTourIm pl (by te[], Com m andStatus , boolean) :v o id
+s us pendTour(by te[], by te[], by te[], Com m andStatus)
+s us pendTourIm pl (by te[], Com m andStatus) :v o id
+res um eTourIm pl (by te[], Com m andStatus) :v o id
+s hutdownTourIm pl (by te[]) :v o id
+res um eTour(by te[], by te[], by te[], Com m andStatus) :v o id
+tourConfigChanged(by te[], by te[], VideoTourConfig) :v o id
+tourDeleted(by te[], by te[]) :v o id
+s ourc eUnav ai lab le(by te[], by te[], boolean, by te[][],
 Com m andStatus) : boolean
+dis p lay NoVideoAv ai lab le(by te[], by te[], by te[],
 Com m andStatus) : v o id
+dis p lay NoVideoAv ai lab leIm pl (by te[], Identi fier,
 Com m andStatus) : v o id
+doDis p lay NoVideoAv ai lab le(VideoProv iderIn fo,
 Com m andStatus) : boolean
#in i tSink Status () : v o id
+getM oni torFac tory () : M oni torFac tory Im pl
+dis p lay Im age(by te[], boolean, by te[], VideoProv iderIn fo,
 boolean, Ex tendedCom m andStatus) : v o id
+dis p lay Im ageIm pl(by te[], boolean, VideoProv iderIn fo, boolean,
 Ex tendedCom m andStatus) : v o id
#c al lAddDis p lay (by te[], VideoSourc e, boolean,
 Com m andStatus) : boolean
#is InM oni torGroup(by te[]) : boolean
#is Onl ine() : boolean
#v eri fy TourAc c es s (by te[], by te[], Com m andStatus , String) : v o id
+getCol lec torTy pe() : VideoCol lec torTy pe
#c hec k Cam eras (by te[], VideoSourc e, Com m andStatus ,
 boolean) : boolean
#c al lRem ov eDis p lay (by te[], VideoSourc e) : v o id
#findVideoProv ider(by te[]) : VideoProv ider
#findVideoSwi tc h(by te[]) : VideoSwi tc h

-VideoSink Config m _s ink Config
#VideoSink Status m _s ink Status
#Com m andQueue m _c m dQueue
#M oni torFac tory Im pl m _fac tory
#Tim er m _v ideoTourTim er
VideoTourTim erTas k m _v ideoTourTim erTas k
VideoTourConfig m _m oni torTourConfig

getID() : by te[]
getNam e() : String
v oid v eri fy Ac c es s (by te[] tok en, in t rightID,
 String des c Prefix , String des c Suffix)

-String m _ipAddres s
-String m _port
-VideoTrans m is s ionDev ic eConfig m _dec oderConfig
-boolean m _s im ulationFlag

+c tor(IAutoM odeVideoSourc eInfo v idSrc Info,
 AutoM odeEntry OwnerInfo : ownerInfo)
+getVideoSourc eId() : Identi fier
+getOwnerId() : Identi fier
+us es Tem pPres et() : boolean
+us es Pers is tenPres et() : boolean
+getPres etNum ber() : in t
+getTem pPres etId() : Identi fier
+getOwnerInfo() :
 AutoM odeTourEntry OwnerInfo
+getSeqNum () : in t
+getOwnerTim eStam p() : Date
+getLas tUpdateTim e() : Date

m _entry Info : AutoM odeTourEntry Info
m _ownerTim eStam p : Date
m _las tUpdateTim eStam p : Date

+c tor(M oni torIm pl m oni tor)
+run()

m _m oni tor : M oni torIm pl
m _s y s tem Tok en : by te[]
m _las tDis p lay Tim e : long = 0
m _fi rs tIm age : boolean = true
m _las tEntry Dis p lay ed :
 AutoM odeTourEntry

+c tor(M oni torFac tory : fac tory)
+run()

m _m oni torFac tory : M oni torFac tory

+c tor(M oni torFac tory Im pl : fac tory)
+run()

m _m oni torFac tory : M oni torFac tory Im pl

CHART R10 Detailed Design – Rev 3 10-87 08/14/2012

10.7.1.1 AORManager (Class)

This class provides utility methods that are applicable to areas of responsibility. It includes

methods for getting areas of responsibility based on a specified location (i.e. a

latitude/longitude), getting the areas of responsibility that have changed since a specified

date/time, checking if an area of responsibility still exists in the system, etc. It can be

configured to maintain a cache of areas of responsibility. It can also be configured without

the cache and used simply to check for the existence of areas of responsibility.

10.7.1.2 AutoModeTourEntry (Class)

AutoModeTourEntryInfo IDL struct and provides access to the members of that struct. It

also contains other members used for auto mode monitor processing.

10.7.1.3 AutoModeTourEntryCleanUpTask (Class)

This timer task is responsible for cleaning up AutoModeTourEntry objects that are no

longer needed by the owner that created them.

10.7.1.4 AutoModeTourEntryInfo (Class)

This struct contain information describing an AutoModeTourEntry.

10.7.1.5 AutoModeTourStartTask (Class)

This TimeTask runs on a Timer in the Module at configurable intervals. It's run method

will call the MonitorFactory.startAutoModeToursIfNecessary() method. This method will

loop through the factory's Monitor list calling startAutoModeTourIfNecessary on each. If

the monitor has auto mode enabled, is online and has auto mode tour list entries that

monitor;s will attempt to start.

10.7.1.6 AutoModeTourTimerTask (Class)

The AutoModeTourTimerTask is used to display the auto mode tour entries on a specific

monitor displaying each image with a specified dwell time between each. The timer that

this task runs on will be running only on an auto mode enabled monitor when it is online

and has atleast one entry in its auto mode tour list.

10.7.1.7 CoreTecDecoderImpl (Class)

The CoreTecDecoderImpl class is derived from the DecoderImpl class.

This class contains the methods and attributes that are specific to managing an actual

CoreTec Decoder. These methods include the device specific calls to switch the video

streams on a monitor.

10.7.1.8 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database

connections. Any CHART II system thread requiring database access gets a database

connection from the pool of connections maintained by this manager class. The connections

are maintained in two separate lists namely, inUseList and freeList. The inUseList contains

connections that have already been assigned to a thread. The freeList contains unassigned

CHART R10 Detailed Design – Rev 3 10-88 08/14/2012

connections. This class assumes that an appropriate JDBC driver has been loaded either by

using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor

thread that is started by the constructor. This connection monitor thread periodically checks

the inuseList to see if there are connections that are owned by dead threads and move such

connections to the freeList. The connection monitor thread is started only if a non-zero

value is specified for the monitoring time interval in the constructor.

10.7.1.9 Decoder (Class)

This interface describes the Decoder interface. The decoder includes the

VideoReceivingDevice interface.

10.7.1.10 DecoderImpl (Class)

The DecoderImpl class provides an implementation of the Decoder interface.

This class contains the methods and attributes that are common to the decoders used in

CHARTII.

10.7.1.11 iMPathDecoderImpl (Class)

The iMPathDecoderImpl class is derived from the DecoderImpl class.

This class contains the methods and attributes that are specific to managing an actual

iMPath Decoder. These methods include the device specific calls to handle displaying the

video streams on a monitor.

10.7.1.12 java.lang.Comparable (Class)

This interface allows two objects to be compared for the purposes of sorting.

10.7.1.13 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one

or more times.

10.7.1.14 Monitor (Class)

The Monitor interface is implemented by objects which represent a video monitor, e.g., a

real, physical "television set" on which a video image can be displayed. This is the most

common type of VideoSink (the other being a SWMonitor, part of a future requirement to

stream video directly to user's workstations (or potentially other nearby computers).

10.7.1.15 MonitorConfiguration (Class)

The MonitorConfiguration contains configuration information specific to Chart II

processing. Such information includes, but is not limited to, the monitor name, owning

organization, and decoder configuration.

10.7.1.16 MonitorControlDB (Class)

The MoniorControlDB class provides an interface between the Monitor service and the

database used to persist the camera objects and their configuration and status in the

CHART R10 Detailed Design – Rev 3 10-89 08/14/2012

database. This class provides the ability to retrieve and view the camera from local and

remote workstations. The class is constructed with a DBConnectionManager object, which

manages database connections

10.7.1.17 MonitorControlModule (Class)

The MonitorControlModule class is the service module for the monitor devices and a

Monitor factory. It implements the ServiceApplicationModule interface providing a

platform for displaying camera objects within a service application. This class is the

controlling class for the Minitor Control Module, providing initialization and overall

operation of the module. It also creates MonitorControlDB and

MonitorControlModuleProperties objects.

10.7.1.18 MonitorControlProperties (Class)

The MonitorControlModuleProperties class is used to provide access to properties used by

the Monitor Control Module. This class wraps properties that are passed to it upon

construction. It adds its own defaults and provides methods to extract properties specific to

the Monitor Control Module.

10.7.1.19 MonitorFactory (Class)

This CORBA interface allows new devices to be added to the system. It allows an operator

to acquire a list of camera tour objects under the domain of the specific MonitorFactory

object. It also implements the SharedResourceManager capability to control Monitor

objects as shared resources between workstations.

10.7.1.20 MonitorFactoryImpl (Class)

The MonitorFactoryImpl class provides an implementation of the MonitorFactory interface

as specified in the IDL. The MonitorFactoryImpl maintains a list of MonitorImpl objects

and is responsible for publishing Monitor objects in the Trader on startup and as new

monitor objects are created. Whenever a monitor is created or removed, that information is

persisted in the database. For R10, a reference to the AORManager was added to manage

associated areas of responsibility for each monitor.

10.7.1.21 MonitorImpl (Class)

The MonitorImpl class provides an implementation of the Monitor interface by extension of

the Monitor, SharedResource, and UniquelyIdentifiable interfaces, CommEnabled, as

specified in the IDL. Also contained in this class are MonitorConfiguration and

MonitorStatus objects used to store the configuration and status of the monitor.

10.7.1.22 MonitorStatus (Class)

This class (struct) contains data that indicates the current status of a Monitor device specific

to Chart II processing, such as information on the particular controlling operation centers.

The data contained in this class is that status information which can be transmitted from the

local monitors to remote monitors . This struct is also used within the Monitor Service to

transmit data to/from the MonitorControlDB database interface class.

CHART R10 Detailed Design – Rev 3 10-90 08/14/2012

10.7.1.23 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a

ChartII service application. These services include providing access to basic CORBA

objects that are needed by service applications, such as the ORB, POA, Trader, and Event

Service.

10.7.1.24 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing

classes are notified when their host service is initialized and when it is shutdown. The

implementing class can use these notifications along with the services provided by the

invoking ServiceApplication to perform actions such as object creation and publication.

10.7.1.25 VideoCollector (Class)

The VideoCollector interface is a generic abstract interface including VideoSink objects

(e.g. video monitors) and BridgeCircuit objects. Both VideoSink and BridgeCircuit objects

collect video from a VideoProvider, but only VideoSink objects are true destination

endpoints for video feeds which a typical user would have direct interaction with.

BridgeCircuit VideoCollector objects are merely an intermediate step in a VideoRoute

which eventually provides video ultimately to the VideoSink object(s) at the end of the

route(s).

10.7.1.26 VideoCollectorImpl (Class)

The VideoCollectorImpl class provides an implementation of the VideoCollector interface.

This class contains a CommandQueue object that is used to sequentially execute long

running operations related to display in a thread separate from the CORBA request threads,

thus allowing quick initial responses.

Also contained in this class are VideoCollectorConfig and VideoCollectorStatus objects

(used to store the configuration and status of the video receiving device).

The VideoCollectorImpl contains *Impl methods that map to methods specified in the IDL,

including requests to connect and disconnect video receiving devices to video sending

devices (an actual camera or a video switch port). Some of these requests are long running,

so each request is stored in a specific subclass of QueueableCommand and added to the

CommandQueue. The queueable command objects simply call the appropriate

VideoCollectorImpl method as the command is executed by the CommandQueue in its

thread of execution.

10.7.1.27 VideoReceivingDevice (Class)

The VideoReceivingDevice interface is used to represent a video receiving device in the

field. These devices are used to actually connect a video provider to a video collector. The

system contains an instance of this interface for each video receiving device.

10.7.1.28 VideoSink (Class)

The VideoSink interface is implemented by objects which serve as final endpoints for video

CHART R10 Detailed Design – Rev 3 10-91 08/14/2012

signals, such as video monitors and streaming video receivers directly on user workstations.

Within the user interface, the VideoSink interface represents all objects on which a video

source can be placed for viewing by users.

10.7.1.29 VideoSinkImpl (Class)

The VideoSinkImpl class provides an implementation of the VideoSink interface and is

derived from the VideoCollectorImpl class implementing the VideoCollector interface.

This class contains a CommandQueue object that is used to sequentially execute long

running operations related to display in a thread separate from the CORBA request threads,

thus allowing quick initial responses.

Also contained in this class are VideoSinkConfig and VideoSinkStatus objects (used to

store the configuration and status of the video sinks).

The VideoSinkImpl contains *Impl methods that map to methods specified in the IDL,

including requests to create a tour, start a tour, stop a tour, suspend a tour, shutdown a tour,

resume a tour, and display an image on a video sink. Some of these requests are long

running, so each request is stored in a specific subclass of QueueableCommand and added

to the CommandQueue. The queueable command objects simply call the appropriate

VideosinkImpl method as the command is executed by the CommandQueue in its thread of

execution.

10.7.1.30 VideoTransmissionDevice (Class)

The VideoTransmissionDevice interface is used to represent a video transmision device in

the field (either a video sending device or a video receiving device). These devices are used

to actually connect a video provider to a video collector. The system contains an instance

of this interface for each video transmission device.

10.7.2 MonitorControlModuleR10 (Class Diagram)

CHART R10 Detailed Design – Rev 3 10-92 08/14/2012

10.7.2.1 AutoModeTourEntry (Class)

AutoModeTourEntryInfo IDL struct and provides access to the members of that struct. It

also contains other members used for auto mode monitor processing.

10.7.2.2 AutoModeTourEntryCleanUpTask (Class)

This timer task is responsible for cleaning up AutoModeTourEntry objects that are no

longer needed by the owner that created them.

10.7.2.3 AutoModeTourEntryInfo (Class)

This struct contain information describing an AutoModeTourEntry.

10.7.2.4 AutoModeTourStartTask (Class)

This TimeTask runs on a Timer in the Module at configurable intervals. It's run method

will call the MonitorFactory.startAutoModeToursIfNecessary() method. This method will

loop through the factory's Monitor list calling startAutoModeTourIfNecessary on each. If

the monitor has auto mode enabled, is online and has auto mode tour list entries that

monitor;s will attempt to start.

10.7.2.5 AutoModeTourTimerTask (Class)

The AutoModeTourTimerTask is used to display the auto mode tour entries on a specific

MonitorImpl

AutoModeTourEntryInfo

«type»

New for R10

AutoModeTourStartTask

java.util.TimerTask

1

1

MonitorControlDB

MonitorControlModule

Updated in R10
Updated in R10.
Add methods to get
intervals for
AutoModeTourStartTask
and AutoModeTourEntryCleanUpTask.

Updated in R10 to
persist/de-persist
Auto Mode Tour
Entries and Auto
Mode config for
Monitors.

Updated in R10.
Added Timers for
AutoModeTourStartTask
and
AutoModeTourEntryCleanupTask

*

java.lang.Comparable

«interface»

MonitorFactory

«interface»

MonitorFactoryImpl

MonitorControlProperties

VideoSinkImpl

AutoModeTourEntry

AutoModeTourTimerTask

AutoModeTourEntryCleanUpTask

1

-addMonitorTypesToTrader() : void;
+createMonitor(byte[] MonitorConfig):Monitor
+ findMonitorGroup(Identifier id) : MonitorGroup
+ findVideoProvider(Identifier id): VideoProvider
+ findVideoSource(String site): VideoSource
+ findVideoSwitch(byte[] switchId): VideoSwitch;
+ findVideoTour(Identifier id)VideoTour;()
getAllowSimulation() : void;
+getCollectorInfoList VideoCollectorInfo[];()
getHostName() : String;
-getID() : byte[];
-getLogFlags boolean;()
getMonitorGroupRefsFromTrader void;()
+ getMonitorInfoList MonitorInfo[]()
+getMonitorPushEventSupplier PushEventSupplier;()
-getName() : String;
+ getNoVideoAvailable VideoProviderInfo;()
+ getProperties MonitorControlModuleProperties;()
+ getSinkInfoList VideoSinkInfo[];()
+ getSinksWithActiveTours VideoSinkInfo[;()
getVideoProviderRefsFromTrader void;()
getVideoSourceFactoryRefsFromTrader void;()
getVideoSwitchRefsFromTrader void;()
getVideoTourFactoryRefsFromTrader void;()
getVideoTourRefsFromTrader void;()
log(String flags, String method, String txt)void;()
logProd(String method, String txt)void;()
logStackProd (String method, String txt, Exception e)void;()
opLog(byte[] token, String msg, int action, String deviceID,
 String deviceName)void;()
+pushMonitorAdded(Monitor mnt, MonitorConfig config,
 String statMsg): boolean;
+ pushMonitorDeleted(MonitorImpl mntImpl, String statMsg):
 void;
removeMonitor(MonitorImpl mntImpl, byte[] token)void()
restartVideoTours void;()
resumeAllTours(byte[] token, byte[] monitorGroupID,
 CommandStatus cmdStat)void;()
+ shutdown(): boolean;
+startAutoModeToursIfNecessary()
suspendAllTours(byte[] token, byte[] monitorGroupID,
 CommandStatus cmdStat)void;()
validateCfg(MonitorConfig cnfg)void;()

boolean m_allowSimulation;
Vector m_MonitorImplVect;
Vector m_pendingDeleteMonitorImplVect;
MonitorControlDB m_db;
PushEventSupplier m_monitorPushEventSupplier;
LogFile m_monitorStatusLogFile;
String m_hostName;
Identifier m_idObj;
boolean m_logFlags[]
String m_name;
boolean m_shutdown;
Hashtable m_videoProviderRefs;
Hashtable m_videoSourceFactoryRefs;
Hashtable m_videoTourRefs;
Hashtable m_videoSwitchRefs;
Hashtable m_videoTourFactoryRefs;
Hashtable m_nvaSources;
Hashtable m_monitorGroupRefs;
VideoSourceInfo m_nvaSourceInfo;
VideoSourceInfo m_localNvaSourceInfo;
Hashtable m_localNvaSourceInfoHash;
boolean m_nvaSrcIsLocal;
int m_sharedResMonInt;
ServiceApplication m_svcApp;
MonitorControlModuleProperties m_props
Vector m_connectionSites;
m_aorMgr: AORManager

+callAddDisplay(byte[] ,VideoSource ,
 boolean ,CommandStatus): booleal;
+createPOATie()Servant;()
debugPrintConfig(String, String, MonitorConfig)void;()
debugPrintConfig(String,String, MonitorStatus)void;()
-getAllowSimulation(): boolean;
+getCollectorType(): VideoCollectorType;
-getMonitorConfig(byte[]): MonitorConfig;
-getMonitorConfigImpl(): MonitorConfig;
getMonitorName String;()
-getMonitorStatus MonitorStatus;()
initializeNewMonitor void;()
initStatus void;()
+persistConfig(String , StringBuffer): boolean;
+persistStatus(String , StringBuffer): boolean;
+pushConfig(String , StringBuffer): boolean;
+pushStatus(String , StringBuffer): boolean;
putInMaintenanceMode(byte[] ,CommandStatus)void()
putOnline(byte[] , CommandStatus)void()
putOnlineImpl(byte[] , CommandStatus)void()
removeCollector(byte[])void()
setMonitorConfig(byte[] ,MonitorConfig)void()
shutdown()void;()
shutdown(byte[]);()
shutdownImpl(byte[]);()
s leep(int , String)void;()
takeOffline(byte[], CommandStatus)void;()
takeOfflineImpl(byte[], CommandStatus)void;()
validateCfg(byte[], MonitorConfig);()
startAutoModeTourIfNecessary()

MonitorControlDB m_db
PushEventSupplier m_monitorPushEventSupplier
MonitorStatus m_monitorStatus
MonitorConfig m_monitorConfig
CommandQueue m_shutdown
ArrayList<AutoModeTourEntry> : m_autoModeTourList
Object[] : m_autoModeTourLock
int : m_autoModeTourListCurrentIndex
Timer : m_autoModeTourTimer

+ctor(IAutoModeVideoSourceInfo v idSrcInfo,
 AutoModeEntryOwnerInfo : ownerInfo)
+getVideoSourceId() : Identifier
+getOwnerId() : Identifier
+usesTempPreset() : boolean
+usesPersistenPreset() : boolean
+getPresetNumber() : int
+getTempPresetId() : Identifier
+getOwnerInfo() :
 AutoModeTourEntryOwnerInfo
+getSeqNum() : int
+getOwnerTimeStamp() : Date
+getLastUpdateTime() : Date

m_entryInfo : AutoModeTourEntryInfo
m_ownerTimeStamp : Date
m_lastUpdateTimeStamp : Date

+ctor(MonitorImpl monitor)
+run()

m_monitor : MonitorImpl
m_systemToken : byte[]
m_lastDisplayTime : long = 0
m_firstImage : boolean = true
m_lastEntryDisplayed :
 AutoModeTourEntry

+ctor(MonitorFactory : factory)
+run()

m_monitorFactory : MonitorFactory

+ctor(MonitorFactoryImpl : factory)
+run()

m_monitorFactory : MonitorFactoryImpl

CHART R10 Detailed Design – Rev 3 10-93 08/14/2012

monitor displaying each image with a specified dwell time between each. The timer that

this task runs on will be running only on an auto mode enabled monitor when it is online

and has atleast one entry in its auto mode tour list.

10.7.2.6 java.lang.Comparable (Class)

This interface allows two objects to be compared for the purposes of sorting.

10.7.2.7 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one

or more times.

10.7.2.8 MonitorControlDB (Class)

The MoniorControlDB class provides an interface between the Monitor service and the

database used to persist the camera objects and their configuration and status in the

database. This class provides the ability to retrieve and view the camera from local and

remote workstations. The class is constructed with a DBConnectionManager object, which

manages database connections

10.7.2.9 MonitorControlModule (Class)

The MonitorControlModule class is the service module for the monitor devices and a

Monitor factory. It implements the ServiceApplicationModule interface providing a

platform for displaying camera objects within a service application. This class is the

controlling class for the Minitor Control Module, providing initialization and overall

operation of the module. It also creates MonitorControlDB and

MonitorControlModuleProperties objects.

10.7.2.10 MonitorControlProperties (Class)

The MonitorControlModuleProperties class is used to provide access to properties used by

the Monitor Control Module. This class wraps properties that are passed to it upon

construction. It adds its own defaults and provides methods to extract properties specific to

the Monitor Control Module.

10.7.2.11 MonitorFactory (Class)

This CORBA interface allows new devices to be added to the system. It allows an operator

to acquire a list of camera tour objects under the domain of the specific MonitorFactory

object. It also implements the SharedResourceManager capability to control Monitor

objects as shared resources between workstations.

10.7.2.12 MonitorFactoryImpl (Class)

The MonitorFactoryImpl class provides an implementation of the MonitorFactory interface

as specified in the IDL. The MonitorFactoryImpl maintains a list of MonitorImpl objects

and is responsible for publishing Monitor objects in the Trader on startup and as new

monitor objects are created. Whenever a monitor is created or removed, that information is

persisted in the database. For R10, a reference to the AORManager was added to manage

CHART R10 Detailed Design – Rev 3 10-94 08/14/2012

associated areas of responsibility for each monitor.

10.7.2.13 MonitorImpl (Class)

The MonitorImpl class provides an implementation of the Monitor interface by extension of

the Monitor, SharedResource, and UniquelyIdentifiable interfaces, CommEnabled, as

specified in the IDL. Also contained in this class are MonitorConfiguration and

MonitorStatus objects used to store the configuration and status of the monitor.

10.7.2.14 VideoSinkImpl (Class)

The VideoSinkImpl class provides an implementation of the VideoSink interface and is

derived from the VideoCollectorImpl class implementing the VideoCollector interface.

This class contains a CommandQueue object that is used to sequentially execute long

running operations related to display in a thread separate from the CORBA request threads,

thus allowing quick initial responses.

Also contained in this class are VideoSinkConfig and VideoSinkStatus objects (used to

store the configuration and status of the video sinks).

The VideoSinkImpl contains *Impl methods that map to methods specified in the IDL,

including requests to create a tour, start a tour, stop a tour, suspend a tour, shutdown a tour,

resume a tour, and display an image on a video sink. Some of these requests are long

running, so each request is stored in a specific subclass of QueueableCommand and added

to the CommandQueue. The queueable command objects simply call the appropriate

VideosinkImpl method as the command is executed by the CommandQueue in its thread of

execution.

10.7.3 AutoModeTourTimerTask:run (Sequence Diagram)

This diagram describes the run() method of the AutoModeTimerTask. This task essentially

runs a monitors auto mode tour. If monitor has been taken offline or the auto mode tour list

is now empty the stopAutoModeTour() method is called which will stop the timer currently

running this task after it ends thus stopping the tour. In that case the method return

immediately. Each time the method runs it will check to see if the dwell time has expired

for the current image. If so processing proceeds by displaying the next image in the

monitor’s auto mode tour list. This processing is very similar to standard video tours

except that auto mode tour may include optional temporary presets in additions to persistent

presets.

CHART R10 Detailed Design – Rev 3 10-95 08/14/2012

log("Error displaying camera image..")

[tempPresetId != null]

moveToTempPreset(m_sysToken, tempPresetId, true)

presetNum : int = getPresetNum()
tempPresetId : Identifier = getTempPresetId()

[presetNum > 0 || tempPresetId != null]

m_monitor:
MonitorImpl

displayImageImpl(m_sysToken, false,
proxy.getVideoProviderInfo(), true, m_firstImage, null)

Timer

AutoModeTourTimerTask

This method keeps track
of the current entry in the
auto mode tour lis t and will
return the next one to be
displayed when called.
Starts over at end of lis t.

run()

[currentTime - m_lastDisplayTime >
m_monitor.getDwellTimeSecs() * 1000]

nextEntry : AutoModeTourEntry =
getNextAutoModeTourEntryToDispaly()

[m_lastEntryDispalyed != null &&
m_lastEntryDisplayed == nextEntry]

m_lastDispalyTime = now

If error occurs displaying
camera image, current image
remains.

Move to persistent
preset or temporary
preset.

Log errors. If move
to preset failed,
current image is still
displayed.

else

[Exception moving camera to preset]

m_lastEntryDisplayed = nextEntry

cvc:
ControllableVideoCamera

narrow reference from ProxyVideoProvider to
ControllableVideoCamer

[Exception displaying image]

If we were able to display
camera image, attempt
any preset move if required
by auto mode tour entry.

[isOffline || hasEntries == false]

isOffline : boolean = isOnline()
hasEntries : boolean = hasAutoModeTourEntries()

stopAutoModeTour()

v ideoTourRunning : boolean = hasActiveTour()
[v ideoTourRunning]

stopCurrentVideoTour()

If the monitor has been taken offline
or no longer has entries, stop the auto
mode tour. This allow this task to
complete but terminates the Timer.

Make sure a regular v ideo tour
didn't get started s ince check
made when starting auto mode tour.
Shouldn't happen but check anyway.

Change display when dwell
time is expires.

Dpn't change display if
entry is the same. Maybe
only one entry in lis t.

m_lastDIsplayTime = now

m_factory:
MonitorFactoryImpl

nextEntry:
AutoModeTourEntry

Log

create()

srcId : Identifier = getVideoSrcId()
proxy : ProxyVideoProvider = findVideoPriovider(srcId)

[proxy == null]
log("Cannot find camera proxy.... ")

m_firstImage = false

log("Error moving camera to preset...")

moveToPreset(m_sysToken, presetNum, true)

CHART R10 Detailed Design – Rev 3 10-96 08/14/2012

10.7.4 MonitorControlModule:DisplayImage (Sequence Diagram)

This sequence diagram describes the process of displaying an image on a monitor. The

isAutoModeTourRunning() abstract method is called to determine if the class derived from

the abstract VideoSinkImpl class supports auto mode and is currently running an auto mode

tour (Note: as of R10 MonitorImpl is the only class derived from VideoSinkImpl). If an

auto mode tour is running the method throws a CHART2Exception. The token is checked

for appropriate access. If there is an error, an operations log message is written, the

command status is updated, and the failure is returned. Otherwise, a

DisplayImageCommand is placed on the command queue. Execution of

DisplayImageCommand will display the video image on the monitor selecting the correct

video sending device of those configured for the camera. Note that the DisplayImageImpl

sequence diagram provides more details about what happens during execution of that

command.

command queued

displayImageImpl
(VideoSinkImpl,

VideoProviderInfo,
bTour,

cmdStat)

CommandQueue

execute

verifyAccessAll (token, funcRightIDs, string, string, cmdStat)

new

autoModeTourRunning : boolean =
autoModeTourRunning()

cmdStatusFailure("Image display not allowed. Auto mode tour running")

Existing method updated for R10. For R10 the
begining of the method is changed to return an
error if an attempt is made to display an image
while an auto mode tour is running. Similar change
are required in the displayImageImpl(), startTour()
and startTourImpl() methods. These are simple
changes and are left for implementation.

[autoModeTourRunning]

CHART2Exception

Test call (testOnly = true) to see if it would work.

[not forTour]
connectReceivingToSendingDevice(token,

 v ideoProviderInfo, v ideoProviderInfo.providerID,
true,cmdStat)

[test failed && override not requested
OverrideNotRequestedException]

[test failed && override requested
CannotOverrideException

displayImage(
token, overrideRequested,

VideoProviderInfo, forTour, cmdStat)

[AccessDenied]
log (token, "unauthorized attempt to display an image")

[Access Denied]
cmdStatusFailure ("Current user does not have the right to display on")

addCommand (DisplayCmd)

See MonitorControlModule : DisplayImageImpl
Sequence Diagram

CommandStatusVideoSinkImpl
Log

[no rights]
Access Denied

cmdStatusUpdate ("Command queued")

VideoCollectorImpl

DisplayImageCommand

CHART R10 Detailed Design – Rev 3 10-97 08/14/2012

10.7.5 MonitorControlModule:initialize (Sequence Diagram)

This diagram describes the initialization of the MonitorControlModule. The Properties

object is created. Discovery is started for Video classes and Traffic Event classes. The

object providing data base access is created along with the Monitor, MonitorGroup and

VideoTour factories. Any VideoTours that were running when the system was shutdown

are then started. Finally, a TimerTask is created and schedule to periodically check each

monitor to determine if its auto mode tour needs to start.

create(dbConMgr, null, m_monEventSupplier, svcApp, m_props)

MonitorControlModule

m_props:
MonitorControlModuleProperties

DiscoveryManager

v ideoDiscCmd:
DiscoverVideoClassesCmd

teDiscCmd:
DiscoverTrafficEventClasses

Updated for R10. Set up
Traffic Event Discovery.

create(app)

scheduleIfNeeded(
v ideoDiscCmd)

m_autoModeTourEntryCleanupTask

cleanupTask:
AutoModeTourEntryCleanupTaskcreate(m_monitorFactory)

schedule(c leanupTask, intervalSecs, intervalSecs)

m_monitorControlDB:
MonitorControlDB

initialize(Serv iceApplication
app)

create(orb, traderGroup,
objCache, null, discoveryToken)

create(orb, traderGroup,
objecCache, null, discoveryToken)

scheduleIfNeeded(
teDiscCmd)

amtStartTask:
AutoModeTourStartTask

createMonitorFactory()

createVideoTourFactory()

create()

intervalSecs : int = getAutoModeTourStartTimerIntervalSecs()

m_monitorFactory:
MonitorFactory

m_autoModeTourStartTimer:
Timer

Updated for R10.
Create / s tart a timer
task that will periodically
loop trough Monitors
and start up their
AutoModeTours if
conditions call for it.
Also, s tart timer task
to periodically c lean
up un-need auto mode
tour entries that
have been orphaned.
Timers are c leaned up
at shutdown.

createMonitorGroupFactory()

restartVideoTours()

create(m_monitorFactory)

schedule(antStartTask, intervalSecs, intevalSecs)

create()

intervalSecs : int = getAutoModeTourEntryCleanupTimerIntervalSecs()

createEventChannel(
MONITOR_CONTROL_CHANNEL.value)

CHART R10 Detailed Design – Rev 3 10-98 08/14/2012

10.7.6 MonitorImp:addAutoModeTourListEntries (Sequence Diagram)

This diagram describes the MonitorImpl.addAutoModeTourEntries method which is part of

the Monitor Interface. First the token is checked for Chart2System functional right.

AccessDenied exception is thrown if needed. The entries passed in are compared against

the m_autoModeTourList (AutoModeTourEntry classes) for the specified owner. During

this comparison each AutoModeTourEntry object has its last update time updated. This

time stamp is used by the clean up task to remove stale auto mode tour list entries. If not

changes are detected m_autoModeTourList remains unchanged and the method returns.

Otherwise the following processing takes place. All entries for the specified owner are

removed from the monitor’s current auto mode tour list. The entries specified in the

arguments are then added to the list. Each entry shares the same timestamp when created.

After all specified entries are added for the owner, the current list is sorted by timestamp,

owner id and entry ordinal. The list is persisted and pushed as a Monitor status message.

The m_autoModeTourListCurrIndex is set to 0. All access to the list is synchronized on

m_autoModeTourLock object.

This method will
compare the entries /
owner passed in
against the objects in the
AutoModeTourEntry lis t.
All AutoModeTourEntry
for the owner have
their last update time
updated. This method
will return a TRUE
if changes are detected
when comparing.

Update the auto mode
tour entry lis t only if
changes are detected. [entriesChangedForOwner]

entriesChangedForOwner : boolean =
verifyEntriesForOwner(entries,

ownerInfo)

persistAndPushStatus()

May have moved from an
empty auto mode tour lis t
to a non-empty lis t.
Start auto mode tour if needed.

startAutoModeTourIfNecessary()

remove()

create()

timeStamp : long = new Date()..getTime()

m_autoModeTourList:
ArrayList<

AutoModeTourEntry>

id : Identifier = getOwnerId()

itr : Iterator = iterator()

Loop over
tour lis t iterator.
Remove entries
for specified
owner id.

[id == ownerInfo.id]

currEntry:
AutoModeTourEntry

verifyAccess(token,
FunctionalRightType.Chart2System)

[no rights] throw AccessDenied

[* itr.hasNext()]

MonitorImpl

addAutoModeTourListEntries(
byte[] token,

AutoModeTourVideoSourceInfo[] entries,
AutoModeTourEntryOwnerInfo ownerInfo)

m_autoModeTourListCurrentIndex = 0

Loop over entries passed in.
Create new AutoModeTourEntry
objects based on that info and
add to the tour lis t. Note: this is
an object that wraps an
AutoModeTourEntryInfo IDL struct.
which is created on construction.

java.util.Collections

This will sort the
auto mode tour lis t
based on the Time stamp
for each owner, owner id and
the entry ordinal (per owner).
AutoModeTourEntry
implements Comparable.add(newEntry)

itr:
Iterator

sort(m_autoModeTourList)

newEntry:
AutoModeTourEntry

[* entires]

create(v ideoSourceInfo, ownerInfo,,
timeStamp)

synchronizde m_autoModeTourLock

CHART R10 Detailed Design – Rev 3 10-99 08/14/2012

10.7.7 MonitorImpl:callAddDisplay (Sequence Diagram)

Thie diagram describes the MonitorImpl.callAddDisplay() abstract method. This method is

called by base class methods and will call the VideoSource.addDisplay() to inform the

video source that it is being displayed on the monitor. This allows the video source to keep

track of where it is being displayed.

vidSrc:
VideoSource

Updated for R10

Method updated for R10.
New convention for
MonitorDisplayInfo struct:

MonitorDisplayInfo struct has
3 members: monitor id,
tour id, and tourSuspened flag.

If tour id is null identifier, image
display was initiated by user.

If tour id != monitor id, image
display initiated by standard
video tour.

if tour id == monitor id, image
display initiated by auto mode
monitor.

Note: tourSuspended flag
is not currently used.

This method and VideoControl.idl
file will be documented clearly in
regards to this new convention.

addDisplay(token, mdi, forTour)

MonitorImpl

Returns id if
a video tour is
currently running,
Null Identifier otherwise.

mdi:
MonitorDisplayInfo

callAddDisplay(byte[] token,
VideoSource vidSrc, boolean forTour,

CommandStatus cmdStat)

[forTour == true &&
autoModeTourRunning()]

create(getMonitorId(), tourIdToUse, false)

tourIdToUse : Identifier = getCurrentVideoTourId()

tourIdToUse : Identifier =
getMonitorId()

CHART R10 Detailed Design – Rev 3 10-100 08/14/2012

10.7.8 MonitorImpl:cleanupAutoModeTourEntries (Sequence Diagram)

This diagram describes the MonitorImpl.cleanUpAutoModeTourEntries() method. This

method is called periodically from a timer in the MonitorControlModule to remove any

auto mode tour entries that are not longer needed by their owners. This method iterates

through the m_autoModeTourList (AutoModeTourEntry objects) and will removed those

that have not been updated a configurable amount of time. AutoModeTourEntry owners

will periodically call the monitor to update entries they are still interested in. Any that

have not been updated in the configured amount of time are considered to be stale (I.E. the

owner should have removed them already). If entries are removed the entry list is resorted,

and status is persisted and pushed.

This will sort the
auto mode tour lis t
based the Time stamp
for each owner, owner id and
the entry ordinal (per owner).
AutoModeTourEntry
implements Comparable.

sort(m_autoModeTourList)

remove()

entriesRemoved : boolean = false

[entriesRemoved == true]

m_autoModeTourListCurrIndex = 0

itr : Iterator = iterator()

itr

[itr.hasNext()]

m_autoModeTourList:
ArrayList<

AutoModeTourEntry>

itr:
Iterator

creat()

currEntry:
AutoModeTourEntry

lastUpdTime : Date = getLastUpdateTime()

MonitorImpl

c leanupAutoModeEntries()

[synchronize m_autoModeTourLock]

entriesRemoved = true

timeOutMins : int = getAutoModeEntryTimeoutMins()

[now - lastUpdTime > timeOutMins * 60 * 1000]

pers is teAndPushStatus()

MonitorControlModuleProperties
java.util.Collections

CHART R10 Detailed Design – Rev 3 10-101 08/14/2012

10.7.9 MonitorImpl:removeAutoModeTourListEntries (Sequence Diagram)

This diagram describes the MonitorImpl.removeAutoModeTourListEntries() method which

is part of the Monitor Interface. First the token is checked for Chart2System functional

right. AccessDenied exception is thrown if needed. The monitor’s current auto mode tour

list is checked for each of the AutoModeTourEntryInfo objects passed in. If found the

corresponding entry is removed from the monitor’s list. After all specified entries are

removed, the current list is sorted by timestamp, owner id and entry ordinal. The list is

persisted and pushed as a Monitor status message. The m_autoModeTourListCurrIndex is

set to 0. All access to the list is synchronized on m_autoModeTourLock object.

Requires ConfigureMonitor or
Chart2System rights.

persistAndPushStatus()

MonitorImpl

synchronize m_autModeTourLock

m_autoModeTourList:
ArrayList<

AutoModeTourEntry>

java.util.Collections

itr:
Iterator currEntry:

AutoModeTourEntry

This will sort the
auto mode tour lis t
based the Time stamp
for each owner, owner id and
the entry ordinal (per owner).
AutoModeTourEntry
implements Comparable.

removeAutoModeTourListEntries(
byte[] token,

AutoModeTourEntryInfo[] entries)

verifyAccess(token)

[no rights] throw AccessDenied

[* itr.hasNext()]
currOwnerId : Identifier = getOwnerId()

itr : Iterator = iterator()

sort(m_autoModeTourList)

[entryToRemove... == currEntryInfo..]

remove()

{ * entries }

presetNum : int = getPresetNum()

m_autoModeTourListCurrentIndex = 0

create()

entryToRemove:
AutoModeTourEntryInfo

videoSrcId : Identifier = getVideoSourtId()

tempPresetId : Identifier = getTempPresetId()

CHART R10 Detailed Design – Rev 3 10-102 08/14/2012

10.7.10 MonitorImpl:removeAutoModeTourListEntriesForOwner (Sequence

Diagram)

This diagram describes the MonitorImpl.removeAutoModeTourEntriesForOwner method

which is part of the Monitor Interface. First the token is checked for Chart2System

functional right. AccessDenied exception is thrown if needed. The monitor’s current auto

mode tour list is looped over and all entries for the specified owner are removed from the

list. After all specified entries are removed, the current list is sorted by timestamp, owner id

and entry ordinal. The list is persisted and pushed as a Monitor status message. The

m_autoModeTourListCurrIndex is set to 0. All access to the list is synchronized on

m_autoModeTourLock object.

Requires ConfigureMonitor or
Chart2System rights.

pers is teAndPushStatus()

itr:
Iterator

remove()

This will sort the
auto mode tour lis t
based the Time stamp
for each owner, owner id and
the entry ordinal (per owner).
AutoModeTourEntry
implements Comparable.

create()

synchronize m_autModeTourLock

MonitorImpl

currEntry:
AutoModeTourEntry

m_autoModeTourList:
ArrayList<

AutoModeTourEntry>

java.util.Collections

removeAutoModeTourListEntriesForOwner(
byte[] token,

byte[] ownerId)

verifyAccess(token

[no rights] throw AccessDenied

[* itr.hasNext()]
currOwnerId : Identifier = getOwnerId()

itr : Iterator = iterator()

sort(m_autoModeTourList)

m_autoModeTourListCurrentIndex = 0

[ownerId == currOwnerId]

CHART R10 Detailed Design – Rev 3 10-103 08/14/2012

10.7.11 MonitorImpl:setAutoMode (Sequence Diagram)

This diagram describes the MonitorImpl.setAutoMode() method (part of the Monitor

Interface). First the token is checked for Maintain Montitor Auto Mode or

ConfigureMonitor functional right. AccessDenied exception is thrown if needed. The auto

mode enabled flag for the monitor is then updated. The config is persisted and a config

update is pushed. Lastly an oplog entry is made to record the configuration change.

startAutoModeTourIfNecessary()

pushAndPersistConfig()

opLog(token, "Change auto mode to ...",
OperationsLog.MONITOR_MAINTENANCE_ACTION_TYPE,

"", getName())

m_config.m_autoModeFlag = enabled

completed(true, "Auto Mode updated...")

cmdStat:
CommandStatus

completed(false, "No rights....")

[enabled && m_config.m_autoModeFlag | |
!enabled && !m_config_autoModeFlag]

synchronize m_lockConfig

completed(true, :"No change made....")

throw AccessDenied

[token does not have
ConfigureMonitor or

MaintainMonitorAutMode functional right]

setAutoMode(byte[] token,
boolean enabled,

CommandStatus cmdStat)

MonitorImpl

CHART R10 Detailed Design – Rev 3 10-104 08/14/2012

10.7.12 MonitorImpl:startAutoModeTourIfNecessary (Sequence Diagram)

This diagram describes the MonitorImpl.startAutoModeTourInNecessary() method. This

method is called when entries are added to the Monitor’s auto mode tour list, when the

monitor is put online and periodically by the MonitorControlModule to start auto mode

tours that may have been delay while waiting for a camera control session to end. The

method returns immediately if the monitor is not auto mode enabled, if its auto mode tour

list is empty or if its auto mode tour is already running. It the image currently being

displayed by the monitor cannot be removed because it’s required for a control session the

method returns. The method checks if a video tour is currently running and stops it. At this

point an AutoModeTourTimerTask is created and scheduled on a newly create Timer. This

timer/task actually runs the auto mode tour.

This method is called when
entries are added to the monitor's
auto mode tour list, when a
monitor is put online, when auto
mode is enabled for a monitor
and periodically by the factory to
start auto mode tours that may
have been delaying until the end
of a camera control session.

synch m_autoModeStartLock

Start auto mode
timer task on timer.

schedule(timerTask, 0, 1000)

timerTask:
AutoModeTourTimerTask

create(MonitorImpl monitor)

Stop current video
tour if one is running
(not auto mode tour).

[hasActiveOrSuspenedTour()]

stopTourImpl(m_sysToken,
currTourId, null, false)

Log

use checkCamera()
method to determine if
in a control session.

m_autoModeTourTImer:
Timer

[current image not removable]

log("Monitor is being used for
a control session. Auto Mode

Tour delayed")

m_autoModeTourTimer = create()

MonitorImpl

startAutoModeTourIfNecessary() [autoMode && isOnline() &&
m_autoModeTourList.size() > 0 &&
m_autoModeTourTimer == NULL]

Synchronize the
code that creates
timer and starts task.

[m_autoModeTimer == NULL]

CHART R10 Detailed Design – Rev 3 10-105 08/14/2012

10.7.13 MonitorImpl:stopAutoModeTour (Sequence Diagram)

This diagram describes the MonitorImpl.stopAutoModeTour() method. This method will

stop and auto mode tour for a monitor by canceling the monitor’s auto mode timer and

setting it to null. This method is called from the AutoModeTourTimerTask on each

execution and during module shutdown.

cancel()

m_autoModeTourTimer = null

Call to existing
callAddDisplay() method
will inform the videoSource
that the image is not being
display as part of a tour..
This mimics existing
busines rules for video
tours.

VideoSource currVideoSrc =
getCurrentVideoSrc()

callAddDisplay(m_sysToken,
currVideoSrc, false, null)

log("Stopping Auto Mode Tour")

log("Auto Mode tour stopped")

MonitorImpl Log
This method is called from
the AutoModeTourTimerTask.run()
method if state has changed such
that the auto mode tour should stop.
It will aslo be called during
service shutdown.

m_autoModeTourTimer:
Timer

stopAutoModeTour()

[m_autoModeTourTImer == null]
log("Auto Mode Tour already stopped")

CHART R10 Detailed Design – Rev 3 10-106 08/14/2012

10.8 NotificationModulePkg

10.8.1 NotificationModule (Class Diagram)

This class diagram shows all classes related to Notification Module.

10.8.1.1 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database

connections. Any CHART II system thread requiring database access gets a database

connection from the pool of connections maintained by this manager class. The connections

are maintained in two separate lists namely, inUseList and freeList. The inUseList contains

connections that have already been assigned to a thread. The freeList contains unassigned

connections. This class assumes that an appropriate JDBC driver has been loaded either by

using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor

thread that is started by the constructor. This connection monitor thread periodically checks

the inuseList to see if there are connections that are owned by dead threads and move such

connections to the freeList. The connection monitor thread is started only if a non-zero

value is specified for the monitoring time interval in the constructor.

MailSMTPServer

1

1

R10: modified

0..*

0..*

1..*

11

1

1

0..*1

MailDeliveryListener

«interface»

MailManager

1

1

PushEventSupplier

DBConnectionManager

11

NotificationGroupData

NotificationContactData

R10: new

1

1

1

1

1

java.util.TimerTask

NotificationModuleProperties

NotificationDB

NotificationImpl

NotificationModule

Notification

«interface»

UniquelyIdentifiable

«interface»

1

R10: Support for groups & contacts

TakeOfflineTimerTask

NotificationRecipientData

java.util.Timer
NotificationManagerImpl

1

NotificationRecord

«datatype»

R10: removed the class
AttentionNSNotificationRecipient

1

NotificationManager

«interface»

1

typeData : NotificationRecipientTypeData

schedule() : void
cancel() : void

getNotifications(token : AccessToken):NotificationIDInfo[]
getGroups(token : AccessToken) : NotificationGroupData[]
getContacts(token : AccessToken) : NotificationContactData[]
sendNotification(token : AccessToken,
 ni : NotificationCreationInfo[],
 nrl : NotificationRecipientData[],
 message : String, subject : String) : NotificationInfo
sendGroupNotification(token:AccessToken, grpIdList : Identifier[],
 message:String, subject : String) : NotificationInfo
getNotificationRecords(token: AccessToken,
 filter : NotificationRecordFilter,
 maxCount : long) : NotificationRecordQueryResults
addNotificationContact(token:AccessToken, info:NotificationContactData)
modifyNotificationContact(token:AccessToken, info:NotificationContactData)
removeNotificationContact(token:AccessToken, id:Identifier)
addNotificationGroup(token:AccessToken, info:NotificationGroupData)
modifyNotificationGroup(token:AccessToken, info:NotificationGroupData)
removeNotificationGroup(token:AccessToken, id:Identifier)

run()

getID()
getName()

+initialize(ServiceApplication) : boolean
+shutdown(ServiceApplication) : boolean
-addEventLocationTypeToTrader() : void
createNotificationManager() : boolean

+getSMTPServers():MailSMTPServer[]
+getSubjectPrefix():String

m_props : Properties
m_serviceApp : ServiceApplication

+MailManager(MailSMTPServer[])
+sendMailMessage(MailMessage, MailDeliveryListener)
+sendMailMessageAsync(MailMessage, MailDeliveryListener)

-createMailMessage(NotificationRecipientData[])

getID() : Identifier
getNotificationRecord() : NotificationRecord
delete(AccessToken)

info : NotificationGroupInfo
contacts:Identifier[]

port : int
host : string
username : string
password : string
useSSL : boolean
sslPort : int
fromAddess : string
replyTo : string

id : Identifier
typeData : NotificationContactNameData
emailAdd : string
updated : timestamp
type:NotificationContactType
groups : Identifier[]

+mailDeliveryStatusUpdate(SendMailStatus status)

getNotificationHistory(id:String):String
getNotivicationRecord():NotificationRecord
addNotificationRecord(id:String, record:NotificationRecord):void
getNotificationContacts():NotificationContactData[]
getNotificationGroups():NotificationGroupData[]
addNotificationContact(NotificationContactData):void
addNotificationGroup(NotificationGroupData):void
modifyNotificationContact(NotificationContactData):void
modifyNotificationGroup(NotificationGroupData):void
removeNotificationContact(Identifier):void
removeNotificationContact(Identifier):void

getProperties() : NotificationModuleProperties
-log(String, String, String)
-opLog(token,String,int,String,String)
addNotifyHistoryLog()

id : Identifier
notificationMgrId : Identifier
seqNum : long
eventFactoryId : Identifier
eventId : Identifier
notifType : NotificationType
author : String
opCenter : OpCenterInfo
createDate : TimeStamp2
message : String
requestList:NotificationRecipientData[]
requestStatus :NotificationStatus[]

CHART R10 Detailed Design – Rev 3 10-107 08/14/2012

10.8.1.2 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or

recurring execution.

10.8.1.3 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one

or more times.

10.8.1.4 MailDeliveryListener (Class)

This interface is implemented by classes that are interested in listening to status changes of

their initiated mail delivery.

10.8.1.5 MailManager (Class)

This class provides capability to send a mail message via SMTP email server.

10.8.1.6 MailSMTPServer (Class)

This class represents an instance of an SMTP email server configuration.

10.8.1.7 Notification (Class)

The Notification interface is implemented by objects that allow execution of tasks

associated with active notifications.

10.8.1.8 NotificationContactData (Class)

This data structure defines a Notification Contact in CHART. It includes information such

as notification contact name, email address, last time the information was updated, type

[such as Individual or Agency] and list of notification groups that it belongs to.

10.8.1.9 NotificationDB (Class)

Object used to save and retrieve archived information for a notification that has been

created and an attempt to send it has been made.

10.8.1.10 NotificationGroupData (Class)

This data structure defines a Notification Group in CHART. It includes information such as

notification group information and list of notification contacts that belong to it.

10.8.1.11 NotificationImpl (Class)

This class is the implementation of the Notification interface.

10.8.1.12 NotificationManager (Class)

Interface used to manage Notification Contacts, Notification Groups, notification messages,

and query notification status records.

CHART R10 Detailed Design – Rev 3 10-108 08/14/2012

10.8.1.13 NotificationManagerImpl (Class)

This class is the implementation of the Notification Manager interface.

10.8.1.14 NotificationModule (Class)

The NotificationModule class is the service module for the Notification interface. It

implements the ServiceApplicationModule interface. It creates and serves a single

NotificationImpl object. It also creates NotificationDB, NotificationModuleProperties, and

PushEventSupplier objects.

10.8.1.15 NotificationModuleProperties (Class)

The NotificationModuleProperties class is used to provide access to properties used by the

Notification Module. This class wraps properties that are passed to it upon construction. It

adds its own defaults and provides methods to extract properties specific to the Notification

Module.

10.8.1.16 NotificationRecipientData (Class)

This object contains the data that is returned as a result of an object get recipient (groups or

contacts) request.

10.8.1.17 NotificationRecord (Class)

This object contains the data for an entry in the notification record which represents a

notification message in the CHART DB

10.8.1.18 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.

The user of this class can pass a reference to the event channel factory to this object. The

constructor will create a channel in the factory. The push method is used to push data on

the event channel. The push method is able to detect if the event channel or its associated

objects have crashed. When this occurs, a flag is set, causing the push method to attempt to

reconnect the next time push is called. To avoid a supplier with a heavy supply load from

causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.

This interval specifies the quickest reconnect interval that can be used. The push method

uses this interval and the current time to determine if a reconnect should be attempted, thus

reconnects can be throttled independently of a supplier's push rate.

10.8.1.19 TakeOfflineTimerTask (Class)

Implementation of a TimerTask that runs the takeNotificationsOffline function in the

NotificationManager to check for stale notifications that are ready for archive. If ready they

are taken offline and archived at a later time.

10.8.1.20 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

CHART R10 Detailed Design – Rev 3 10-109 08/14/2012

10.8.2 NotificationUtility (Class Diagram)

This class diagram shows all utility classes related to SMTP Email Notifications.

10.8.2.1 CommandQueue (Class)

The CommandQueue class provides a queue for QueueableCommand objects. The

CommandQueue has a thread that it uses to process each QueueableCommand in a first in

first out order. As each command object is pulled off the queue by the CommandQueue's

thread, the command object's execute method is called, at which time the command

performs its intended task.

10.8.2.2 EmailAddress (Class)

This class is used to store and validate an email address.

10.8.2.3 MailDeliveryListener (Class)

This interface is implemented by classes that are interested in listening to status changes of

their initiated mail delivery.

10.8.2.4 MailManager (Class)

This class provides capability to send a mail message via SMTP email server.

1

1..*

MailSMTPServer

1

1

1

1

SendMailStatus

RecipientList

MailDeliveryListener

«interface» 0..*

11

3
1

R10: New utility package
for Email Notification

MailManager

CommandQueue

QueueableCommand

«interface»

SendMailCommand
MailMessage

EmailAddress

1

0..*

1

11

+MailManager(MailSMTPServer[])
+sendMailMessage(MailMessage, MailDeliveryListener)
+sendMailMessageAsync(MailMessage, MailDeliveryListener)

port : int
host : s tring
username : s tring
password : s tring
useSSL : boolean
sslPort : int
fromAddess : s tring
replyTo : s tring

+addCommand(CommandTransaction)
+dequeue()
+executeCommand()
+receive(Identifier)
+receiveResponse(byte[])
+run()
+sendCommandToComPort(CameraCommand)
+stopThread()

m_commands : Lis t
m_comport : CameraControlComPort
m_comportName : String
m_enableDeviceLogging : boolean
m_lock : Object
m_responseLock : Object
m_responses : Hashtable
m_simulated : boolean
m_stopThread : boolean

STATUS_WAITING_TO_EXECUTE
STATUS_IN_PROGRESS
STATUS_FINISHED_OK
STATUS_FINISHED_SEND_FAILED
STATUS_FINISHED_ERROR
m_invalid:EmailAddress[]
m_validSent:EmailAddress[]
m_validNotSent:EmailAddress[]
m_statusDesc:string

execute()
interrupted()

+getStatus():SendMailStatus

m_status:SendMailStatus

+mailDeliveryStatusUpdate(SendMailStatus status)

+getToList():RecipientList[]
+getCCList():RecipientList[]
+getBCCList():RecipientList[]
+addCCAddr(EmailAddress):void
+addBCCAddr(EmailAddress):void
+addToAddr(EmailAddress):void
+removeCCAddr(EmailAddress):void
+removeBCCAddr(EmailAddress):void
+removeToAddr(EmailAddress):void
+setSubject(String):void
+setMessageText(String):void
+setTimestamp(long):void

m_id:Identifier
m_subject:s tring
m_messageText:s tring
m_timestamp:Date
m_toList:RecipientList
m_ccList:RecipientList
m_bccList:RecipientList

+add(EmailAddress)
+remove(EmailAddress)

m_emailAddr : s tring
m_name : s tring
m_valid : boolean

CHART R10 Detailed Design – Rev 3 10-110 08/14/2012

10.8.2.5 MailMessage (Class)

This class is used to store information about a standard e-mail message. E-Mail addresses

can be individually added and removed to the TO, CC, and BCC recipient lists.

10.8.2.6 MailSMTPServer (Class)

This class represents an instance of an SMTP email server configuration.

10.8.2.7 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a

CommandQueue for asynchronous execution. Derived classes implement the execute

method to specify the actions taken by the command when it is executed. This interface

must be implemented by any device command in order that it may be queued on a

CommandQueue. The CommandQueue driver calls the execute method to execute a

command in the queue and a call to the interrupted method is made when a

CommandQueue is shut down.

10.8.2.8 RecipientList (Class)

This class is a list of EMailAddress objects. Duplicate email addresses will be ignored.

10.8.2.9 SendMailCommand (Class)

This class is a task that can be executed asynchronously by adding it to a CommandQueue.

This particular command is used to send an e-mail message.

10.8.2.10 SendMailStatus (Class)

This class is used to store the status of sending an e-mail request.

10.8.3 MailManager:sendMailMessage (Sequence Diagram)

This sequence diagram shows the steps that will be performed by the MailManager when an

email message needs to be sent out immediately. This command will be executed

instantaneously rather than being queued for later execution.

CHART R10 Detailed Design – Rev 3 10-111 08/14/2012

10.8.4 MailManager:sendMailMessageAsync (Sequence Diagram)

This sequence diagram shows the steps that will be performed by the MailManager when an

email message needs to be sent out asynchronously. The command will be created and

placed on the Command Queue. All tasks on the Command Queue are executed in first in

first out manner.

System

SendMailStatus

MailDeliveryListener

See SendMailCmd:execute
for details.

create

mailDeliveryStatusUpdate(SendMailStatus)

attempt an email
notification

SendMailCmdcreate(msg, listener,
SMTPServer[]

MailManager

execute()

sendMailMessage(MailMessage,
MailDeliveryListener)

CommandQueue

create(msg,
listener, SMTPServer[])

execute()

NotificationManagerImpl

sendMailMessageAsync(MailMesage,
MessageDeliveryListener)

addCommand(SendMailCommand)

SendMailCommand

MailManager

CHART R10 Detailed Design – Rev 3 10-112 08/14/2012

10.8.5 MailManager:shutdown (Sequence Diagram)

This sequence diagram shows the steps that will be performed by the MailManager when its

shutdown method is invoked. The Command Queue will be instructed to shutdown and

release all its resources.

SendMailCommand

interrupted

NotificationManagerImpl

shutdown

MailManager

shutdown

CommandQueue

[*QueueableCommand]

CHART R10 Detailed Design – Rev 3 10-113 08/14/2012

10.8.6 NotificationManagerImpl:addNotificationContact (Sequence Diagram)

This sequence diagram shows the steps that will be performed by the Notification Service

when it receives a request to add a new notification contact in the CHART System. First the

access token will be checked for appropriate functional rights, i.e. either Configure System

or Configure Notification Contacts. An AccessDenied exception will be thrown if the caller

does not have the required rights. Next the cache will be checked for the existence of a

contact with the same name. Multiple Notification Contacts with same names will not be

allowed and will result in an exception being thrown. Valid Notification Contact will be

added to the system database. If successful a NotificationContactAdded CORBA event will

be generated.

boolean

[duplicate error]
CHART2Exception

NotificationManagerImpl TokenManipulator

A Notification Contact with the same
name exists.

NotificationDB

addNotificationContact(token)

checkAccess(token)

[no access]
AccessDenied

[duplicate error]
CHART2Exception

ORB

addNotificationContact

OperationsLogPushEventSupplier

log(NotificationContactAdded)

push(NotificationContactAdded)

boolean

[db error]
CHART2Exception

CHART R10 Detailed Design – Rev 3 10-114 08/14/2012

10.8.7 NotificationManagerImpl:addNotificationGroup (Sequence Diagram)

This sequence diagram shows the steps that will be performed by the Notification Service

when it receives a request to add a new Notification Group in the CHART System. First the

access token will be checked for appropriate functional rights, i.e. either Configure System

or Configure Notification Groups. An AccessDenied exception will be thrown if the caller

does not have the required rights. Next the cache will be checked for the existence of a

Notification Group with the same name. Multiple Notification Groups with same names

will not be allowed and will result in an exception being thrown. Valid Notification Group

will be added to the system database. If successful a NotificationGroupAdded CORBA

event will be generated.

boolean

ORB

NotificationManagerImpl TokenManipulator NotificationDB PushEventSupplier OperationsLog

A Notification Group with the same
name exists.

checkAccess(token)

[duplicate error]
CHART2Exception

addNotificationGroup

[no access]
AccessDenied

[duplicate error]
CHART2Exception

boolean

[db error]
CHART2Exception

addNotificationGroup(token)

push(NotificationGroupAdded)

log(NotificationGroupAdded)

CHART R10 Detailed Design – Rev 3 10-115 08/14/2012

10.8.8 NotificationManagerImpl:createMailMessage (Sequence Diagram)

This sequence diagram shows the steps that will be performed by the Notification Manager

to create the MailMessage object for the received recipient list.

[*RecipientEmailAddresses]

create

NotificationManagerImpl

MailMessage

setBCCAddr(emailAddess)

setName(name)

MailMessage

setEmail(email)

EmailAddress

createMailMessage(
NotificationRecipientData[],

message, subject)

Check for Duplicate
email addresses

create

NotificationManagerImpl

setSubject(subject)

NotificationDB

RecipientEmailAddresses[]

setMessage(messageText)

getEmailAddressesForRecipients(NotificationRecipientData[])

CHART R10 Detailed Design – Rev 3 10-116 08/14/2012

10.8.9 NotificationManagerImpl:createMailMessageForGroupNotification

(Sequence Diagram)

This sequence diagram shows the steps that will be performed by the Notification Manager

to create the MailMessage object for the received Notification Group identifier list.

NotificationManagerImpl

Check for duplicate
email addresses

NotificationManagerImpl

MailMessage

EmailAddress

create

setBCCAddr(emailAddess)

setName(name)

MailMessage

[*RecipientEmailAddresses]

NotificationDB

createMailMessageForGroupNotification(
Identifier[],

subject, messageText)

create

setEmail(email)

getEmailAddressesForGroupsContacts(Identifier[])

setSubject(subject)

RecipientEmailAddresses[]

setMessage(messageText)

CHART R10 Detailed Design – Rev 3 10-117 08/14/2012

10.8.10 NotificationManagerImpl:getContacts (Sequence Diagram)

This sequence shows how the Notification service responds to a request for obtaining the

list of contacts. The cache is queried and all the contacts sorted by their names are returned.

10.8.11 NotificationManagerImpl:getGroups (Sequence Diagram)

This sequence shows how the Notification service responds to a request for obtaining the

list of Notification Groups. The cache is queried and all the groups sorted by their names

are returned.

ORB

NotificationsDB

boolean

getContacts()

NotificationRecipientData[]

TokenManipulator

checkAccess()

NotificationManagerImpl NotificationsLog

NotificationRecipientData[]

[no access]
log

[no Access]
AccessDenied

getContacts(token)

ORB

NotificationsDB

boolean

NotificationRecipientData[]

R10 - removed retrieval of
Notification Groups from
Attention. Instead the list returned
will be from the System database.

NotificationManagerImpl NotificationsLog

[no Access]
AccessDenied

NotificationRecipientData[]

getGroups(token)

[no access]
log

checkAccess()

TokenManipulator

getGroups()

CHART R10 Detailed Design – Rev 3 10-118 08/14/2012

10.8.12 NotificationManagerImpl:initialize (Sequence Diagram)

The following sequence diagram shows the additional functionality that will be added to the

Notification Manager object. It will retrieve the list of Notification Contacts and Groups

from the CHART database and will store them in a Hashtable and a sorted ArrayList.

Elements in the sorted ArrayList will be ordered by names. The cache will allow faster

access to information such as contacts that belong to a group when a notification is being

targeted for a group. The MailManager will be created with the list of configured SMTP

Servers. Any notification requests that were in the process of being sent out prior to the last

shutdown will be carried out again.

ORB

NotificationImpl

getNotificationRecords

[*NotificationRecord]

create(NotificationDBRecord)

getStatuses

NotificationStatus[]

[status==InProgress
&& !expired]

sendMailMessage(MailMessage)

MailManager

MailSMTPServer[]

NotificationModuleProperties

getSMTPServers

create(MailSMTPServer[])

NotificationManagerImpl NotificationDB

create

check the now time against the
create time for the notification
and if within the allowable time
frame, try to resend the notification.

setRequestStatus(FAILED)

CHART R10 Detailed Design – Rev 3 10-119 08/14/2012

10.8.13 NotificationManagerImpl:modifyNotificationContact (Sequence Diagram)

The following sequence diagram shows the steps that will be performed by the Notification

Service when it receives a request to modify an existing notification contact in the CHART

System. The notification contact will be obtained from the cache and will be compared with

the passed modification data. The access token will be checked for the following functional

rights based on what's being changed. For name changes the token should have either

Configure System or Configure Notification Contacts rights. For changes to the email

address, the token should have either Configure System or Configure Notification Contacts

or Configure Contacts Email rights. Modifications to the contacts groups will require the

access token to have either Configure System or Configure Notification Contacts or

Configure Contacts Groups rights. An AccessDenied exception will be thrown if the caller

does not have the required rights. If the token has all appropriate rights, modifications will

be made to the record in the system database and cache. If successful a

NotificationContactModified CORBA event will be generated.

boolean

ORB

NotificationManagerImpl TokenManipulator NotificationDB

checkAccess(token)

getNotificationContact(contactId)

modifyNotificationContact(NotificationContactData)

[no access]
AccessDenied

modifyNotificationContact(token)

PushEventSupplier

push(NotificationContactModified)

OperationsLog

log(NotificationContactModified)

NotificationContactData or NULL

determine modifications
that are being made and
check the access token for
appropriate rights.

boolean

[db error]
CHART2Exception

[contact not found]
CHART2Exception

CHART R10 Detailed Design – Rev 3 10-120 08/14/2012

10.8.14 NotificationManagerImpl:modifyNotificationGroup (Sequence Diagram)

The following sequence diagram shows the steps that will be performed by the Notification

Service when it receives a request to modify an existing Notification Group in the CHART

System. The Notification Group record will be obtained from the cache and will be

compared with the passed modification data. The access token will be checked for the

following functional rights based on what's being changed. For name changes the token

should have either Configure System or Configure Notification Groups rights. For

modifications to the Notification Group’s contacts, the access token should have either

Configure System or Configure Notification Groups or Configure Groups Contacts. An

AccessDenied exception will be thrown if the caller does not have the required rights. If the

token has all appropriate rights updates will be made to the record in the system database

and cache. If successful a NotificationContactModified corba event will be generated.

boolean

ORB

NotificationManagerImpl TokenManipulator NotificationDB PushEventSupplier OperationsLog

determine modifications
that are being made and
check the access token for
appropriate rights.

checkAccess(token)

getNotification(groupId)

[record not found]
CHART2Exception

NotificationGroupData or NULL

modifyNotificationGroup(NotificationGroupData)

modifyNotificationGroup(token)

log(NotificationGroupModified)

push(NotificationGroupModified)

boolean

[no access]
AccessDenied

[db error]
CHART2Exception

CHART R10 Detailed Design – Rev 3 10-121 08/14/2012

10.8.15 NotificationManagerImpl:removeNotificationContact (Sequence

Diagram)

This sequence diagram shows the steps that will be performed by the Notification Service

when it receives a request to remove an existing Notification Contact in the CHART

System. First the access token will be checked for appropriate functional rights, i.e. either

Configure System or Configure Notification Contacts. An AccessDenied exception will be

thrown if the caller does not have the required rights. If the service succeeds in removing

the Notification Contact from the system database and cache, a

NotificationContactRemoved CORBA event will be generated.

boolean

NotificationManagerImpl TokenManipulator NotificationDB

checkAccess(token)

[record not found]
CHART2Exception

removeNotificationContact(contactId)

[no access]
AccessDenied

removeNotificationContact(token)

ORB

push(NotificationContactRemoved)

OperationsLog

log(NotificationContactRemoved)

boolean

[db error]
CHART2Exception

PushEventSupplier

CHART R10 Detailed Design – Rev 3 10-122 08/14/2012

10.8.16 NotificationManagerImpl:removeNotificationGroup (Sequence Diagram)

This sequence diagram shows the steps that will be performed by the Notification Service

when it receives a request to remove an existing Notification Group in the CHART System.

First the access token will be checked for appropriate functional rights, i.e. either Configure

System or Configure Notification Groups. An AccessDenied exception will be thrown if the

caller does not have the appropriate rights. If successful in removing the Notification Group

from the system database and cache, a NotificationGroupRemoved corba event will be

generated.

ORB

boolean

log(NotificationGroupRemoved)

boolean

NotificationManagerImpl TokenManipulator NotificationDB PushEventSupplier OperationsLog

checkAccess(token)

[record not found]
CHART2Exception

removeNotificationGroup(groupId)

[no access]
AccessDenied

removeNotificationGroup(token)

push(NotificationGroupRemoved)

[db error]
CHART2Exception

CHART R10 Detailed Design – Rev 3 10-123 08/14/2012

10.8.17 NotificationManagerImpl:sendGroupNotification (Sequence Diagram)

This sequence diagram describes the steps taken by the server when sending a notification

message to a list of groups.

[ok]

ORB

NotificationManagerImpl TokenManipulator NotificationImpl NotificationsLog NotificationDB MailManager

push a Message
Requested event

PushEventSupplier

boolean

push(notificationAdded)

pers is tNotificationRecord()

[no Access]
AccessDenied

sendMailMessageAsync(MailMessage, NotificationImpl)

[constructor]
NotificationImpl()

log(records)

checkAccess()

[db error]
CHART2Exception

NotificationInfo

sendGroupNotification(token,
NotificationCreationInfo,

 Identifer[],
message, subject)

void or CHART2Exception

updateRequestStatus(failed)

log(RequestStatusFailed)

push(notificationChanged)

NOTIF_STATUS_TYPE_FAILED

createMailMessageForGroupNotification

boolean

NOTIF_STATUS_TYPE_REQUESTED

push(notificationChanged)

[db error]
log

CHART R10 Detailed Design – Rev 3 10-124 08/14/2012

10.8.18 NotificationManagerImpl:sendNotification (Sequence Diagram)

This sequence diagram describes the interaction of the client GUI with the server when

sending a notification message to a list of recipients.

[ok]

boolean

NOTIF_STATUS_TYPE_REQUESTED

R10: replaced AttentionCCWrapper
with MailManager

void or CHART2Exception

updateRequestStatus(failed)

push(notificationChanged)

ORB

NotificationManagerImpl TokenManipulator NotificationImpl NotificationsLog NotificationDB MailManager

push a Message
Requested event

PushEventSupplier

[db error]
log

log(records)

checkAccess()

[db error]
CHART2Exception

sendMailMessageAsync(MailMessage,NotificationImpl)

[constructor]
NotificationImpl()

sendNotification(token,
NotificationCreationInfo,

 NotificationRecipienDatat[],
message, subject)

NotificationInfo

push(notificationChanged)

NOTIF_STATUS_TYPE_FAILED
log(RequestStatusFailed)

push(notificationAdded)

[no Access]
AccessDenied

persistNotificationRecord

createMailMessage

boolean

CHART R10 Detailed Design – Rev 3 10-125 08/14/2012

10.8.19 SendMailCmd:execute (Sequence Diagram)

The following sequence diagram shows when the Queueable Command to Send Mail is

executed. It will ensure first a valid connectivity with an SMTP Server. If the primary

SMTP server is not reachable the backup SMTP Servers will be used to connect. The java

MailMessage will be created which may be sent multiple times if the recipient list is longer

than the configured number of addresses for an email. Throughout the process it will notify

the MailDeliveryListener about the current status of the mail notification.

NotificationsLog

void or SendFailedException

setStatus(STATUS_FINISHED_SEND_ERROR)

mailDeliveryStatusUpdate(SendMailSTatus)

pushNotificationChanged(
NOTIF_STATUS_TYPE_RECEIVED
|| NOTIF_STATUS_TYPE_FAILED)

save Addresses

log(status and
Mail details)

setRecipients(type, lis t)

[failed to
connect]

log

mailDeliveryStatusUpdate(SendMailStatus)

mailDeliveryStatusUpdate(SendMailStatus)[failed to connect to
any server]

[until all recipients
have been sent a message]

[failed to connect]
setStatus(STATUS_FINISHED_ERROR)

execute

create

PushEventSupplier

push(notificationChanged(
NOTIF_STATUS_TYPE_IN_PROGRESS)

create(session)

getValidSentAddresses

javax.mail.Address[]

getValidUnsentAddresses

javax.mail.Address[]

MailDeliveryListener

If the number of email
addresses in a message
is bigger than a configurable
count, break the email address
list in several messages. This
is being done to avoid the
messages being marked
as spam.

SendMailStatus

set(MailPropsKey, MailPropsValue)

javax.mail.Session javax.mail.SMTPTransport

getInstance

Session

getTransport("smtp")

Transport

connect(SmtpServerName, userName, password)

sendMessage(emailAddr, message)

CommandQueue

SendMailCmd

Properties

javax.mail.SendFailedException

void or AuthenticationFailedException

[currentStatus
!=STATUS_FINISHED_SEND_ERROR]

setStatus(STATUS_FINISHED_OK)

setStatus(STATUS_IN_PROGRESS)

getInvalidAddresses

javax.mail.Address[]

javax.mail.MimeMessage

[*SMTPServer - loop
until we succeed

to connect]

CHART R10 Detailed Design – Rev 3 10-126 08/14/2012

10.9 TrafficEventModulePkg2

10.9.1 TrafficEventModuleClasses2 (Class Diagram)

This diagram shows Traffic Event Module classes related to the decision support changes in

Release 10.

10.9.1.1 DecisionSupportEnabled (Class)

This class is a CORBA interface that facilitates requesting suggestions from any server side

component.

10.9.1.2 DecisionSupportManager (Class)

This class provides utility methods that are applicable to decision support. It includes

methods for generating suggestions, applying templates, determining distances, etc.

10.9.1.3 GenerateTrafficEventSuggestionsCmd (Class)

This class performs the asynchronous task of generating suggestions for a traffic event.

10.9.1.4 GetNearbyDeviceInfoCmd (Class)

This class performs the asynchronous task of determining which devices are near (within a

configureable distance of) a traffic event.

10.9.1.5 ObjectCache (Class)

The ObjectCache is a wrapper for the DataModel. It provides access to DataModel

methods to find objects in the data model, delegating those methods to the DataModel

TempPresetOwner

1

1

1

1 1

GetNearbyDeviceInfoCmd

*

TrafficEventFactoryImpl2

SystemProfileProperties

1 1

1

TrafficEventDB2

TrafficEventImpl

1

TrafficEventModuleProperties2

Changed for R10

TrafficEventGroup2

QueueableCommand

«interface»

GenerateTrafficEventSuggestionsCmd

1

DecisionSupportManager

1

DecisionSupportEnabled

«interface»

1

1

ObjectCache

TrafficEventModule

1

1

getDecisionSupportManager():DecisionSupportManager

m_weatherService : JAXBWebServiceClient

m_weatherServiceCmdQueue : CommandQueue

queryRoadSurfaceConditionWeatherInfo(

 token : byte[],

 radiusMiles : double,

 lookbackMins : int,

 service:JAXBWebServiceClient,

 relativeURL : String,

 cmdQueue : CommandQueue,

 synchWaitTimeMillis : long) : void

handleRoadSurfaceConditionWeatherInfo(

 token : byte[],

 roadSurfaceConditionWeatherInfo : RoadSurfaceConditionWeatherInfo,

 pushEvent : boolean) : void

updateNearbyDeviceInfoCache() :DMSDSInfo

areSuggestionsDisabled(id : Identifier) :boolean

getDisabledSuggestionList() : Identifier[]

getVideoTourRPIHandler():VideoTourHandler

m_disabledSuggestionList : Identifier[]

m_handleRoadSurfaceConditionWeatherInfoAsynch : boolean

m_nearbyDevices:DMSDSInfo[]

getNearbyDevicesCacheUpdateFreqMIns():int

getAORCacheRefreshFrequencyMIns():int

getAORManagerURL():String

getAORCacheSynchFrequencyMins():int

getVideoTourRenewActivationsFreqMins():int

getVideoTourUpdateFreqMins():int

setWeatherInfoJSON(id : Identifier, weatherInfoJSON : String) : void

getWeatherInfoJSON(conn : Connection, eventID : Identifier) : String

disableSuggestionsFor(ids : Identifier[]) : void

enableSuggestionsFor(ids : Identifier[]) : void

getDisabledSuggestionList() : Identifier[]

setResponseVideoTourMonitors(monitors:MonitorInfo)

updateResponsePlanItem(teID:Identifier, rpiDatal:ResponsePlanItemIDataImpl):void

updateMsgBasedRPI(teID:Identifier, rpiDatal:ResponsePlanItemIDataImpl):void

updateVideoTourRPI(teID:Identifier, rpiDatal:VideoTourRPIDataImpl):void

setResponseTourData(data:VideoTourRPIDataImpl):void

setactiveTourRPIData(teID:Identfier, mons:Identier[],entries:AutoModeTourEntrySourceInfo[]):void

recordCameraUsage(teID:Identifier, camsUsed:Identifier[], timeMillis:long)

getDistanceMilesForPctLanesClosed(pctClosed:float):float

getDistanceTypeForMiles(miles:float):DistanceCategory

getCameraDistanceMilesForPctLanesClosed(pctClosed:float):float

scoreCameraPosition(cameraPosition:LocatableDSInfo):float

getCameraDistanceTypeForMiles(miles:float):DistanceCategory

getDMSList(location:GeoLocation, radiusMiles:float):DMSAndExitInfo[]

findPertinentCameras(this, radius):LocatableDSInfo[]

executeRequest(cmd:QueueableCmd):void

generateSuggestionsForDMS(te:TrafficEventGroup, nearestExitEditInfo, dms:DMSDSInfo):UseDMSSuggestion

findApplicableDMSTemplates(dms:DMSDSInfo, eventType:EventType):ProxyDSDMSMsgTemplate[]

applyTemplate(dmsTemplate:ProxyDSDMSMsgTemplate, te:TrafficEventGroup, dms:DMSDSInfo,

 nearestExit:ExitInfo, exitProximity : IntersectingFeatureProximityType):DMSMessageSuggestion

getApplicablePlans(eventLoc:Coordinate, eventType:EventType, radiusMiles:float):PlanDSInfo[]

getGISMappingService():XMLHTTPService

TrafficEventImpl(TrafficEventGroup, TrafficEventDB)

getEventGroup():TrafficEventGroup

initializeFromImpl(TrafficEventImpl)

getType():TrafficEventTypeValues

getDB():TrafficEventDB

mergeEvent()

m_type

+validateTempPresets(cameraID): IdentifierList

+failedToCreateTempPreset(cameraID, tempPreasetID,

 String : description)

ctor(te:TrafficEventGroup, dsm:DecisionSupportManager) ctor(te:TrafficEventGroup, recipient:SuggestionRecipient)

ctor(TrafficEventGroup, dmsList:Identifier[], recipient:SuggestionRecipient)

CHART R10 Detailed Design – Rev 3 10-127 08/14/2012

itself. It also provides additional methods of finding name filtered objects and discovering

"duplicate" objects (as defined by an isDuplicateOf() method of the Duplicatable interface).

10.9.1.6 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a

CommandQueue for asynchronous execution. Derived classes implement the execute

method to specify the actions taken by the command when it is executed. This interface

must be implemented by any device command in order that it may be queued on a

CommandQueue. The CommandQueue driver calls the execute method to execute a

command in the queue and a call to the interrupted method is made when a

CommandQueue is shut down.

10.9.1.7 SystemProfileProperties (Class)

This class is used to cache the system profile properties and provide access to them. It is

also used to interact with the server to change system profile settings.

10.9.1.8 TempPresetOwner (Class)

This interface must be implemented by any class that calls a controllable camera to create

temporary presets. The interface is utilized to ask the owner to verify that they still need

the presets they have created.

10.9.1.9 TrafficEventDB2 (Class)

This class contains TrafficEventDB changes for R7. This class provides database

functionality related to traffic events.

10.9.1.10 TrafficEventFactoryImpl2 (Class)

This class shows changes in the TrafficEventFactoryImpl class for R7. This class manages

all traffic events served by the Traffic Event Service.

10.9.1.11 TrafficEventGroup2 (Class)

This class shows changes in the TrafficEventGroup class for R7. This class manages a

single TrafficEvent CORBA object implementation.

10.9.1.12 TrafficEventImpl (Class)

This class provides an implementation of the TrafficEvent interface. It contains state

variables and processing that common to all traffic events.

10.9.1.13 TrafficEventModule (Class)

This class provides the resources and support functionality necessary to serve traffic event

related objects in a service application. It implements the ServiceApplicationModule

interface which allows it to be served from any ServiceApplication.

CHART R10 Detailed Design – Rev 3 10-128 08/14/2012

10.9.1.14 TrafficEventModuleProperties2 (Class)

This class contains TrafficEventModuleProperties changes for R7. This class provides

access to settings defined in the TrafficEventService properties file.

CHART R10 Detailed Design – Rev 3 10-129 08/14/2012

10.9.2 VideoTourResponseClasses (Class Diagram)

This diagram shows the classes that are involved in traffic event video tour response.

10.9.2.1 AORManager (Class)

This class provides utility methods that are applicable to areas of responsibility. It includes

methods for getting areas of responsibility based on a specified location (i.e. a

latitude/longitude), getting the areas of responsibility that have changed since a specified

date/time, checking if an area of responsibility still exists in the system, etc. It can be

configured to maintain a cache of areas of responsibility. It can also be configured without

the cache and used simply to check for the existence of areas of responsibility.

10.9.2.2 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one

or more times.

*

1

1

Monitor

«interface»

1

1

ProxyVideoProvider

ProxyMonitor

*

1

ObjectCache

1

1 TrafficEventDB2

1

ResponsePlanItemImpl

1

1

1

1

*

1

RenewResponseTourActivationsTask

1

1

1

1

ResponsePlanItem

«interface»

1

Timerjava.util.TimerTask

UpdateResponseToursTask

* 1

TrafficEventFactoryImpl

AORManager

XMLHTTPService

ResponsePlanItemData

VideoTourRPIData

VideoTourRPIDataImpl

VideoTourRPIDelegate

«interface»

0..1

1

VideoTourRPIHandler

*

1

1

TrafficEventGroup2

getTargetID():Identifier

isExecutable() : boolean

execute(AccessToken token,

 TrafficEvent trafficEvt,

 CommandStatus status):void

revokeExecution(AccessTiken token,

 TrafficEvent trafficEvt,

 Identifier itemID):void

isUsingObject(Identifier[] objectIDs):boolean

getVerboseDescription(): string

getTrafficEventType(): int

getTargetOwningOrgID():Identifier

string m_description

Identifier m_targetOwningOrgID

Identifier m_targetID

-int m_trafficEventType

getMonitorList():MonitorInfo[]

setMonitorList(monitorList:MonitorInfo[]):void

getTourEntryList():AutoModeTourEntrySourceInfo[]

setTourEntryLIst(entries:AutoModeTourEntrySourceInfo[]):void

getActiveTourEntryList():AutoModeTourEntrySourceInfo[]

m_monitorList:MonitorInfo[]

m_tourEntries:AutoModeTourEntrySourceInfo[]

getDelegate():VideoTourRPIDelegate

setDelegate(delegate:VideoTourRPIDeledgate):void

trafficEventFactoryImpl(TrafficEventModule,

 offlineThresholdHours)

+shutdown()

+monitorResources() : void

+takeEventsOffline()

+monitorResponses() : void

+monitorEventStillOpen() : void

+monitorDuplicateEvents() : void

-getControllingOpCenters():Identifier[]

-getOpCenterRef(opCenterID):OperationsCenter

+getAORManager():AORManager

scheduleUpdateResponseToursTask():void

queryRoadSurfaceConditionWeatherInfo(

 token : byte[],

 radiusMiles : double,

 lookbackMins : int,

 service:JAXBWebServiceClient,

 relativeURL : String,

 cmdQueue : CommandQueue,

 synchWaitTimeMillis : long) : void

handleRoadSurfaceConditionWeatherInfo(

 token : byte[],

 roadSurfaceConditionWeatherInfo : RoadSurfaceConditionWeatherInfo,

 pushEvent : boolean) : void

updateNearbyDeviceInfoCache() :DMSDSInfo

areSuggestionsDisabled(id : Identifier) :boolean

getDisabledSuggestionList() : Identifier[]

getVideoTourRPIHandler():VideoTourHandler

m_disabledSuggestionList : Identifier[]

m_handleRoadSurfaceConditionWeatherInfoAsynch : boolean

m_nearbyDevices:DMSDSInfo[]

updateTargetMonitors():void

setData(data:VideoTourRPIDataImpl):void

renewExecution():void

getLastExecutedEntries():AutoModeTourEntrySourceInfo[]

getLastExecutedMonitors():ProxyMonitor[]

updateStatus():void

m_lastExecutedEntries:AutoModeTourEntrySourceInfo[]

m_lastExecutedMonitors:ProxyMonitor[]

m_trafficEVentGroup:TrafficEventGroup

m_rpiImpl:ResponsePlanItemImpl

setWeatherInfoJSON(id : Identifier, weatherInfoJSON : String) : void

getWeatherInfoJSON(conn : Connection, eventID : Identifier) : String

disableSuggestionsFor(ids : Identifier[]) : void

enableSuggestionsFor(ids : Identifier[]) : void

getDisabledSuggestionList() : Identifier[]

setResponseVideoTourMonitors(monitors:MonitorInfo)

updateResponsePlanItem(teID:Identifier, rpiDatal:ResponsePlanItemIDataImpl):void

updateMsgBasedRPI(teID:Identifier, rpiDatal:ResponsePlanItemIDataImpl):void

updateVideoTourRPI(teID:Identifier, rpiDatal:VideoTourRPIDataImpl):void

setResponseTourData(data:VideoTourRPIDataImpl):void

setactiveTourRPIData(teID:Identfier, mons:Identier[],entries:AutoModeTourEntrySourceInfo[]):void

recordCameraUsage(teID:Identifier, camsUsed:Identifier[], timeMillis:long)

CHART R10 Detailed Design – Rev 3 10-130 08/14/2012

10.9.2.3 Monitor (Class)

The Monitor interface is implemented by objects which represent a video monitor, e.g., a

real, physical "television set" on which a video image can be displayed. This is the most

common type of VideoSink (the other being a SWMonitor, part of a future requirement to

stream video directly to user's workstations (or potentially other nearby computers).

10.9.2.4 ObjectCache (Class)

The ObjectCache is a wrapper for the DataModel. It provides access to DataModel

methods to find objects in the data model, delegating those methods to the DataModel

itself. It also provides additional methods of finding name filtered objects and discovering

"duplicate" objects (as defined by an isDuplicateOf() method of the Duplicatable interface).

10.9.2.5 ProxyMonitor (Class)

This class wraps a Monitor corba reference and other information for a monitor in

CHART2. It is used to cache monitor related information in the DataModel.

10.9.2.6 ProxyVideoProvider (Class)

This class wraps a VideoProviderInfo struct and is used to cache information for a

VideoProvider in the DataModel. It is the parent class of the ProxyVideoSource class.

10.9.2.7 RenewResponseTourActivationsTask (Class)

This timer task renews the last executed response plan tour entries (camera and optional

preset) on the last used list of monitors for each traffic event.

10.9.2.8 ResponsePlanItem (Class)

Objects of this type can be executed as part of a traffic event response plan. A

ResponsePlanItem can be executed by an operator, at which time it becomes the

responsibility of the System to activate the item on the ResponseDevice as soon as it is

appropriate.

10.9.2.9 ResponsePlanItemData (Class)

This class is a delegate used to perform the execute and remove tasks for the response plan

item. Derived classes of this base class have specific implementations for the type of

device the response plan item is used to control.

10.9.2.10 ResponsePlanItemImpl (Class)

This class provides an implementation of the ResponsePlanItem interface. Each instance

represents one particular part of a response plan that can be in an executed, active or

inactive state. This class also provides an implementation of the CommandStatus interface.

This implies that devices that are activated on behalf of this traffic event can hold a copy of

this object and call its update() method to provide a running status of the plan item as it

changes.

CHART R10 Detailed Design – Rev 3 10-131 08/14/2012

10.9.2.11 Timer (Class)

This class is a timer that calls a callback function on a specified interval.

10.9.2.12 TrafficEventDB2 (Class)

This class contains TrafficEventDB changes for R7. This class provides database

functionality related to traffic events.

10.9.2.13 TrafficEventFactoryImpl (Class)

This class provides the implementation of the TrafficEventFactory CORBA interface.

10.9.2.14 TrafficEventGroup2 (Class)

This class shows changes in the TrafficEventGroup class for R7. This class manages a

single TrafficEvent CORBA object implementation.

10.9.2.15 UpdateResponseToursTask (Class)

This timer task checks each traffic event response plan video tour and updates it with the

target monitors that are appropriate given the traffic event location and the current list of

AOR's associated with each monitor.

10.9.2.16 VideoTourRPIData (Class)

This class is a ResponsePlanItemData that carries the data pertinent to a response plan

video tour.

10.9.2.17 VideoTourRPIDataImpl (Class)

This class provides an implementation of the VideoTourRPIData value type. This class

does not impelemnt the execute and revokeExecution functionality directly. Rather it calls

a delegate class if it has been set, otherwise it thrwos an exception.

10.9.2.18 VideoTourRPIDelegate (Class)

This interface must be implemented by any class that provides the implementationof

execute and revoke execution for a video tour response plan item.

10.9.2.19 VideoTourRPIHandler (Class)

This class provides an implemenetation of the VideoTourRPIDelegate interface that is

capable fo executing and revoking execution of a response plan video tour.

10.9.2.20 XMLHTTPService (Class)

This class represents a remote XML/HTTP based web service at a specified URL. It

supports operations to perform HTTP get and post operations on the remote service.

CHART R10 Detailed Design – Rev 3 10-132 08/14/2012

10.9.3 RenewResponseTourActivationsTask:run (Sequence Diagram)

This diagram shows the processing performed when the periodic task that renews the

response tour entries that are active on each monitor is executed. The task calls each

TrafficEventGroup that is open and gets the VideoTourRPIHandler object, which is then

called in order to renew the last execution. If the handler has last executed tour list entries

it will get the list of monitors the entries should be active on and call the remote Monitor

CORBA object to add the auto mode tour list entries.

10.9.4 TrafficEventFactoryImpl:initialize (Sequence Diagram)

This diagram shows the processing that is performed when the TrafficEventFactoryImpl is

created. The factory creates timer tasks to periodically renew the last executed response

tour entries and to periodically update the targeted monitors for each traffic event. The

frequency to schedule these tasks at is read from the TrafficEventModuleProperties, then

the tasks are scheduled for execution by a Timer. Next the factory reads the properties

related to the AORManager are read from the module properties class and are used to

initialize the singleton AORManager instance.

If the traffic event

is closed it will be

skipped.

isClosed()

[no last executed list entries]

[* for each

TrafficEventGroup

in factory]

addAutoModeTourListEntries()

getLastExecutedTourListEntries()

[* for each

executed monitor]

Monitor

getMonitor()

Monitor

getLastExecutedMonitors()

VideoTourRPIHandler ProxyMonitor

renewExecution()

RenewResponseTourActiv ationsTask

TrafficEventGroup

VideoTourRPIHandler

getVideoTourRPIHandler()

CHART R10 Detailed Design – Rev 3 10-133 08/14/2012

10.9.5 TrafficEventGroup:requestCameraSuggestions (Sequence Diagram)

This diagram shows the processing performed when a calling component requests camera

suggestions. If the client does not have sufficient privileges an exception is thrown. if the

traffic event is closed, an invalid state exception is thrown. Otherwise a

GenerateTrafficEventSuggesitonsCmd is created and the DecisionSupportManager is

called. It queues the command for asynchronous execution and returns immediately. The

caller is updated informing them that their request has been queued. When a thread is free

to execute the command the CommandQueue calls execute on the command object and the

calling suggestion recipient is notified that the system is now generating suggestions. Next

the command object calls the TrafficEventGroup to request the suggestions. THe traffic

event group determines the current percentage of lanes that are closed and then determines

the distance radius to use (and the category for that distance) based on the lane closures.

The requesting suggesiton recipient is then notified that we are searching for cameras

within the determined distance and the DecisionSupportManager is called to get back the

pertinent cameras based on straight line miles. Next the Decision support manager is called

again to get more specific location information for the list of cameras. This call returns

proximity information for each camera including same route or other route, same direction

indicator (if same route) and upstream/downstream indicator (if same route). The system

then loops over each camera and removes it if suggestions are disabled for it, or if

AORManager

url

getAORCacheSynchFrequencyMins()

Timer

getVideoTourUpdateFreqMins()

[update tours frequency > 0]

schedulr(toursUpdateTask)

getAORManagerURL()

getAORCacheRefreshFrequencyMIns()

get()

initialize(url, synchFreqMins, refreshFreqMins)

TrafficEventModuleProperties

getVideoTourRenewActivationsFreqMins()

[renew activations frequency > 0]

schedule(toursRenewTask)

TrafficEventModule

TrafficEventFactoryImpl

RenewResponseToursActivationTask

UpdateResponseToursTask

create

create

create

AORManager

CHART R10 Detailed Design – Rev 3 10-134 08/14/2012

suggestions are disabled for the proximity that the camera was determined to be in. If the

camera is not removed, it is scored based on its proximity and a

ViewCameraSuggestionData object is created and added to the list of suggesitons to return.

After all cameras have been processed the list of suggestions is returned to the caller.

updateStatus("generating suggestions")

findPertinentCameras(this, radius)

[event closed]

invalid state

getLocation()

queueCommand(cmd)

[* for each camera]

requestSuggestions(recipient)

LocationAndExitInfo

LocatableDSInfo[]

boolean

ViewCameraSuggestionData
create

LocationAndExitInfo[]

getLocationAndExitInfo(cameraList)

SuggestionRecipient

Synchronous Portion

TrafficEventImpl

GenerateTrafficEventSuggestionsCmd

TrafficEventGroup DecisionSupportManager CommandQueue

suggestionsReady(suggestionList)

completed(true)

updateStatus("request queued")

updateStatus("getting nearby camera list")

requestSuggestions

getPercentageTravelLanesClosed(teDir)

areSuggestionsDisabled(cameraID)

execute()

getCameraDistanceTypeForMiles(distance)

getCameraDistanceMilesForPctLanesClosed(pctClosed)

getDirection()

ArrayList

add(cameraSuggestions)

getLocatableList()

areSuggestionsEnabledForProximity(camPromxity)

[suggetions not disabled for camera or proximity]

scoreCameraPosition(camLocatable)

camera score

updateRecipientStatusText(recipient, text)

executeRequest(cmd)

[insufficient rights]

access denied

CHART R10 Detailed Design – Rev 3 10-135 08/14/2012

10.9.6 UpdateResponseToursTask:run (Sequence Diagram)

THis diagram shows the processing performed in order to update the target monitors of

each response plan video tour based on the location of each traffic event, current AOR

boundaries, and the AORs associated to each monitor.

If the traffic event

is c losed it will be

skipped.

isClosed()

[* for each monitor]

pushResponsePlanItemModified()

VideoTourRPIHandler

[no location]

ResponsePlanItemImpl

setResponseVideoTourMonitors(montorsInAOR)

[* for each

TrafficEventGroup

in factory]

VideoTourRPIDataImpl TrafficEventDB

setMonitorList(monitorsInAOR)

getAORs()

AOR[]

containsCoordinate(tePointLocation)

ObjectCache

getObjectsOfType(ProxyVideoSink.class)

ProxyVideoSink[]

isAssignedAnyAOR(teAORList:AOR[])

boolean

AOR

UpdateResponseToursTask

TrafficEventGroup

getVideoTourRPIHandler()

VideoTourRPIHandler ProxyVideoSink

updateTargetMonitors()

AORManager

[* for each AOR]

GeoLocation

getGeoLocation()

CHART R10 Detailed Design – Rev 3 10-136 08/14/2012

10.9.7 VideoTourRPIDataImpl:execute (Sequence Diagram)

This diagram shows the processing performed when a user executes a video tour response

plan. The ResponsePlanItemImpl class checks to see if the user has the rights to execute a

video tour response plan. A Response Plan Item Execution Command is created and added

to the Traffic Event Group. When the command is executed, The VideoTourRPIDataImpl

class calls the execute method of the VideoTourRPIHandler. The handler iterates through

each of the currently target monitors and updates their auto mode tour list entries. When the

command completes, the last executed RPI data is persisted for each of the updated

monitors. The handler then calls the updateStatus method. If the status changed, a

ResponsePlanItemModifiedEvent is pushed.

updateStatus()

CommandStatus

completed(status, allSuccessFlag)

[if status changed]

pushResponsePlanItemModifiedEvent()

Monitor

RPIExecutionCommand

ProxyMonitor

[not executable]

Chart2Exception

addRPICommand(cmd)

execute()

Caller

execute()

addAutoModeTourListEntries(entries)

ResponsePlanItemImpl

[user not authorized]

AuthorizationException

VideoTourRPIDataImpl

setActiveRPIData(teID, mons, entries)

TrafficEventGroup

addLogEntry()

recordCameraUsage(teID, cams, timestamp)

VideoTourRPIHandler Monitor

create

execute()

getMonitor()

TrafficEventDB

[*for each monitor

currently targeted0

CHART R10 Detailed Design – Rev 3 10-137 08/14/2012

10.9.8 VideoTourRPIDataImpl:setItemData (Sequence Diagram)

This diagram shows the processing performed when a user changes the response plan video

tour entries. If the user is not authorized an exception is thrown. Otherwise a call is made to

initialize the RPI data that was passed. After the data is initialized, the

VideoTourRPIHandler is obtained from the TrafficEventGroup and the data is set into it.

The handler then sets itself as the delegate for the passed in data object. The database is

then called to store the new tour entries and list of monitors that the user has requested.

Although the system will initially use the list of monitors suggested for the response plan, it

schedules an update task to execute immediately before returning. That update task will

ensure that only the correct monitors will get used based on the event location.

TrafficEventFactoryImpl

scheduleUpdateResponseToursTask()

scheudleUpdateResponseToursTask()

[user not authorized]

AuthorizationException

Caller

ResponsePlanItemImpl TrafficEventGroup VideoTourRPIDataImplVideoTourRPIHandler

We will start out with the lis t of monitors the

GUI asked for, but schedule a timer task to update

based on current AOR data asynchronously.

This method will not alter the persistence of what entries were

last executed and what monitors were last executed on. It

will only change the list of target monitors and the list of tour entrie

for future executions.

initializeRPIData(false)

handler

setDelegate(handler)

updateResponsePlanItem(eventID, itemImpl)

[data instanceof DMSRPIDataImpl or HARRPIDataImpl]

updateMsgBasedRPI(teID, data)

ResponsePlanItemiData

TrafficEventDB

setItemData(rpiData)

[data instanceof VideoTourRPIDataImpl]

getVideoTourRPIHandler()

setData(rpiData)

setResponseTourData(rpiData)

[data instanceof VideoTourRPIDataImpl]

updateVideoTourRPI(teID, data)

pushResponsePlanItemModifiedEvent()

getData()

CHART R10 Detailed Design – Rev 3 10-138 08/14/2012

10.9.9 VideoTourRPIHandler:revokeExecution (Sequence Diagram)

This diagram shows the processing performed when a user revokes execution of a video

tour response plan. The ResponsePlanItemImpl class checks to see if the user has the rights

to revoke execution of a video tour response plan. A Response Plan Item Revoke Execution

Command is created and added to the Traffic Event Group. When the command is

executed, The VideoTourRPIDataImpl class calls the revokeExecution method of the

VideoTourRPIHandler. The handler gets the list of last executed monitors. The handler

iterates through the list of monitors and removes auto mode tour list entries for the target

traffic event. When the command completes, the last executed RPI data is persisted for each

of the updated monitors. The handler then calls the updateStatus method. If the status

changed, a ResponsePlanItemModifiedEvent is pushed.

getLastExecutedMonitors()

Caller

ResponsePlanItemImplVideoTourRPIDataImpl TrafficEventGroup

RPIRevokeExecutionCommand

VideoTourRPIHandler ProxyMonitor Monitor TrafficEventDB CommandStatus

[user not authorized]

AuthorizationException

revokeExecution()

[not executable]

Chart2Exception

create

addRPICommand(cmd)

revokeExecution()

revokeExecution()

getMonitor()

Monitor

removeAutoModeTourListEntriesForOwner(eventID)

[*for each monitorlast

executed on]

setActiveRPIData(mons, entries)

completed(status, allSuccessFlag)

[if status changed]

pushResponsePlanItemModifiedEvent()

updateStatus()

CHART R10 Detailed Design – Rev 3 10-139 08/14/2012

10.10 UtilityPkg.ObjectCache

10.10.1 ObjectCacheClassDiagram (Class Diagram)

This diagram identifies classes used to support an object cache within CHART. The object

cache is a collection of discovered objects which exist remotely (or locally) within the

CHART system. The cache is used to provide localized access to remote object. It is kept

up to date by periodic discovery and by listening to event channels. For the back end

CHART services, the objects which can be stored in the cache include alerts, traffic events,

and operations centers.

VideoSinkPushConsumer

Updated in R10. Added

M oni tor d is c ov ery .

1

1

11

New for R10.

Adding c orba ev ent

handl ing for m oni tors .

1

java.util.TimerTask

1

s c hedules

dis c ov ery tas k on

1

1

1

*

1

1

PushHandler

PushHandler

DiscoveryM anager

DataM odel

1

1

11

CommandQueue

QueueableCommand

«interfac e»

11

1

1

CosEvent.PushConsumer

«interfac e»

*

1

1

DiscoveryDriver

NameFilter

NameFilterable

«interfac e»

1

TraderGroup

Al l ty pes of

Dis c ov er*Com m and

below hav e thes e

s am e as s oc iations

(not s hown for

c lari ty) to thes e

s am e ins tanc es of

the abov e c las s es .

1

11

1

1 1

1

has Sy s tem Contex tProv ider

1 1

1

CommandQueue

Al l ty pes of

*Pus hCons um er

below hav e thes e

s am e as s oc iations

(not s hown for

c lari ty) to thes e

s am e ins tanc es of

the abov e c las s es .

1

1

1

1

1

ObjectCache

1

1

QueueableCommand

«interfac e»

1

PushHandler

1

*

DiscoverAlertClassesCommand

ProxyBasicTrafficEvent

1

BasicTrafficEventPushConsumer

1

1

AlertPushConsumer

1

1

SystemContextProvider

«interfac e»

1

1

queued

on

1

ex ec utes

Duplicatable

«interfac e»

DiscoveryTimerTask

1

ProxyAlert

1

1

1

1

EventConsumer

«interfac e»

PushEventConsumer

0..1

1

ResourceM anagementOpCtrPushConsumer

1

runs

dis c ov ery

on

*

1

1

*

1

1

1

1

1

has

Sy s tem Contex tProv ider

ex ec utes

ObjectCacheLog

1

1
queued on

ProxySimpleOpCenter

1

DiscoverResourceM gmtOpCtrClassesCommand

1

DefaultServiceApplication

1

1

DiscoverVideoClassesCmd

VideoSourcePushConsumer

PushHandler

1 1

11

EventConsumerGroup

1

java.util.Timer

DiscoverBasicTrafficEventClassesCommand

Dis c ov ery Driv er(TraderGroup, num Threads ,

 d is c ov ery Interv alSec s) : c tor

add(QueueableCom m and c m d) : v oid

perform Dis c ov ery () : v oid

m _c om m andQueue : Com m andQueue

m _tim er : jav a.uti l .Tim er

m _c om m ands : QueueableCom m and[]

m _traderGroup : TraderGroup

getSy s tem Profi leProperties () : Sy s tem Profi leProperties

getRootDeploy m entPath() : s tring

getDy nam ic Im agePath() : s tring

getDataM odel() : DataM odel

getProc es s ingQueue() : Com m andQueue

is Dupl ic ateOf(ty pe : Clas s , other : Dupl ic atable) : boolean

-Objec tCac he()

#in i t()

+get()

+log()

-m _ini ted:boolean

-m _logFlags :String

-m _s tatic Ins tanc e:Objec tCac heLog

ex ec ute()

interrupted()

+getDataM odel() : DataM odel

+getObjec tCac he() : Objec tCac he

+getDis c ov ery Driv er() : Dis c ov ery Driv er

m _traderGroup : TraderGroup

m _dis c ov ery Driv er : Dis c ov ery Driv er

m _dataM odel : DataM odel

m _ec g : Ev entCons um erGroup

m _objec tCac he : Objec tCac heClas s

m _proc es s ingQueue : Com m andQueue

nam eContains (fi l terStr : s tring) : boolean

+Objec tCac he(orb : ORB, poa : POA, dataM odel : DataM odel ,

 ec g : Ev entCons um erGroup, c ontex tProv ider : Sy s tem Contex tProv ider,

 d is c ov ery Driv er : Dis c ov ery Driv erClas s , c m ds : QueueableCom m and[]) : c tor

+getDataM odel() : DataM odel

+getObjec t(k ey : Objec t) : Objec t

+getObjec ts OfTy pe(c las s Chec k : Clas s) : Objec t[]

+getAl lObjec ts () : Objec t[]

+getNam eFi l teredObjec ts OfTy pe(ty pe : Clas s , fi l ter : Nam eFi l terClas s) : Objec t[]

+is Dupl ic ated(ty pe : Clas s , other : Dupl ic atable) : boolean

+getDupl ic ates (ty pe : Clas s , other : Dupl ic atable) : Dupl ic atable[]

+s earc h(c ri teria : s tring, c as eSens i tiv e : boolean,

 from Clas s es : Clas s []) : Objec t[]

m _orb : ORB

m _poa : POA

m _dataM odel : DataM odel

m _ec g : Ev entCons um erGroup

m _traderGroup : TraderGroup

m _dis c ov ery Tok en : Ac c es s Tok en

m _s y s Profi leProps : Sy s tem Profi leProperties

m _s y s Contex tProv ider : Sy s tem Contex tProv ider

+Nam eFi l ter(fi l terOutM atc hingObjec ts : boolean, fi l terStr : s tring) : c tor

+fi l ter(inc om ing : Nam eFi l terable[]) : Nam eFi l terable[]

+objec tPas s es Fi l ter(obj : Nam eFi l terableIF) : boolean

+s etFi l terString(fi l terStr : s tring) : v oid

+getFi l terString() : s tring

+s etFi l ters OutM atc hingObjec ts (fi l terOutM atc hes : boolean) : v oid

+getFi l ters OutM atc hingObjec ts () : boolean

m _fi terOutM atc hingObjec ts : boolean

m _fi l terString : s tring

add(c ons um er)

s etInterv al ()

rem ov e(c ons um er)

-has Cons um er(c ons um er)

-v eri fy Connec tions ()

m _c ons um ers : Vec tor<Ev entCons um er>

Dis c ov erAlertClas s es Com m and(orb : ORB,

 poa : POA, traderGroup : TraderGroup,

 dataM odel : DataM odel , ec g : Ev entCons um erGroup,

 d is c ov ery Tok en : Ac c es s Tok en,

 c ontex tProv ider : Sy s tem Contex tProv ider) : c tor

-dis c ov erAlertChannels () : v oid

-dis c ov erAlerttClas s es () : v oid

m _poa : POA

m _traderGroup : TraderGroup

m _dataM odel : DataM odel

m _dis c ov ery Tok en : Ac c es s Tok en

m _apc : AlertPus hCons um er

m _s y s Contex tProv ider : Sy s tem Contex tProv ider

+DataM odel() : c tor

+getObjec t(k ey : Objec t) : Objec t

+getObjec ts OfTy pe(c las s Chec k : Clas s) : Objec t[]

+getAl lObjec ts () : Objec t[]

+attac hObs erv er(m odelObs erv er, priori ty) : boolean

+detac hObs erv er(m odelObs erv er) : v oid

+objec tAdded(k ey : Objec t, v alue : Objec t) :Objec t

+objec tUpdated(k ey : Objec t) :v oid

+objec tUpdated(k ey : Objec t, h int : UpdateHint) :v oid

+objec tUpdated(k ey : Objec t, h ints : UpdateHint[]) :v oid

+objec tRem ov ed(k ey : Objec t) : Objec t

+s etUpdateInterv al (priori ty Lev el : int, updateInterv al : int) : boolean

+getUpdateInterv al (priori ty Lev el : int) : int

m _table : Has htable<Objec t>

Dis c ov erRes ourc eM gm tClas s es Com m and(orb : ORB,

 poa : POA, traderGroup : TraderGroup,

 dataM odel : DataM odel , ec g : Ev entCons um erGroup,

 d is c ov ery Tok en : Ac c es s Tok en,

 c ontex tProv ider : Sy s tem Contex tProv ider) : c tor

-dis c ov erRes ourc eM gm tChannels () : v oid

-dis c ov erRes ourc eM gm tClas s es () : v oid

m _poa : POA

m _traderGroup : TraderGroup

m _dataM odel : DataM odel

m _dis c ov ery Tok en : Ac c es s Tok en

m _rm pc : Res ourc eM anagem entOpCtrPus hCons um er

m _s y s Contex tProv ider : Sy s tem Contex tProv ider

v eri fy Connec tion()

c onnec t()

is Equal(c ons um er)

Dis c ov erTraffic Ev entClas s es Com m and(orb : ORB,

 poa : POA, traderGroup : TraderGroup,

 dataM odel : DataM odel , ec g : Ev entCons um erGroup,

 d is c ov ery Tok en : Ac c es s Tok en,

 c ontex tProv ider : Sy s tem Contex tProv ider) : c tor

-dis c ov erTraffic Ev entChannels () : v oid

-dis c ov erTraffic Ev entClas s es () : v oid

m _poa : POA

m _traderGroup : TraderGroup

m _dataM odel : DataM odel

m _dis c ov ery Tok en : Ac c es s Tok en

m _tepc : Bas ic Traffic Ev entPus hCons um er

m _s y s Contex tProv ider : Sy s tem Contex tProv ider

ex ec ute():v oid

interrupted():v oid

s etPus hCons um er(pc :Pus hCons um er):v oid

getPus hCons um er():Pus hCons um er

dis c onnec t_pus h_c ons um er():v oid

pus h(data:Any):v oid

proc es s Pus h(data:Any):v oid

proc es s AlertAdded(data:AlertAddedInfo):v oid

proc es s AlertRem ov ed(id:Identi fier):v oid

proc es s AlertChanged(data:AlertChangedInfo):v oid

m _pus hCons um er Cos Ev ent.Pus hCons um er

m _dataM odel : DataM odel

m _s y s Contex tProv ider : Sy s tem Contex tProv ider

m _proc es s ingQueue : Com m andQueue

Dis c ov erVideoClas s es Cm d(orb:ORB,

 traderGroup:TraderGroup,

 objCac he:Objec tCac he ,

 ec g:Ev entCons um erGroup ,

 d is c ov ery Tok en:by te[] ,

 proc es s ingQueue:Com m andQueue ,

 poa:POA)

+dis c ov erEv entChannels ():v oid

+dis c ov erVideoSourc es (): v oid

dis c ov erVideoSink s (): v oid

m _poa : POA

m _traderGroup : TraderGroup

m _objec tCac he: Objec tCac he

m _dis c ov ery Tok en : Ac c es s Tok en

m _ec g: Ev entCons um erGroup

m _v ideoSourc ePus hCons um er: VideoSourc ePus hCons um er

ex ec ute():v oid

interrupted():v oid

Pus hEv entCons um er(c hannel , pus hCons um er)

m _ev ent_c hannel : Ev entChannel

m _pus hCons um er : Cos Ev ent.Pus hCons um er

+s etPus hCons um er(pc :Pus hCons um er):v oid

+getPus hCons um er():Pus hCons um er

+dis c onnec t_pus h_c ons um er():v oid

+proc es s Pus h(any : Any) : v oid

-handleOperations CenterAdded(ev t:Res ourc eEv ent) : v oid

-handleOperations CenterRem ov ed(ev t:Res ourc eEv ent) : v oid

-handleOpCenterConfigChanged(ev t:Res ourc eEv ent) : v oid

-handleOpCenterStatus Changed(ev t:Res ourc eEv ent) : v oid

-handleUs erLoggedIn(ev t:Res ourc eEv ent) : v oid

-handleUs erLoggedOut(ev t:Res ourc eEv ent) : v oid

m _pus hCons um er Cos Ev ent.Pus hCons um er

m _dataM odel : DataM odel

m _s y s Contex tProv ider : Sy s tem Contex tProv ider

m _proc es s ingQueue : Com m andQueue

ex ec ute():v oid

interrupted():v oid

pus h()

+Traffic Ev entPus hCons um er(dataM odel : DataM odel ,

 s y s Contex tProv ider : Sy s tem Contex tProv ider) : c tor

+s etPus hCons um er(pc :Pus hCons um er):v oid

+getPus hCons um er():Pus hCons um er

+dis c onnec t_pus h_c ons um er():v oid

+proc es s Pus h(any : Any) : v oid

-handleTraffic Ev entAdded(newEv entData : Traffic Ev entAddedInfo) : v oid

-handleTraffic Ev entClos ed(ev entData : Bas ic Ev entData) : v oid

-handleTraffic Ev entStateChanged(ev entChangedInfo : Traffic Ev entStateChangedInfo) : v oid

-handleTraffic Ev entAs s oc iated(as s oc iationInfo : Traffic Ev entAs s oc iationInfo) : v oid

-handleTraffic Ev entAs s oc iationRem ov ed(as s oc iationInfo : Traffic Ev entAs s oc iationRem ov edInfo) : v oid

getPus hCons um er()

m _pus hCons um er Cos Ev ent.Pus hCons um er

m _dataM odel : DataM odel

m _s y s Contex tProv ider : Sy s tem Contex tProv ider

m _proc es s ingQueue : Com m andQueue

ex ec ute():v oid

interrupted():v oid

VideoSink Pus hCons um er(DataM odel dataM odel ,

Com m andQueue proc es s ingQueue)

+s etPus hCons um er(Pus hCons um er pc): v oid

+getPus hCons um er(): Pus hCons um er

+dis c onnec t_pus h_c ons um er(): v oid

+ proc es s Pus h(Any any): v oid

+handleM oni torAdded(by te[], M oni torConfig,

 M oni torStatus , M oni tor): v oid

+handleM oni torRem ov ed(by te[]): v oid

+handleM oni torConfigChanged(by te[,M oni torConfig): v oid

+handleM oni toraStatus Changed(by e[], VM oni torStatus): v oid

m _pus hCons um er Cos Ev ent.Pus hCons um er

m _dataM odel : DataM odel

m _proc es s ingQueue : Com m andQueue

VideoSourc ePus hCons um er(DataM odel dataM odel ,

Com m andQueue proc es s ingQueue)

+s etPus hCons um er(Pus hCons um er pc): v oid

+getPus hCons um er(): Pus hCons um er

+dis c onnec t_pus h_c ons um er(): v oid

+ proc es s Pus h(Any any): v oid

+handleVideoCam eraAdded(by te[], VideoCam eraConfig,

 VideoCam eraStatus , VideoCam era): v oid

+handleVideoSourc eRem ov ed(by te[]): v oid

+handleVideoCam eraConfigChanged(by te[, VideoCam eraConfig): v oid

+handleVideoCam eraStatus Changed(by e[], VideoCam eraStatus): v oid

m _pus hCons um er Cos Ev ent.Pus hCons um er

m _dataM odel : DataM odel

m _s y s Contex tProv ider : Sy s tem Contex tProv ider

m _proc es s ingQueue : Com m andQueue

CHART R10 Detailed Design – Rev 3 10-140 08/14/2012

10.10.1.1 AlertPushConsumer (Class)

This class is a CORBA object that handles events pushed by the server on an Alert event

channel. Updates received in events received via the push() method of the PushConsumer

interface are updated in the DataModel.

10.10.1.2 BasicTrafficEventPushConsumer (Class)

This class handles events pushed by operations center services on a operations center

CORBA event channel regarding updates to operations centers. Updates received in events

received via the push() method of the PushConsumer interface are updated in proxy

operations centers in the DataModel. The proxy operations centers cached are not complete

copies of the operations centers, because the full range of data is not needed. The

ProxyBasicTrafficEvent data consists of BasicEventData and associated events only (this is

why the names of these objects contain the word "Basic", e.g.,

BasicTrafficEventPushConsumer. This class is adapted from

chartlite.data.trafficevents.TrafficEventPushConsumer.

10.10.1.3 CommandQueue (Class)

The CommandQueue class provides a queue for QueueableCommand objects. The

CommandQueue has a thread that it uses to process each QueueableCommand in a first in

first out order. As each command object is pulled off the queue by the CommandQueue's

thread, the command object's execute method is called, at which time the command

performs its intended task.

10.10.1.4 CosEvent.PushConsumer (Class)

The PushConsumer interface (actually org.omg.CosEventComm.PushConsumer) is the

interface to an event channel that a supplier of information uses to push event updates to

consumers who have previously attached to the channel.

10.10.1.5 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup

mechanism for locating any object, and methods which allow for the retrieval of all objects

of a particular type. Additionally, this class provides the ability to attach observer objects

which are notified when objects are added to or removed from the model. Objects may also

notify the DataModel that they have been modified. The model will periodically notify all

attached observers of the changes to objects in the model.

10.10.1.6 DefaultServiceApplication (Class)

This class is the default implementation of the ServiceApplication interface. This class is

passed a properties file during construction. This properties file contains configuration data

used by this class to set the ORB concurrency model, determine which ORB services need

to available, provide database connectivity, etc. The properties file also contains the class

names of service modules that should be served by the service application. During startup,

the DefaultServiceApplication instantiates the service application module classes listed in

the properties file and initializes each.

CHART R10 Detailed Design – Rev 3 10-141 08/14/2012

The DefaultServiceApplication maintains a file of offers that have been exported to the

Trading Service. Each module must provide an implementation of the getOfferIDs method

and be able to return the offer ids for each object they have exported to the trader during

their initialization. The DefaultServiceApplication stores all offer IDs in a file during its

startup. Each module is expected to remove its offers from the trader during a shutdown. If

the DefaultServiceApplication is not shutdown properly, it uses its offer ID file to clean-up

old offers prior to initializing modules during its next start. This keeps multiple offers for

the same object from being placed in the trader.

The DefaultServiceApplication also starts a DiscoveryManager. (If no modules add

discovery QueueableCommand objects to the DiscoveryManager's DiscoveryDriver,

discovery runs, but does nothing, so incurs virtually no cost.)

10.10.1.7 DiscoverAlertClassesCommand (Class)

his class is a QueueableCommand that is used by the DiscoveryDriver to maintain local

copies of alert objects in the object cache. This class contains a PushConsumer that is used

to keep Alert data in the object cache up-to-date by handling CORBA events related to

Alerts.

10.10.1.8 DiscoverBasicTrafficEventClassesCommand (Class)

This class is a QueueableCommand that is used by the DiscoveryDriver to discover

operations centers in the system and maintain proxy operations center objects in the object

cache. The DiscoveryDriver kicks off all Discovery queueable commands such as this one

on a regular basis to discover new objects and updates for which CORBA events may have

been missed. This class contains a related ResourceMgmtOpCtrPushConsumer that is used

to keep operations center data in the object cache up to date by handling CORBA events

related to operations centers. The proxy operations centers cached are not complete copies

of the operations centers, because the full range of data is not needed. The

ProxySimpleOpCenter data consists of BasicEventData and associated events only (this is

why the names of these objects contain the word "Basic", e.g.,

DiscoverBasicTrafficEventClassesCommand. This class is adapted from

chartlite.data.trafficevents.DiscoverBasicTrafficEventClassesCommand.

10.10.1.9 DiscoverResourceMgmtOpCtrClassesCommand (Class)

This class performs discovery of resource management related event channels and class

instances when it is run. It is run periodically by the CommandQueue owned by the

DiscoveryDriver.

10.10.1.10 DiscoverVideoClassesCmd (Class)

This class is a QueueableCommand that is used by the DiscoveryDriver to discover video

related objects in the system and maintain proxy objects in the object cache. The

DiscoveryDriver kicks off all Discovery queueable commands such as this one on a regular

basis to discover new objects and updates for which CORBA events may have been missed.

This class contains related PushConsumers that is used to keep video related proxy objects

in the object cache up to date by handling video related CORBA events.

CHART R10 Detailed Design – Rev 3 10-142 08/14/2012

10.10.1.11 DiscoveryDriver (Class)

This class drives the periodic discovery of objects from other services within the CHART

system. Other objects in the system that need access to other service's objects add their

own QueuableCommand to the DiscoveryDriver. Each time discovery is performed, the

discovery driver uses a command queue to execute all queueable commands that have been

added in a separate thread of execution. The commands are added to the command queue

immediately upon execution, and then executed in serial fashion via the command queue

until all commands have executed. The frequency of discovery is controlled by a property.

Discovery occurs more frequently immediately after service startup, to more quickly

discover objects from other services which may also be starting up at more or less the same

time. The DiscoveryDriver can be configured to have multiple threads to allow concurrent

discovery of different objects.

10.10.1.12 DiscoveryManager (Class)

This SystemContextProvider interface defines some of the functionality required by a class

which provides discovery services for CHART services. It is used by both the CHART

GUI and the CHART backend services. A class which implements this interface must

provide "get" accessor methods for the system profile properties, the data model, and the

main processing queue for a service, for instance. It also provides access to the root

deployment path and dynamic image path, which is used only by the CHART GUI. For the

CHART GUI, this interface is known to be implemented by the MainServlet; for the back

end CHART services, this interface is known to be implemented by the Discovery

Manager.

10.10.1.13 Duplicatable (Class)

This java interface is implemented by classes which have sense of being "duplicated"

within the CHART system. This allows the ObjectCache to search for duplicates of any

Duplicatable object. This is different from "equals()" or "compareTo()". To cite two

examples: Alerts within CHART are duplicates if they refer to the same objects within

CHART (but do not have the same Alert ID, which is more closely associated with

"equals()"). Traffic Events within CHART are duplicates if they have the same location

(but do not have the same Traffic Event ID).

10.10.1.14 EventConsumer (Class)

This interface provides the methods which any EventConsumer object that would like to be

managed in an EventConsumerGroup must implement.

10.10.1.15 EventConsumerGroup (Class)

This class represents a collection of event consumers which will be monitored to verify that

they do not lose their connection to the CORBA event service. The class will periodically

ask each consumer to verify its connection to the event channel on which it is dependant to

receive events.

CHART R10 Detailed Design – Rev 3 10-143 08/14/2012

10.10.1.16 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or

recurring execution.

10.10.1.17 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one

or more times.

10.10.1.18 NameFilter (Class)

This class defines a filter by which a NameFilterable object can be selected from the

ObjectCache. It provides a string to search for, and a flag to indicate whether the desired

result is those object which match the filter, or those which do not.

10.10.1.19 NameFilterable (Class)

This java interface is implemented by classes which can be filter by name within the

ObjectCache. A NameFilter object is passed into the ObjectCache to select NameFilterable

objects in the cache.

10.10.1.20 ObjectCache (Class)

The ObjectCache is a wrapper for the DataModel. It provides access to DataModel

methods to find objects in the data model, delegating those methods to the DataModel

itself. It also provides additional methods of finding name filtered objects and discovering

"duplicate" objects (as defined by an isDuplicateOf() method of the Duplicatable interface).

10.10.1.21 ObjectCacheLog (Class)

The ObjectCacheLog class is a singleton class used for doing filterable debug logging in the

ObjectCache package. The class is inited with debug log flags which are configured in a

properties file to turn debug log messages on/off. The class is imported and used anywhere

in the ObjectCache package but using the static get() method.

10.10.1.22 ProxyAlert (Class)

This class is used as a proxy for alerts existing in all alert modules in the system (including

the local service). The complete set of data for each alert is stored in the ProxyAlert, along

with its ID and a reference to the Alert object it represents. These proxy alerts allow every

alert module service in the system to have some knowledge of every alert in the entire

system, for the quickly determining whether a proposed new alert already exists elsewhere

in the alert system (and therefore does not need to be redundantly entered into the system

again). ProxyAlert implements the Duplicatable interface, so that the ObjectCache can

generically be queried to check for duplicates of any other ProxyAlert. This ProxyAlert

class is the super class for derived classes for each specialized type of alert in the system, so

that type specific data can be stored and accessed for each alert type, and can be queried for

comparison for the Duplicatable isDuplicateOf() method.

CHART R10 Detailed Design – Rev 3 10-144 08/14/2012

10.10.1.23 ProxyBasicTrafficEvent (Class)

This class is used as a proxy for traffic events existing in all traffic event services (including

the local service). The proxy traffic events cached are not complete copies of the traffic

events, because the full range of data is not needed. The ProxyBasicTrafficEvent data

consists of BasicEventData and associated events only (this is why the names of these

objects contain the word "Basic", e.g., DiscoverBasicTrafficEventClassesCommand. These

proxy traffic events allow every traffic event service in the system to have some knowledge

of every traffic event in the entire system, for the purpose of detecting duplicate traffic

events.

10.10.1.24 ProxySimpleOpCenter (Class)

This class is used as a proxy for operations centers existing in all user management services

(including the local service). The proxy operations centers cached are not complete copies

of the operations centers, because the full range of data is not needed. The

ProxySimpleOpCenter data consists of the OpCenterConfiguration and the OpCenterStatus,

but not the center's participant data. (This is why the names of this object contains the word

"Simple".) These proxy operations centers allow every alert module service in the system

to have some knowledge of every operations center in the entire system, for the quickly

determining rights of the users at those operations centers.

10.10.1.25 PushEventConsumer (Class)

This class is a utility class which will be responsible for connecting a consumer

implementation to an event channel, and maintaining that connection. When the

verifyConnection method is called, this object will determine if the channel has been lost

and will attempt to re-connect to the channel if it has.

10.10.1.26 PushHandler (Class)

This is an inner class, internal to the PushConsumer to which it is associated. It is a

QueueableCommand which is queued by the PushConsumer push() method, to avoid

excessive processing on the CORBA thread. When executed by the CommandQueue, it

calls the processPush() method of the associated PushConsumer class.

10.10.1.27 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a

CommandQueue for asynchronous execution. Derived classes implement the execute

method to specify the actions taken by the command when it is executed. This interface

must be implemented by any device command in order that it may be queued on a

CommandQueue. The CommandQueue driver calls the execute method to execute a

command in the queue and a call to the interrupted method is made when a

CommandQueue is shut down.

10.10.1.28 ResourceManagementOpCtrPushConsumer (Class)

This class is reponsible for catching and handling CORBA events from the CHART

CHART R10 Detailed Design – Rev 3 10-145 08/14/2012

resource management event channels. When an event is caught, it will locate the

appropriate data in the ObjectCache and update it. This class is adapted from

chartlite.data.ResourceManagementPushConsumer.

10.10.1.29 SystemContextProvider (Class)

This SystemContextProvider interface defines some of the functionality required by a class

which provides discovery services for CHART services. It is used by both the CHART

GUI and the CHART backend services. A class which implements this interface must

provide "get" accessor methods for the system profile properties, the data model, and the

main processing queue for a service, for instance. It also provides access to the root

deployment path and dynamic image path, which is used only by the CHART GUI. For the

CHART GUI, this interface is known to be implemented by the MainServlet; for the back

end CHART services, this interface is known to be implemented by the Discovery

Manager.

10.10.1.30 TraderGroup (Class)

This class provides a facade for trader lookups that allows application level code to be

unaware of the number of CORBA trading services that the application is using or the

details of the linkage between those services.

10.10.1.31 VideoSinkPushConsumer (Class)

This class handles events pushed by video services on a CORBA event channel regarding

updates to video sink objects. Updates received in events received via the push() method of

the PushConsumer interface are updated in proxy objects in the DataModel.

10.10.1.32 VideoSourcePushConsumer (Class)

This class handles events pushed by video services on a CORBA event channel regarding

updates to video source objects. Updates received in events received via the push() method

of the PushConsumer interface are updated in proxy objects in the DataModel.

10.10.2 ObjectCacheDMSClasses (Class Diagram)

This diagram describes the relationship between classes needed to keep local copies of

DMSDisplayConfigs, and DMSs up to date.

CHART R10 Detailed Design – Rev 3 10-146 08/14/2012

10.10.2.1 DiscoverDMSClassesCmd (Class)

The DiscoverChart2DMSClassesCmd class is responsible for discovering Chart2DMS,

Chart2DMSFactory, and DMSDisplayConfig corba objects, wrapping those objects in

proxy classes and adding those objects to the DiscoveryManager's Object Cache. This class

also listens to appropriate corba events and updates the Object cache accordingly.

10.10.2.2 DMSDisplayConfigFactoryImpl (Class)

This class implements the DMSDisplayConfigFactory interface by handling CORBA

requests to get, add, set, and remove DMSDisplayConfigurations.

Unlike most factories which only manages the objects it creates, this one manages all

DMSDisplayConfig objects in the system. This was done because

DMSDisplayConfigurations rarely change and the GUI implementations was simplified by

only getting DMSDisplayConfig objects from a single place.

Because DMSDisplayConfigFactory needs to know about all DMSDisplayConfig objects in

the system, it leverages the collection of ProxyDMSDisplayConfig objects in the Data

Model that are already needed by the discovery process for its collection. That is, both the

discovery process (DMSDisplayConfigPushConsumer) and the normal CORBA calls to

this factory keep the ProxyDMSDisplayConfig objects in the Data Model up to date.

10.10.2.3 DMSDisplayConfigPushConsumer (Class)

This class consumes CORBA events containing updates to DMS Display Configurations

and updates the Data Model.

1

discovers

DiscoverDMSClassesCmd

QueueableCommand

«interface»

1

11

updates

DMSDisplayConfigPushConsumer

ProxyDMSProxyDMSDisplayConfig

DMSPushConsumer

new for R10

1

1

discovers

1

1

updates

R10 added method

discoverDMSDisplayConfigClasses()

DMSDisplayConfigListener

new for R10

1

0..1

1

DMSDisplayConfigFactoryImpl

DMSDisplayConfigListenerSupporter

1

attach(DMSDisplayConfigListener)

detach(DMSDisplayConfigListener)

ctor(dm ; DataModel, token : AccessToken,

 processingQueue : CommandQueue,

 DMSDisplayConfigListener: lis tener)

handleDMSDisplayConfigAdded()

handleDMSDisplayConfigChanged()

handleDMSDisplayConfigRemoved()

ProcessPush(any: Any) : void

push(any : Any) : void

setPushConsumer(pc : PushConsumer) : void

-m_pc : PushConsumer

-m_dataModel : DataModel

-m_processingQueue : CommandQueue

-m_sysToken : AccessToken

-m_DMSDisplayConfigListener :

 DMSDisplayConfigListener

DMSDisplayConfigAdded(DMSDisplayConfigInfo)

DMSDisplayConfigEdited(DMSDisplayConfigInfo)

DMSDisplayConfigRemoved(ID)

execute()

interrupted()

DiscoverChart2DMSClassesCommand(orb : ORB,

 poa : POA, traderGroup : TraderGroup,

 dataModel : DataModel, ecg : EventConsumerGroup,

 discoveryToken : AccessToken,

 contextProvider : SystemContextProvider) : ctor

-discoverDMSChannels() : void

-discoverChart2DMSClasses() : void

-discoverDMSDisplayConfigClasses():void

m_poa : POA

m_traderGroup : TraderGroup

m_dataModel : DataModel

m_discoveryToken : AccessToken

m_dpc : Chart2DMSPushConsumer

m_sysContextProvider : SystemContextProvider

DMSDisplayConfigFactoryImpl(ServiceApplication,

 DMSDisplayConfigDB, PushEventSupplierl,

 DMSDisplayConfigListenerSupporter)

getDMSDisplayConfigInfo(Identifier : dmsDisplayConfigID) :

 DMSDisplayConfigInfo

m_DMSDisplayConfigList

getDMSDisplayConfig()

m_dmsId : byte[]

m_dmsDisplayConfig : DMSDisplayConfig

handleEventData(any:Any):void

-handleDMSAdded(evt:DMSEvent):void

-handleDMSConfigChange(evt:DMSEvent):void

-handleDMSModelChange(evt:DMSEvent):void

-handleDMSRemoved(evt:DMSEvent):void

-handleDMSStatusChange(evt:DMSEvent):void

-handleDMSTravInfoMsgConfigChanged(evt:DMSEvent):void

-handleDMSDisplayConfigAdded(evt:DMSEvent):void

-handleDMSDisplayConfigChanged(evt:DMSEvent):void

-handleDMSDisplayConfigRemoved(evt:DMSEvent):void

...()

-m_dmsId : byte[]

-m_dms :Chart2DMS

-m_config : Chart2DMSConfig

-m_status : DMSStatus

CHART R10 Detailed Design – Rev 3 10-147 08/14/2012

10.10.2.4 DMSPushConsumer (Class)

This class handles CORBA events pushed on the DMS Control event channel. It is used to

keep the object cache inside the GUI up to date.

10.10.2.5 ProxyDMS (Class)

The ProxyChart2DMS object is a proxy for a Chart2DMS corba object which is used to by

the DiscoveryManager / ObjectCache. The objects are used to maintain an up to date cache

of Chart2DMS data in the object cache for application use.

10.10.2.6 ProxyDMSDisplayConfig (Class)

The ProxyDMSDisplayConfig object is a proxy for a DMSDisplayConfig object which is

used to by the DiscoveryManager / ObjectCache. The objects are used to maintain an up to

date cache of DMSDisplayConfig data in the object cache for application use

10.10.2.7 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a

CommandQueue for asynchronous execution. Derived classes implement the execute

method to specify the actions taken by the command when it is executed. This interface

must be implemented by any device command in order that it may be queued on a

CommandQueue. The CommandQueue driver calls the execute method to execute a

command in the queue and a call to the interrupted method is made when a

CommandQueue is shut down.

10.10.3 VideoRelatedProxyClasses (Class Diagram)

This diagram shows the video related proxy classes.

CHART R10 Detailed Design – Rev 3 10-148 08/14/2012

10.10.3.1 Locatable (Class)

The Locatable interface should be implemented by any object that has a GeoLocation

and/or Roadway location and wants to be utilized by the Decision Support subsystem.

10.10.3.2 LocatableType (Class)

The LocatableType Enumeration represents the possible Locatable types. Used in

conjunction with the Locatable interface.

10.10.3.3 ProxyMonitor (Class)

This class wraps a Monitor corba reference and other information for a monitor in

CHART2. It is used to cache monitor related information in the DataModel.

10.10.3.4 ProxyObject (Class)

This class is a base class for many types of proxy objects store in the CHART object cache

(which have been discovered by the DiscoveryDriver tasks), used to provide a standard set

of access methods for the proxy objects.

10.10.3.5 ProxyVideoCamera (Class)

This class wraps a VideoCamera corba reference and other information for a VideoCamera

in CHART2. It is used to cache video camera related information in the DataModel.

10.10.3.6 ProxyVideoProvider (Class)

This class wraps a VideoProviderInfo struct and is used to cache information for a

VideoProvider in the DataModel. It is the parent class of the ProxyVideoSource class.

10.10.3.7 ProxyVIdeoSink (Class)

This class wraps a VideoSink reference, config and status information and is used to cache

New for R10 Decis ion

Support Video.

1

ProxyVideoProvider

ProxyObject

ProxyVIdeoSink

ProxyVideoSourceProxyMonitor

ProxyVideoCamera

Locatable

«interface»

LocatableType

«enumeration»

1

Updated for R10 AORs

and Decis ion Support

Video.

init(id:Identifier, name:String, objRef:org.omg.CORBA.Object):void

getID():Identifier

getName():String

getObjectReference():org.omg.CORBA.Object

isLocal():boolean

abstract update():void

m_id:Identifer

m_name:String

m_objRef:org.omg.CORBA.Object

getVideoSink():VideoSink

getConfig():VideoSinkConfig

getAssociatedAORList():Identifier[]

isAssignedAnyAOR(aorIDList:Identifier[]):boolean

getMonitor():Monitor

getVideoProvider() : VideoProvider

getVideoProviderInfo() : VideoProviderInfo

update()

updateVideoProviderInfo(

 VideoProviderInfo : info)

getVideoSource():VideoSource

update():void

-updateDataFromRemoteSource():void

isOnline():boolean

getConfig():VideoCameraConfig

getStatsu():VideoCameraStatus

getIdentifier():Identifier

hasGeoLocation():boolean

getGeoLocation():GeoLocation

getLocationDesc():String

getRoadwayLocation():RoadwayLocation

hasRoadwayLocation():boolean

hasFormalRouteSpecification():boolean

getFormalRouteSpecification():RouteInfo

getLocatableType():LocatableType

OTHER_TYPE

DMS_TYPE

HAR_TYPE

VIDEO_CAMERA_TYPE

CHART R10 Detailed Design – Rev 3 10-149 08/14/2012

video sink related information in the DataModel.

10.10.3.8 ProxyVideoSource (Class)

This class wraps a VideoSource reference, config and status information and is used to

cache information about a video source in the DataModel.

CHART R10 Detailed Design – Rev 3 10-150 08/14/2012

10.10.4 DMSDisplayConfigPushConsumer:push (Sequence Diagram)

The DMSDisplayConfigHelper is used to extract the untyped data (an Any) into an

DMSEvent object, and the DMSEvent discriminator method is called to determine the type

of event. Different processing is then done based on the type of event that was received. If

the event is a DMSDisplayConfigAdded event, the data model is called to retrieve the

ProxyDMSDisplayConfig, just in case it was already discovered before receiving the event.

If not already known (the usual case) a new ProxyDMSDisplayConfig object is created and

added to the data model. In the unusual case where the DMSDisplayConfig is already

known, it is simply updated. If a DMSDisplayConfigListenerSupporter is registered, then it

is called with the new DMSDisplayConfig as well.

When an DMSDisplayConfigChanged event is received, the existing

ProxyDMSDisplayConfig is found in the data model. The configuration from the event is

then used to update the configuration stored in the ProxyDMSDisplayConfig. If a

DMSDisplayConfigListenerSupporter is registered, then it is called with the updated

DMSDisplayConfig as well.

When an DMSDisplayConfigRemoved event is received, the data model is called to

remove the object based on its ID. If a DMSDisplayConfigListenerSupporter is registered,

then it is called with the ID of the removed DMSDisplayConfig as well.

DMSEvent

proxy

objectUpdated(id)

[DMSDisplayConfigAdded]

DMSDisplayConfigInfo()

getObjectID(id)

[proxyDMSDisplayConfig not in DataModel]

objectAdded(id, proxy)

execute()

push(any)

create()

addCommand()

DMSEventType

processPush(any)

byte[]

objectRemoved(id)

getObjectID(id)

setDMSDisplayConfig(dmsDisplayConfigInfo)

dmsDCInfo

proxyDMSDisplayConfig or null

[proxyDMSDisplayConfig not in DataModel]

create(id, dmsDisplayConfigInfo)

[DMSDisplayConfigChanged]

DMSDisplayConfigInfo()

[DMSDisplayConfigRemoved]

dmsDisplayConfigID()

dmsDisplayConfigInfo

DMS Event Channel

DMSDisplayConfigPushConsumer

A QueueableCommand

The processing that follows is done if event type is DMSDisplayConfigAdded

DMSDisplayConfigPushConsumer.PushHandler

The processing that follows is done ifevent type is DMSDisplayConfigChanged.

There is a rare but possible race condition between when remote serviceverifies this DMS is offline and

when this change is received. Consumer must handle possible Display Config change to an online DMS

CommandQueue

The processing that follows is done if event type is DMSDisplayConfigRemoved

There is a rare but possible race condition between when remote service verifies this Display

Config is not used and this removal. Consumers must handle possible non-existent DMS DisplayConfig ID

DMSDisplayConfigHelper

DataModel

id:

Identifier

dmsDCInfo:

DMSDisplayConfigInfo

If dmsDC is already in

 the data model update

the config

If not found, get

config, create

proxy, and add as

in Add case above.

proxy:

ProxyDMSDisplayConfig

proxy:

ProxyDMSDisplayConfig

extract(any)

[ListenerSupporter != null]

ListenerSupporter.setDisplayConfig(dcInfo)

DMSDisplayConfigEventType

[ListenerSupporter != null]

ListenerSupporter.addDisplayConfig(dcInfo)

[ListenerSupporter != null]

ListenerSupporter.removeDisplayConfig(ID)

DMSDisplayConfigFactoryImpl

create

interface implemented by

DMSDisplayConfigFactoryImpl

discriminator()

DMSDisplayConfigListenerSupporter

CHART R10 Detailed Design – Rev 3 10-151 08/14/2012

10.10.5 DiscoverVideoClassesCmd:execute (Sequence Diagram)

This sequence shows processing in the ServiceApplication used to discover Video classes

that exist in the system.This processing is invoked by the DiscoveryDriver when the service

is started and periodically throughout the lifetime of the service. A call is made to the

TraderGroup to have it discover all Video Service CORBA event channels in the

system.Next, the TraderGroup is used to find all VideoSink objects in the system. For each

factory found, the getVideoSinkList() method is called to retrieve the videosink managed

by the factory. The Id for the videosink is retrievedA call to DataModel is used to retrieve

the proxy object if it has already been discovered.If not found, a new ProxyVideoSink

object is created. If the videosink did not already exist in the data model, it is added

10.10.6 VideoSourcePushConsumer:push (Sequence Diagram)

This sequence diagram shows the processing that occurs when an event is received from a

Video service CORBA Event Channel. The event is received via the push() call as defined

in the PushConsumer CORBA interface. The push() call creates a PushHelper object to

store the event and put it on a queue to be processed in a separate thread, allowing control

to return to the event channel. When the PushHandler reaches the top of the queue, its

execute method is called, which calls processPush().

The MonitorEventHelper is used to extract the untyped data (an Any) into an MonitorEvent

object, and the MonitorEvent discriminator method is called to determine the type of event.

Different processing is then done based on the type of event that was received.If the event is

a MonitorAdded event, the data model is called to retrieve the monitor, just in case it was

already discovered before receiving the event. If not already known (the usual case) a new

ProxyVideoSink

create()

create(

tDataModel, processingQueue)

CORBA.Object[]

TraderGroup

discoverEventChannelsOfName(

EVENT_CHANNEL_CAMERA_CONTROL.value)

findAllObjectsOfType(

SERVICE_TYPE_VIDEO_SINK_FACTORY.value))

getID()

ProxyVideoSink or null

VideoSourcePushConsumer

DiscoveryDriver

DiscoverVideoClassesCmd VideoSinkFactoryHelper VideoSinkFactory

VideiSink

DataModel

execute()

[*for each

VideoSink

returned by

the factory

query]

[*for each

factory

returned by

the trader

query]

narrow()

VideoSinkFactoryHelper

VideoSinkInfo[]

objectAdded(ProxyVideoSink)

getSinkInfoList()

getObject(id)

[v ideoSink not in cache]

create()

init(id, name, objRef)

ProxyMonitor

CHART R10 Detailed Design – Rev 3 10-152 08/14/2012

ProxyMonitor derived object is created with config data contained in the event and the

ProxyMonitor is added to the data model. In the unusual case where the alert is already

known, its configuration and status are simply updated.

When an MonitorConfigChanged event is received, the existing monitor is found in the data

model. The configuration from the event is then used to update the configuration stored in

the ProxyMonitor.

When an MonitorDeleted event is received, the data model is called to remove the monitor

based on its ID.

push(any)

CommandQueue

The processing that follows is done if the MonitorAdded

The processing that follows is done if the MonitorDeleted

addCommand()

VideoSourcePushConsumer

extract(any)

Event Channel

VideoSourcePushConsumer.PushHandler

A QueueableComamnd

DataModel

The processing that follows is done if the MonitorConfigChanged.

create()

execute()

create

proxy:

ProxyMonitor

proxy:

ProxyMonitor

MonitorConfigEventInfo

monitorConfig

ProxyMonitor or null

[monitor not in data model]

objectAdded(id, proxy)

MonitorEventTypetHelper

MonitorConfigEventInfo

MonitorEvent

MonitorEventType

Identifier

[MonitorDeleted]

monitorID()

byte[]

objectRemoved(id)

[MonitorConfigChanged]

MonitorConfigEventInfo

[MonitorAdded]

MonitorConfigEventInfo

getConfig()

getObjectID(id)

[monitor not in data model]

create(id, ref, config)

getObjectID(id)

setConfig(config)

MonitorConfigEventInfo

ProxyMonitor

objectUpdated(id)

If not found, get

config, create

proxy, and add as

in Add case above.

If a ProxyMonitor

is found already in the

DataModel, update the

config

processPush(any)

CHART R10 Detailed Design – Rev 3 10-153 08/14/2012

10.11 chartlite.data

10.11.1 MiscDataClasses (Class Diagram)

This diagram shows miscellaneous classes used by the CHART GUI servlet related to the

data cache.

10.11.1.1 BasePushConsumer (Class)

This is a base class for push consumers. Derived classes must implement

handleEventData().

10.11.1.2 DynListSubject (Class)

This interface is implemented by classes that wish to be capable of being displayed in a

dynamic list.

10.11.1.3 FolderEnabled (Class)

This interface provides access to information about an object that can be stored in a folder.

WebAORAssociatable

«interface»New for R10. WebVideoSession

1

WebSharedResourceType

«enumeration» 1

SystemProfileProperties

NotificationShortcutListItem

WebSharedResource

«interface»

WebDevice

«interface»

TempObjectStore

WebHARMessageNotifier

«interface»

*

local GUI's

sessions only

Added getAssociatedAORs

method for R10.

*

1

uses

SystemProfileNotificationProperties

Searchable

«interface»

FolderEnabled

«interface»

WebOpCenter

WebUniquelyIdentifiable

«interface»

WebAdministered

«interface»

DynListSubject

«interface»

New for R9: WebVideoSession, etc.

The WebVideoSession objects requested by the users of the local GUI

will be stored in the TempObjectStore, whereas wrappers for all sessions

(non-local ones and duplicates of the local ones) will be stored in the

WebOpCenter object.

1

BasePushConsumer

get():SystemProfileProperties

getAlertArchiveTimeMinutes() : int

getAlertAudibleReminderInterval() : int

getAlertDefaultAcceptTimeMinutes(type:WebAlertType) : int

getAlertDefaultDelayTimeMinutes(type:WebAlertType) : int

getAlertDeviceFailureAudio() : byte[]

getAlertDuplicateEventAudio() : byte[]

getAlertEscalationTimeMinutes(type:WebAlertType) : int

getAlertEventStillOpenAudio() : byte[]

getAlertGenericAudio() : byte[]

getAlertMaxAcceptTimeMinutes(type:WebAlertType) : int

getAlertMaxDelayTimeMinutes(type:WebAlertType) : int

getAlertReminderAudio() : byte[]

getAlertUnhandledRsrcAudio() : byte[]

getNotificationProperties() : SystemProfileNotificationProperties

getScheduleRemovalTimeMinutes() : int

getScheduleActivationSuppressionTimeMinutes() : int

getMissedActivationGracePeriodMinutes()

getDefaultEventNearbyDevicesRadiusTenths() : int

getRoadConditionsWeatherInfoRadiusMiles() : double

getRoadConditionsWeatherInfoLookbackMins() : int

getRoadConditionsWeatherInfoSynchWaitTimeMillis() : int

getAlertBackupCenters() : WebOpCenter[]

getSupportedAlertTypes()

getMaintModeDevicesForCenter():ArrayList<WebSharedResource>

getNumVideoSessions() : int

getMaxVideoSessions() : int

getVideoSessions() : ArrayList<WebVideoSession>

videoSessionAdded(info : VideoSessionInfo) : void

videoSessionRemoved(sessionID : Identifier) : void

videoSessionsTouched(sessionID : Identifier, timeTouched : Date) : void

getAssociatedAORs(): Identifier[]

getAssociatedHAR() : WebHAR

getAssociatedHARID() : Identifier

getDirection() : int

getDirectionDesc() : String

getID() : Identifier

getLocationString() : String

getName() : String

getNotifier() : HARMessageNotifier

getOpModeString() : String

getPlainTextMessageString() : String

getTypeDesc() : String

isDMS() : boolean

isHARNoticeActive() : boolean

isInMaintMode() : boolean

isOnline() : boolean

isSHAZAM() : boolean

getMsgTextWarningLength() : int

getMsgTextErrorLength() : int

getCacheRetainTimeMinutes() : int

getMaxMRUIndividuals() : int

getMaxMRUGroups() : int

getDefaultNotificationHistoryEntriesPerPage() : int

getDisplayGroupMembersOutsideEvent() : boolean

getDisplayGroupMembersWithinEvent() : boolean

get10Codes(withinTrafficEvent:boolean, outsideTrafficEvent:boolean) : NotificationShortcutListItem[]

getMiscShortcuts(withinTrafficEvent:boolean, outsideTrafficEvent:boolean) : NotificationShortcutListItem[]

getSingleClickShortcuts(withinTrafficEvent:boolean, outsideTrafficEvent:boolean) : NotificationShortcutListItem[]

getIncidentTypeAbbreviation(incType:WebIncidentType) : String

getCountyAbbreviation(stateCode:String, countyInfo:CountyInfo) : String

getRegionAbbreviation(stateCode:String, regionInfo:RegionInfo) : String

getVehicleTypeAbbreviation(webVehicleType:WebVehicleType) : String

getParticipationAbbreviation(participation:WebResponseParticipation) : String

getOpCenterAbbreviation(centerID:Identifier) : String

setMsgTextWarningLength(props:Properties, length: int) : void

setMsgTextErrorLength(props:Properties, length: int): void

setCacheRetainTimeMinutes(props:Properties, minutes:int) : void

setMaxMRUIndividuals(props:Properties, maxNum: int) : void

setMaxMRUGroups(props:Properties, maxNum: int) : void

setDefaultNotificationEntriesPerPage(props:Properties, numPerPage: int) : void

setDisplayGroupMembersOutsideEvent(props:Properties, flag: boolean) : void

setDisplayGroupMembersWithinEvent(props:Properties, flag: boolean) : void

set10Codes(props:Properties, items:NotificationShortcutListItem[]) : void

setMiscShortcuts(props:Properties, items : NotificationShortcutListItem[]) : void

setSingleClickShortcuts(props:Properties, items : NotificationShortcutListItem[]) : void

setIncidentTypeAbbreviation(props:Properties, incType:WebIncidentType, abbrev:String) : void

setCountyAbbreviation(props:Properties, stateCode:String, countyCode:String, abbrev:String) : void

setRegionAbbreviation(props:Properties, stateCode:String, regionName:String, abbrev:String) : void

setVehicleTypeAbbreviation(props:Properties, webVehicleType:WebVehicleType, abbrev:String) : void

setParticipationAbbreviation(props:Properties, participantType:int, participantName:String,

 appliesToNotified:boolean, appliesToResponded:boolean, appliesToDeparted:boolean, abbrev:String) : void

setOpCenterAbbreviation(props:Properties, centerID:Identifier, abbrev:String) : void

getTypeDesc():String

DMS

HAR

SHAZAM

TrafficEvent

VideoSource

-m_desc:String

getID() : Identifier

getName() : String

getControllingOpCenterID() : Identifier

getControllingOpCenterName() : String

setControllingOpCenter(byte[] token, WebOpCenter target) : void

getTypeDesc() : String

isTransferrable() : boolean

getSharedResourceType():WebSharedResourceType

getID() : Identifier

getUsername() : String

getOpCenterName() : String

getOpCenterID() : Identifier

getTimeStarted() : Date

getTimeLastTouched() : Date

getUserHost() : String

getUserIP() : String

getClientAppIP() : String

getClientInstanceID() : String

getSubjectID() : Identifier

getSubjectDesc() : String

isSubjectTour() : boolean

updateTimeTouched(touchedTime : Date) : void

setSessionEnded(reason : String) : void

isSessionEnded() : boolean

getSessionEndedReason() : String

setSourceIDs(sourceIDs : Identifier[]) : void

getSourceIDs() : Identifier[]

#getWebVideoSessions(dm : DataModel,

 tos : TempObjectStore, optSubjectID : Identifier,

 clientInstanceID : String) : Set<WebVideoSession>

PROP_USERNAME : String

PROP_SUBJECT_DESC : String

PROP_USER_IP_AND_POSSIBLY_HOST : String

PROP_CLIENT_APP_IP : String

PROP_OP_CENTER_DESC : String

PROP_SESSION_START_TIME : String

PROP_LAST_TOUCHED_TIME : String

m_sessionInfo : VideoSessionInfo

m_sessionEnded : boolean

m_sessionEndedReason : String

m_sourceIDs : Identifier[]

matchesSearch(String criteria, boolean caseSensitive) : boolean

isOffline() : boolean

isOnline() : boolean

isInMaintMode() : boolean

isHardwareFailed() : boolean

isCommFailed() : boolean

isCommMarginal() : boolean

doPing() : boolean

getDetailsAction() : String

getDetailsPageName() : String

getDataModel() : DataModel

getPushConsumer() : PushConsumer

push(data:Any) : void

setPushConsumer(consumer:PushConsumer):void

handleEventData(data:Any) : void

add(key:Object, value:Object) : void

add(key:Object, value:Object, maxAgeSec : int) : void

createTempObjectID() : String

getObject(key : Object) : Object

removeObject(key : Object) : Object

touchObject(key : Object) : Object

getObjectsOfType(class : Class) : Object[]

isApplicableWithinTrafficEvent() : boolean

isApplicableOutsideTrafficEvent() : boolean

getShortcutText() : String

getMsgTextToInsert() : String

getID() : Identifier

getName() : String

getTypeDesc() : String

CHART R10 Detailed Design – Rev 3 10-154 08/14/2012

10.11.1.4 NotificationShortcutListItem (Class)

This class represents an item in a notification shortcut list.

10.11.1.5 Searchable (Class)

This interface allows objects to be searched for via a substring search.

10.11.1.6 SystemProfileNotificationProperties (Class)

This class contains functionality for accessing notification settings in the system profile.

10.11.1.7 SystemProfileProperties (Class)

This class is used to cache the system profile properties and provide access to them. It is

also used to interact with the server to change system profile settings.

10.11.1.8 TempObjectStore (Class)

This class provides a self cleaning storage area for temporary objects.

10.11.1.9 WebAdministered (Class)

This interface allows the implementing class to be administered via the trader console

pages.

10.11.1.10 WebAORAssociatable (Class)

This interface describes an object that can have associated areas of responsibility.

10.11.1.11 WebDevice (Class)

This interface contains common functionality for CHART devices.

10.11.1.12 WebHARMessageNotifier (Class)

This interface provides access to HAR notification capabilities for a device (DMS or

SHAZAM) that is used to notify the public of a HAR message being broadcast.

10.11.1.13 WebOpCenter (Class)

This class is used to wrap an OperationsCenter object to allow it to be cached in the

CHART GUI servlet and to allow the cached data to be accessed within Velocity templates.

For R10, a method was added to return the associated areas of responsibility.

10.11.1.14 WebSharedResource (Class)

This interface is implemented by any GUI-side wrapper objects representing CHART

shared resources in the system, corresponding to the SharedResource IDL interface.

10.11.1.15 WebSharedResourceType (Class)

This java enum defines the types of shared resources that exist in the system. In addition to

the enumeration value, this enumeration contains a description of each shared resource type

that can be used for display.

CHART R10 Detailed Design – Rev 3 10-155 08/14/2012

10.11.1.16 WebUniquelyIdentifiable (Class)

This interface provides functionality for GUI objects that represent UniquelyIdentifiable

objects as defined in the IDL.

10.11.1.17 WebVideoSession (Class)

This class represents a desktop video session, which is an instance of a Flash stream being

used by the user.

CHART R10 Detailed Design – Rev 3 10-156 08/14/2012

10.12 chartlite.data.dms-data

10.12.1 GUIDMSDataClasses (Class Diagram)

This diagram shows GUI data classes related to DMS management.

10.12.1.1 ArbitratedDevice (Class)

This interface allows a class to use a WebArbQueue to track the current state of a device's

arbitration queue.

10.12.1.2 BasePushConsumer (Class)

This is a base class for push consumers. Derived classes must implement

handleEventData().

10.12.1.3 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup

mechanism for locating any object, and methods which allow for the retrieval of all objects

of a particular type. Additionally, this class provides the ability to attach observer objects

which are notified when objects are added to or removed from the model. Objects may also

notify the DataModel that they have been modified. The model will periodically notify all

attached observers of the changes to objects in the model.

10.12.1.4 DMSDisplayConfig (Class)

This class represents display settings potentially used by multiple DMSs. It has all

information necessary for rendering the message, checking for message fit, etc.. It is based

on the DMSDisplayConfigInfo IDL structure, but does not necessarily store that structure

internally. It provides methods for manipulating and analyzing the display settings.

In WebChart2DM S

DM STrav InfoM s g

Edi tor True Dis p lay

In Tem pObjStore

New for R10

DM STrueDisplayM gr

Changed in R10

update updateGIF() to us e DM SDis pay Config

add c reatePrev iewIm age() to prov ide GIF for a propos ed DM SDis play Config c hange

BasePushConsumer

DM SPushConsumer

DM STrueDisplayM gr

11

Changed in R10

Changed in R10:

added getNoti fierM es s ageRaw

DataM odel

*

1

1 1

1

DM SDisplayConfig

Note: for ex ternal DM S the

DM SDis play Config Info is c reated

"on the fly " s o the d is p lay c onfig

nam e s houldn ' t be s hown in the

DM S l is t bec aus e eac h one wi l l

be unique and i t wi l l m ak e the

fi l ter on the dm s l is t ineffec tiv e.

New in R10

1

*

WebNTCIPDeviceM odule

WebNTCIPDM SStatus

WebNTCIPDM S

Changed in R10

1

WebObjectLocationSupporter

«interfac e»

1

DM STrav InfoM s g

Edi tor True Dis p lay

In Tem pObjStore

1

WebExternalDM S

Configuration

DynamicImage

FileKeeper

«interfac e»

WebExternalDM S

M odelObserver

«interfac e»

DynamicImage

FileKeeper

«interfac e»

DM STravInfoM sgTrueDisplayM gr

1

DM STravInfoM sg

DataSupplier

«interfac e»

*

1

In WebChart2DM S

11

WebDM SConfiguration

WebChart2DM S

WebHHM M Range

1

WebDM S

1

Searchable

«interfac e»

WebSharedResource

«interfac e»

WebHARM essageNotifier

«interfac e»

FolderEnabled

«interfac e»

ArbitratedDevice

«interfac e»

NameFilterable

«interfac e»

WebDevice

«interfac e»

WebChart2DM SConfiguration

WebNTCIPDM SConfiguration

1

WebAdministered

«interfac e»

WebDM STravInfoM sg

WebDM S(dm s :DM S, id :Identi fier,

 c onfig :WebDM SConfiguration, s ta tus : DM SStatus ,

 dm : DataM odel , c p : Sy s tem Contex tProv ider)

getBeac onState() : boolean

getBeac onStatus String() : String

getConfig() : WebDM SConfiguration

getDM SRef() : DM S

getDy nIm ageFi leDi r() : Fi le

getFac tory ID() : Identi fier

getHardwareStatus String() : String

getID():Identi fier

getLas tStatus Tim eString() : String

getM ul tiM es s age() : String

getNam e():String

getOpStatus String() : String

getStatus () : DM SStatus

getStatus String() : String

getTrueDis p lay Fi leNam e() : String

getTrueDis p lay Im ageHeight() : in t

getTrueDis p lay Im ageWidth() : in t

is Blank () : boolean

s etFac tory ID(fac tory ID : Identi fier) : v o id

updateConfig(c onfig : DM SConfiguration,

 ev ent : DM SEv ent) : v o id

updateStatus (s tatus : DM SStatus) : v o id

updateTrueDis p lay Im age():v o id

handleEv entData(any :Any):v o id

-handleDM SAdded(ev t:DM SEv ent):v o id

-handleDM SConfigChange(ev t:DM SEv ent):v o id

-handleDM SM odelChange(ev t:DM SEv ent):v o id

-handleDM SRem ov ed(ev t:DM SEv ent):v o id

-handleDM SStatus Change(ev t:DM SEv ent):v o id

-handleDM STrav InfoM s gConfigChanged(ev t:DM SEv ent):v o id

-handleDM SDis play ConfigAdded(ev t:DM SEv ent):v o id

-handleDM SDis play ConfigChanged(ev t:DM SEv ent):v o id

-handleDM SDis play ConfigRem ov ed(ev t:DM SEv ent):v o id

perform Pix e lTes t(by te[]: tok en, Com m andStatus c m dStat) : v o id

s etCentra lContro lM ode(by te[]:tok en, Com m andStatus c m dSTat): v o id

getCac hedEx tendedStatus (): WebDM SEx tendedStatus

perform Bloc k ingGetEx tendedStatus Cm d(tok en:by te[],c m dStatus :Com m andStatus):v o id

getEx tendedStatus Tem plateNam e(): String

getLas tEx tendedStatus Query Tim eString(): String

does ConfiguredDis p lay Siz eM atc hDetec tedDis p lay Siz e():boolean

m _ntc ipDM SRef: NTCIPDM S

m _ntc ipEx tendedStatus : WebNTCIPDM SStatus

m _ex tendedStatus Tim e: Date

getChart2DM SConfig() : WebChart2DM SConfiguration

getChart2DM SRef() : Chart2DM S

getChart2DM SStatus () : Chart2DM SStatus

getEnabledDM STrav InfoM s gID() : Identi fier

getDM STrav InfoM s g(id : Identi fier) : WebDM STrav InfoM s g

getDM STrav InfoM s gStateString() : String

getDM STrav InfoM s gStateReas on() : String

has Ac tiv eTraffic Ev ents () : boolean

has Inac tiv eTraffic Ev ents () : boolean

is HARAs s oc iated() : boolean

-s etupDM STrav InfoM s gs () : v o id

s upports Edi tingCom m Los s Tim eoutInM aintM odeOnly () : boolean

s upports Ex tendedStatus () : boolean

s upports NTCIPCom m uni ty String() : String

s upports Pix e lTes t() : boolean

s upports Res et() : boolean

updateConfig(c onfig : DM SConfiguration,

 ev ent : DM SEv ent) : v o id

getContro lM ode():String

getCurrentM s gSourc e():String

getDetec tedDis p lay HeightPix e ls ():in t

getDetec tedDis p lay WidthPix e ls ():in t

getDetec tedDis p lay HeightPix e ls Str():String

getDetec tedDis p lay WidthPix e ls Str():String

getM oduleInform ation(in t):WEBNTCIPDev ic eM odule

getNum Dev ic eM oduleCom ponentNodes ():in t

m _s tatus : NTCIPDM SStatus

WebDM STrav InfoM s g(dm s :WebDM S,

 m s g:DM STrav InfoM s g, dm :DataM odel)

getTrav InfoM s gID() : Identi fier

getTrav InfoM s gTem plateID() : Identi fier

getTrav elRouteIDs () : Identi fier[]

is Us ingTrav elRoute(routeID : Identi fier) : boolean

us eAutoRowPos i tion ing() : boolean

getTrueDis p lay M gr() : DM STrav InfoM s gTrueDis p lay M gr

update(m s g : DM STrav InfoM s g) : v o id

m _m s g : DM STrav InfoM s g

m _dm : DataM odel

getCom m Los s Tim eoutM inutes () : in t

getConfig() : DM SConfiguration

getDis p lay Config() : DM SDis play Config

getLoc ation() : WebObjec tLoc ation

getNam e() : String

updateConfig(c onfig : DM SConfiguration) : v o id

m _c onfig : DM SConfiguration

getM oduleCom ponentTy pe():String

getM oduleM ak e():String

getM oduleNode():String

getM oduleVers ion():String

m _info:NTCIPDev ic eCom ponentIn form ation

getEx ternalSy s tem ID() : String

getEx ternalAgenc y ID() : String

getEx ternalObjec tID() : String

getNetwork Connec tionSi te() : String

getOwningOrgID() : Identi fier

getDi rec tion() : in t

getDi rec tionDes c () : String

updateConfig(c onfig : DM SConfiguration) : v o id

DM STrav InfoM s gTrueDis p lay M gr(

 dm s : WebChart2DM S,

 m s g : WebDM STrav InfoM s g,

 us eDum m y DataIfM is s ing : boolean)

getGIFFi lenam e() : String

getIm ageHeightPix e ls () : in t

getIm ageWidthPix e ls () : in t

getLas tErrorM s g() : String

updateGIF() : v o id

getDM STrav InfoM s g() : WebDM STrav InfoM s g

getDy nam ic Im ageFi lenam es ToKeep():Array Lis t<String>

c reatePrev iewIm age(d is pConfig :DM SDis play Config):DM SIm ageFi le Info

m _dm s : WebChart2DM S

m _m s g : WebDM STrav InfoM s g

m _us eDum m y DataIfM is s ing : boolean

m _las tErrorM s g : String

m _trueDis p lay M anager : DM STrueDis p lay M gr

getCom m Fai lAlertOpCenter() : WebOpCenter

getCom m Fai lNoti fic ationGroup() : WebNoti fic ationGroup

getCom m PortConfig() : WebCom m PortConfig

getChart2DM SConfig() : Chart2DM SConfiguration

getDropAddres s () : in t

getForm attedPhoneNum ber() : String

getHWFai lAlertOpCenter() : WebOpCenter

getHWFai lNoti fic ationGroup() : WebNoti fic ationGroup

getM ax Hal fSec ondPageTim eValue() : in t

getM odelString() : String

getNetwork Connec tionSi te() : String

getNoti fierM es s age() : String

getNoti fierM es s ageRaw():DM SM es s age

getOwningOrgID() : Identi fier

getOwningOrgNam e() : String

getPhoneNum ber() : String

getPol l ingInterv a lM Inutes () : in t

getPortLoc ationData() : WebPortLoc ationData

getIPPortLoc ationData() : WebIPPortLoc ationData

is ADDCO() : boolean

is Dev ic eLoggingEnabled() : boolean

is FP2001() : boolean

is FP2001() : boolean

is FP9500() : boolean

is Noti fierM es s ageUs ingBeac ons Enabled() : boolean

is NTCIP() : boolean

is PCM S() : boolean

is Pol l ingEnabled() : boolean

is SYLVIA() : boolean

is TS3001() : boolean

getTrav elTim eM s gQueueLev el () : in t

getTol lRateM s gQueueLev el () : in t

getAs s oc iatedTrav elRouteIDs () : Identi fier[]

getDM STrav InfoM s gs () : WebTrav InfoM s g[]

getDM STrav InfoM s g(id : Identi fier) : WebDM STrav InfoM s g

is Us ingCus tom Sc hedule() : boolean

areSpec i fic Tim es Enabled() : boolean

getCus tom Sc hedule() : WebTim eOfDay Range[]

updateConfig(c onfig : DM SConfiguration) : v o id

m _c 2Config : Chart2DM SConfiguration

getStartTim eHours () : in t

getStartTim eM ins () : in t

getEndTim eHours () : in t

getEndTim eM ins () : in t

m _tim eRange : HHM M Range

getNTCIPCom m uni ty String() : String

getNTCIPInterCharac terSpac ing(): in t

getNTCIPPageJ us ti fic ation(): in t

getNTCIPFont(): in t

getNTCIPLineSpac ing(): in t

CHART R10 Detailed Design – Rev 3 10-157 08/14/2012

10.12.1.5 DMSPushConsumer (Class)

This class handles CORBA events pushed on the DMS Control event channel. It is used to

keep the object cache inside the GUI up to date.

10.12.1.6 DMSTravInfoMsg DataSupplier (Class)

This interface provides data for travel routes used in a DMSTravInfoMsg. It will be used to

substitute the template tags with route-specific data, in order to format the template and

produce MULTI. This is needed in the GUI for true display, and is needed in the server for

formatting messages to send to a DMS. The routeNum parameter corresponds to route

numbers contained in the template data tags, and it is a 1-based index. These methods will

throw an exception if the requested data is not available.

10.12.1.7 DMSTravInfoMsgTrueDisplayMgr (Class)

This class manages the true display image for a single DMS traveler info message.

10.12.1.8 DMSTrueDisplayMgr (Class)

This class is used to manage the DMS "true display" images for a single purpose (i.e.,

where there is a single image that represents the state of the display). It could represent one

of: a message being edited, the current message on a DMS, a library message, a response

plan item, etc.. If an instance of this class is called to render additional images (for example

if an editor message is updated), some of the older image filenames are stored (for use by

the DynamicImageFileKeeper interface, which this class implements) to be able to prevent

the GUI's periodic file cleanup code from deleting the image files prematurely, as the older

images could still be needed on web pages. This class uses the MultiMsgGIFEncoder

internally, but hides the details from the caller. It has methods that can create a true display

image for MULTI or to represent a pixel test in progress. It also has static methods that can

be used to determine the image size that result to show a true display for a specific

DMSDisplayConfig.

10.12.1.9 DynamicImage FileKeeper (Class)

This interface allows an object to keep dynamic image files from being deleted by the

DynImageCleanupTask, which periodically deletes files that are no longer needed.

10.12.1.10 FolderEnabled (Class)

This interface provides access to information about an object that can be stored in a folder.

10.12.1.11 ModelObserver (Class)

This interface must be implemented by any object which would like to attach to the

DataModel as an observer and get updated as system objects are added, deleted or changed.

10.12.1.12 NameFilterable (Class)

This java interface is implemented by classes which can be filter by name within the

ObjectCache. A NameFilter object is passed into the ObjectCache to select NameFilterable

objects in the cache.

CHART R10 Detailed Design – Rev 3 10-158 08/14/2012

10.12.1.13 Searchable (Class)

This interface allows objects to be searched for via a substring search.

10.12.1.14 WebAdministered (Class)

This interface allows the implementing class to be administered via the trader console

pages.

10.12.1.15 WebChart2DMS (Class)

This class extends WebDMS and wraps the Chart2DMS CORBA interface, providing

access to CHART2-specific functionality.

10.12.1.16 WebChart2DMSConfiguration (Class)

This class wraps the Chart2DMSConfiguration IDL valuetype and adds accessor methods.

10.12.1.17 WebDevice (Class)

This interface contains common functionality for CHART devices.

10.12.1.18 WebDMS (Class)

This class represents a dynamic message sign.

10.12.1.19 WebDMSConfiguration (Class)

This class wraps the DMSConfiguration IDL structure and adds accessor methods.

10.12.1.20 WebDMSTravInfoMsg (Class)

This class wraps the DMSTravInfoMsg IDL structure that represents a traveler info

message used by a DMS, and provides accessor methods.

10.12.1.21 WebExternalDMS (Class)

This class wraps the ExternalDMS CORBA interface and provides access to cached data

specific to external DMSs.

10.12.1.22 WebExternalDMS Configuration (Class)

This class wraps the ExternalDMSConfiguration IDL structure and provides accessor

methods to access the data.

10.12.1.23 WebHARMessageNotifier (Class)

This interface provides access to HAR notification capabilities for a device (DMS or

SHAZAM) that is used to notify the public of a HAR message being broadcast.

10.12.1.24 WebHHMMRange (Class)

This class contains information about a time-of-day range that contains hours and minutes.

CHART R10 Detailed Design – Rev 3 10-159 08/14/2012

10.12.1.25 WebNTCIPDeviceModule (Class)

This class contains methods for retrieving NTCIP device module information

10.12.1.26 WebNTCIPDMS (Class)

This class implements an NTCIP specific dms wrapper for performing ntcip specific

commands, and implementing a pixel test supporter.

10.12.1.27 WebNTCIPDMSConfiguration (Class)

This class contains NTCIP specific DMS configuration methods.

10.12.1.28 WebNTCIPDMSStatus (Class)

This class contains methods for retrieving the NTCIP specific extended device status for

display on web pages.

10.12.1.29 WebObjectLocationSupporter (Class)

This interface allows common processing for objects supporting an ObjectLocation via the

WebObjectLocation wrapper class.

10.12.1.30 WebSharedResource (Class)

This interface is implemented by any GUI-side wrapper objects representing CHART

shared resources in the system, corresponding to the SharedResource IDL interface.

10.12.2 GUIDMSDataClasses2 (Class Diagram)

This diagram shows additional GUI data classes related to DMS management.

CHART R10 Detailed Design – Rev 3 10-160 08/14/2012

10.12.2.1 DMSImageFileInfo (Class)

This class contains information about a true display image file that was rendered. It has the

name, width / height (in pixels), plain message text, and also any formatting messages that

may have occurred while rendering the message.

10.12.2.2 DMSTrueDisplayMgr (Class)

This class is used to manage the DMS "true display" images for a single purpose (i.e.,

where there is a single image that represents the state of the display). It could represent one

of: a message being edited, the current message on a DMS, a library message, a response

plan item, etc.. If an instance of this class is called to render additional images (for example

if an editor message is updated), some of the older image filenames are stored (for use by

the DynamicImageFileKeeper interface, which this class implements) to be able to prevent

the GUI's periodic file cleanup code from deleting the image files prematurely, as the older

images could still be needed on web pages. This class uses the MultiMsgGIFEncoder

internally, but hides the details from the caller. It has methods that can create a true display

image for MULTI or to represent a pixel test in progress. It also has static methods that can

be used to determine the image size that result to show a true display for a specific

DMSDisplayConfig.

10.12.2.3 DynamicImageFileKeeper (Class)

This interface allows an object to keep dynamic image files from being deleted by the

DynImageCleanupTask, which periodically deletes files that are no longer needed.

1

New for R10.

DMSImageFileInfo

11

DMSTrueDisplayMgr

DynamicImageFileKeeper

«interface»

1

1

1

New for R10.

WebChart2DMSFactory

WebDMSDisplayConfigFactory

New for R10

WebDMSFactory

WebUniquelyIdentifiable

«interface»

WebAdministered

«interface»

WebDMSResponsePlanItem

WebResponsePlanItem

R10: Added getDMSTrueDisplayMgr()

R10: Added getDMSStoredMessage()

and getDMSTrueDisplayMgr(),

changed updateGIF() to use DMSTrueDisplayMgr

WebDMSPlanItem

WebPlanItem

WebChart2DMSFactory(dmsFactory:Chart2DMSFactory,

 factoryID:Identifier, factoryName:String)

getChart2DMSFactoryRef() : Chart2DMSFactory

WebDMSFactory(dmsFactory:DMSFactory, factoryID:Identifier, factoryName:String)

createDMS(dmsInfo:DMSInfo, dm:DataModel, scp:SystemContextProvider) : WebDMS

getFactoryRef() : DMSFactory

DMSTrueDisplayMgr(dynImageDir : String, filenameBase : String)

clearCurrentFileInfo() : void

createImage(DMSDisplayConfig, multi : String,

 beaconEnabled:boolean, startPageIdx : int) : DMSImageFileInfo

encodePixelTestImage(DMSDisplayConfig, beaconsEnabled) :

 DMSImageFileInfo

getCurrentFileInfo() : DMSImageFileInfo

-saveImageFileInfo(DMSImageFileInfo) : void

$createImage(imageDir : String, DMSDisplayConfig, multi : String,

 beaconsEnabled : boolean, startPageIdx : int, filenameBase:String) :

 DMSImageFileInfo

$createPreviewImage(imageDir : String, DMSDisplayConfig,

 multi : String, beaconsEnabled : boolean, startPageIdx : int,

 filenameBase : String) : DMSImageFileInfo

$-createMultiMsgGIFEncoder(DMSDisplayConfig) : MultiMsgGIFEncoder

$getImageHeightPixels(DMSDisplayConfig) : int

$getImageWidthPixels(DMSDisplayConfig) : int

$-getTrueDisplayLineSpacingPixels(DMSDisplayConfig) : int

$-getTrueDisplayMessageAreaPixelCols(DisplayProperties) : int

$-getTrueDisplayMessageAreaPixelRows(DisplayProperties,

m_dynamicImageFilenamesToKeep : Vector<String>

m_currentFileInfo : DMSImageFileInfo

m_dynImageDir : String

m_fileNamebase : String

String getDeviceNameFilter()

String getDeviceMessageFilter()

PlanAttributeDataFilter m_filter

getDMSStoredMessage():WebDMSStoredMessage

getDMSTrueDisplayMgr():DMSTrueDisplayMgr

-updateGIF():void

WebDMSDisplayConfigFactory(

 factory : DMSDisplayConfigFactory, id : Identifier, name : String)

getFactoryRef() : DMSDisplayConfigFactory

$getCachedtDMSDisplayConfigs(dm:DataModel):ArrayList<DMSDisplayConfig>

addFormattingMessage(msg : String) : void

getFilename() : String

getFormattingMessages() : String[]

getHeight() : int

getJSONObject() : JSONObject

getPixelCols() : int

getPixelRows() : int

getPlainTextMsg() : String

getWidth() : int

m_rpi:ResponsePlanItem

m_id:Identifier

m_rpiData:ResponsePlanItemData

m_status:ResponsePlanItemStatus

getDMSTrueDisplayMgr():DMSTrueDisplayMgr

CHART R10 Detailed Design – Rev 3 10-161 08/14/2012

10.12.2.4 WebAdministered (Class)

This interface allows the implementing class to be administered via the trader console

pages.

10.12.2.5 WebChart2DMSFactory (Class)

This class wraps the Chart2DMSFactory IDL interface.

10.12.2.6 WebDMSDisplayConfigFactory (Class)

This class wraps a DMSDisplayConfigFactory CORBA reference so that they can be

cached in the GUI.

10.12.2.7 WebDMSFactory (Class)

This class wraps the DMSFactory CORBA interface and provides additional GUI

funcitonality including caching the factory name and ID.

10.12.2.8 WebDMSPlanItem (Class)

This class is used to wrap an IDL defined DMSPlanItem so that its data may be accessed

within the GUI.

10.12.2.9 WebDMSResponsePlanItem (Class)

This class is a wrapper for a response plan item used to put a message on a specific DMS as

part of a traffic event response.

10.12.2.10 WebResponsePlanItem (Class)

This class is a wrapper for the IDL defined ResponsePlanItem. It provides various accessor

methods that provide access to its data.

10.12.2.11 WebUniquelyIdentifiable (Class)

This interface provides functionality for GUI objects that represent UniquelyIdentifiable

objects as defined in the IDL.

10.12.3 DMSPushConsumer:handleDMSDisplayConfigAdded (Sequence

Diagram)

This diagram shows the processing that occurs when an event is received by the GUI

indicating a DMSDisplayConfiguration has been added to the system. The GUI uses the

display configuration struct from the IDL to construct a DMSDisplayConfig object and this

object is stored in the data model, keyed on its ID.

CHART R10 Detailed Design – Rev 3 10-162 08/14/2012

DMSDisplayConfig

DataModel

create(DMSDisplayConfigInfo)

objectAdded(dispConfig.getID(), dispConfig)

PushConsumerBase

DMSPushConsumer DMSEvent

handleEventData(any)

[event type is display config added]

handleDMSDisplayConfigAdded

dmsDisplayConfigInfo()

DMSDisplayConfigInfo

CHART R10 Detailed Design – Rev 3 10-163 08/14/2012

10.12.4 DMSPushConsumer:handleDMSDisplayConfigChanged (Sequence

Diagram)

This diagram shows the processing that occurs when the GUI receives a CORBA event

indicating a DMS Display Configuration has changed. The existing DMSDisplayConfig is

retreived from the data model and its update method is called. If an existing

DMSDisplayConfig does not exist, a new one is created and added to the data model.

DMSEvent DataModel

DMSDisplayConfig
create(DMSDisplayConfigInfo)

objectAdded(dispConfig.getID(), dispConfig)

handleEventData(any)

dmsDisplayConfigInfo()

[event type is display config changed]

handleDMSDisplayConfigChanged

DMSDisplayConfigInfo

DMSDisplayConfig

Existing object

getObject(dispConfigID)

DMSDisplayConfig or null

update(DMSDisplayConfigInfo)

objectUpdated(dispConfigID)
[existing display

config not found]

PushConsumerBase

DMSPushConsumer

CHART R10 Detailed Design – Rev 3 10-164 08/14/2012

10.12.5 DMSPushConsumer:handleDMSDisplayConfigRemoved (Sequence

Diagram)

This diagram shows the processing that occurs when the GUI receives an event indicating a

DMS display configuration has been removed from the system. The ID of the display

configuration is retrieved from the event data and the data model is called to remove the

object.

PushConsumerBase

DMSPushConsumer DMSEvent DataModel

objectRemoved(id)

handleEventData(any)

dmsDisplayConfigID()

[event type is display config removed]

handleDMSDisplayConfigRemoved

byte[]

Identifier
create

CHART R10 Detailed Design – Rev 3 10-165 08/14/2012

10.12.6 DMSTravInfoMsgTrueDisplayMgr:updateGIF (Sequence Diagram)

This diagram shows how the graphical representation of a DMS traveler info message is

updated. The DMSTravInfoMsgTrueDisplayMgr is called to update the image. The

template ID is used to retrieve the cached WebDMSTravInfoMsgTemplate, to get the

template configuration. Next a DMSTravInfoMsgTemplateModel is created and called to

format the template, replacing the template's tags to obtain a MULTI representation of the

message using the current travel route data. After getting the MULTI, the

DMSTrueDisplayMgr is called to create the GIF image. This method is changed in R10 to

pass the DMS's display configuration to the DMSTrueDisplayMgr to create the GIF so the

font and other display properties can be used when creating the image.

getCachedDMSTravInfoMsgTemplate(templateID)

getConfig().getRawConfig()

useAutoRowPositioning()

MULTI

create(templateConfig, m_msg, m_useDummyDataIfMissing)

DMSTravInfoMsg

TemplateModel

System

WebDMS

updateGIF()

formatMulti(useAutoRowPositioning)

DMSTravInfoMsg

TrueDisplayMgr DMSTrueDisplayMgr

Note: if template not found, we still want to generate an image for a blank sign.

boolean

getConfig().getDisplayConfig()

DMSDisplayConfig

createImage(displayConfig, multi, false, 0)

[error creating image]

set error message and log

[template not found]

set error message

WebDMSTravInfoMsgTemplate or null

[template

not found]

WebDMSTravInfoMsg

WebMessageTemplate

FactoryWrapper

WebDMSTravInfo

MsgTemplate

getTravInfoMsgTemplateID()

get()

CHART R10 Detailed Design – Rev 3 10-166 08/14/2012

10.12.7 DiscoverDMSClassesCommand:discoverDMSClasses (Sequence

Diagram)

This diagram shows the processing to find (discover) DMS-related objects, which happens

periodically or as requested. The DMSDisplayConfigFactory objects are queried from the

trader group, and if the WebDMSDisplayConfigFactory object is not already found in the

DataModel cache, one is created and added to the cache. Each factory is then called to

discover DMSDisplayConfigInfo objects each serves. These are each added to the data

model as DMSDisplayConfig objects, or if already found to exist in the data model the

existing objects are updated. After all DMSDisplayConfig objects from all factories have

been discovered and cached, the DMSFactory objects are queried from the trader group and

wrapped in WebDMSFactory wrapper objects, if needed. The DMS factory is then called

to obtain the list of DMSs it owns. This order is important because the display

configurations are used by DMS configurations, so we must discover the display

configurations from all factories first. Each DMS from a factory is processed. If the

corresponding WebDMS is already in the DataModel cache, it is retrieved from the cache

and is called to update its cached configuration and status data. If not already in the cache,

the WebDMSFactory class is called to create the new WebDMS wrapper object, as shown

in the WebDMSFactory:createDMS sequence diagram.

Chart2DMS

FactoryHelper

narrow(obj)

Chart2DMSFactory or null

[not

Chart2DMSFactory]

create(factory, factoryID, factory.getName())

objectAdded(factoryID, webChart2DMSFactory)

Only Chart2DMSFactory factories

are wrapped and put into the cache.

(ExternalDMSFactory objects are not)

[WebChart2DMSFactory

found]

DMSDisplayConfig

Factory

findAllObjectsOfType(

SERVICE_TYPE_DMS_FACTORY.value)

narrow(obj)

getID()

WebChart2DMSFactory or null

DMSDisplayConfig

FactoryHelper

WebDMSDisplay

ConfigFactory

org.omg.CORBA.Object[]

DMSFactory

getObject(factoryID)

create(DMSDisplayConfigInfo)

getObject(dmsInfo.config.

displayConfigID)

[* for

each

DMS

Display

Config

Info]

See the createDMS

sequence diagram for

details.

dmsID:Identifier

[* for

each

DMSInfo]

WebDMS

getDMSInfoList()

DMSInfo[]

getObject(dmsID)

WebDMS or null

updateConfig(dmsInfo.config)

updateStatus(dmsInfo.status)

create(dispConfInfo.id)

get(dispConfID)

DMSDisplayConfig or null

update(DMSDisplayConfigInfo)

objectUpdated(dispConfID)

DMSDisplayConfig

[WebDMSDisplayConfigFactory

found]

DMSDisplayConfig

dispConfID:Identifier

DMSDisplayConfig

[* for

each

factory]

DMSDisplayConfigInfo[]

getDMSDisplayConfigInfoList()

findAllObjectsOfType(

SERVICE_TYPE_DMS_DISPLAY_CONFIG_FACTORY.value)

narrow(obj)

getID()

getObject(factoryID)

[* for

each

factory]

objectAdded(dmsID, webDMS)

objectAdded(factoryID, webDMSDisplayConfigFactory)

objectAdded(dispConfID, DMSDisplayConfig)

[DMS

Display

Config

not found]

DMSFactory

WebChart2DMS

Factory

objectUpdated(dmsID)

[WebDMS

not found]

createDMS(dmsInfo, m_dataModel, m_sysContextProvider)

WebDMS

DiscoverDMS

ClassesCommand

DiscoverDMS

ClassesCommand TraderGroup

DMSFactory

Helper DataModel

discoverDMSClasses()

org.omg.CORBA.Object[]

DMSDisplayConfigFactory

create(factory, factoryID, factory.getName())

WebDMSDisplayConfigFactory or null

create(dmsInfo.dmsID)

CHART R10 Detailed Design – Rev 3 10-167 08/14/2012

10.12.8 WebChart2DMS:updateConfig (Sequence Diagram)

This diagram shows the processing when the CHART2DMSConfiguration is updated,

which can happen during discovery or as a result of CORBA events being pushed. If the

CORBA event param is null or the event type indicates a config change, the WebArbQueue

is updated, the entire Chart2DMSConfiguration is replaced within the

WebChart2DMSConfiguration wrapper object, and the GIF encoder is set up again. If the

event is null, all of the WebDMSTravInfoMsg objects are replaced and their GIF files are

regenerated. If these objects are not replaced but the GIF encoder was updated, the GIFs

managed by all of the WebDMSTravInfoMsg objects are updated. If the event type

indicates a DMSTravInfoMsg was added, a new WebDMSTravInfoMsg is created and

added to the cache. If a message was updated, the WebDMSTravInfoMsg is called to

update itself and update the GIF file it manages. If a message was removed, the

corresponding WebDMSTravInfoMsg is removed from the cache. Finally if a message was

added, changed, or removed, the array of DMSTravInfoMsg within the

Chart2DMSConfiguration is replaced with the array from the new configuration.

updateGIF()

Replace cached msg

Replace m_travInfoMsgList

array in cached Chart2DMSConfiguration

with array from new configuration.

Updates the GIF file for all cached

WebDMSTravInfoMsg objects, but does not

replace the WebDMSTravInfoMsg objects themselves.

See the updateGIF sequence diagram.

[dmsEvent != null and event type ==

msg added or changed or removed]

See Note

R10 updated this

comment.

[dmsEvent == null or dms event type == DMSConfigChanged]

setupGIFEncoder()

System

WebChart2DMS

updateConfig(

newConfig,

dmsEvent)

Replaces all WebDMSTravInfoMsg objects

and rebuilds associated GIF images. See

setupDMSTravInfoMsgs sequence diagram

[new WebDMSTravInfoMsg created]

Add To Cache

[dmsEvent != null and event type == msg removed]

Remove WebDMSTravInfoMsg From Cache

[dmsEvent != null and GIF encoder setup]

[* for each msg]

getTrueDisplayMgr().updateGIF()

[dmsEvent == null]

setupDMSTravInfoMsgs()

WebArbQueue

WebChart2DMS

Configuration

Set up the GIF encoder

conditionally for efficiency, since

not all changes will require a new

GIF encoder (only if display configuration

changes) but if a new GIFEncoder is

created, the WebDMSTravInfoMsg images

need to be updated.

[dmsEvent == null or

dms event type ==

DMSConfigChanged]

update()

[dmsEvent == null or dms event type == DMSConfigChanged]

updateConfig(config)

DMSTravInfoMsg

TrueDisplayMgr

The dmsEvent parameter

will be null if the method

is not called from event

processing code (e.g., from

discovery code). If null,

it signifies to replace the

whole configuration.

[dmsEvent != null and event type == msg added]

create(dms, msg, dataModel)

[dmsEvent != null and event type == msg changed]

update(msg)

WebDMSTravInfoMsg

CHART R10 Detailed Design – Rev 3 10-168 08/14/2012

10.12.9 WebDMS:updateTrueDisplayImage (Sequence Diagram)

This diagram shows the processing used to update the DMS True Display image for a

DMS. The DMSDisplayConfig (new for R10) is retrieved from the configuration. This

object contains information about display properties for the DMS, including its font and is

used when creating the true display image. Different processing occurs depending on

whether or not the status indicates a pixel test is in progress. If a pixel test is in progress, a

MulitMsgGIFEncoder is created and its encodePixelTestImage method is called to create

an image that shows a pixel test in progress. DMSImageFileInfo is created and saved. If a

pixel test is not in progress, a MultiMsgGIFEncoder is created and its encodeImage method

is called to create the image that represents the MULTI. A DMSImageFileInfo object is

created and saved.

[not

performing

pixel

test]

createMultiMsgGIFEncoder(DMSDisplayConfig)

encodePixelTestImage(beaconsEnabled, "", m_filenameBase, dynImageDir)

create

[m_status.m_performingPixelTest == true]

encodePixelTestImage(dispConfig, beaconState)

DMSImageFileInfo

createImage(dispConfig, multi, beaconState, 0)

create

File

saveImageFileInfo(info)

New for R10

Changed in R10

Changed in R10

MultiMsgGIFEncoder

MultiConverter

DMSImageFileInfo

DMSImageFileInfo

createMultiMsgGIFEncoder(DMSDisplayConfig)

create

encodeImage(multi, beaconsEnabled, startPageIdx,"", fileNameBase, dynImageDir)

File

multiToPlaintext(multi)

String

create

saveImageFileInfo(info)

This processing is performed if a pixel test is not in progress

WebDMS

WebDMS WebDMSConfiguration DMSTrueDisplayMgr

MultiMsgGIFEncoder

DMSImageFileInfo

updateTrueDisplayImage()

getDisplayConfig()

DMSDisplayConfig

CHART R10 Detailed Design – Rev 3 10-169 08/14/2012

10.12.10 WebDMSPlanItem:updateGIF() (Sequence Diagram)

This diagram shows the processing done by the WebDMSPlanItem to create/update its true

display image that is used to show the user the message specified in the plan item as it will

appear on the DMS specified in the plan item. This image is shown in the list of DMS plan

items in a plan. The DMS and stored message ID are retrieved and the stored message ID

is used to find the WebDMSStoredMessage in the GUI cache. If the message cannot be

found the DMSTrueDisplayMgr is called to clear the image to prevent displaying an

incorrect message. Otherwise, the message text is obtained in addition to the beacon state.

The message text is converted to MULTI if it is plain text using the display configuration of

the DMS specified in the plan item. The DMSTrueDisplayMgr is then called to create an

image using the MULTI and the DMS display configuration.

WebDMSPlanItem

WebDMSPlanItem WebMessageLibrary DMSTrueDisplayMgr WebDMSStoredMessage

WebDMSMessage

Formats message using DMS

Display Configuration

updateGIF()

getDMS()

getStoredMsgID()

findStoredMessage(dataModel,

storedMsgID)

WebDMSStoredMsg or null

[stored message not found]

clearCurrentFileInfo()

[stored message not found]

return

[no DMS]

return

getDMSMessage()

DMSMessage

create(dmsMsg)

getBeaconState()

boolean

getMulti(WebDMSConfiguration)

MULTI

getMessageText()

[isMessageTextMulti() == true]

MULTI

getMultiMessage(msgText,

DMSDisplayConfig)

createImage(DMSDisplayConfig, multi, beaconState, 0)

DMSImageFileInfo

CHART R10 Detailed Design – Rev 3 10-170 08/14/2012

10.13 chartlite.data.notification-data

10.13.1 chartlite.data.notification_classes (Class Diagram)

This diagram shows classes related to the caching of notification records and recipients, and

the maintenance of the cache.

10.13.1.1 BasePushConsumer (Class)

This is a base class for push consumers. Derived classes must implement

handleEventData().

10.13.1.2 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one

or more times.

10.13.1.3 Notification (Class)

The Notification interface is implemented by objects that allow execution of tasks

associated with active notifications.

10.13.1.4 NotificationDiscoveryCmd (Class)

This class periodically discovers the notification classes and event channels.

Updated in R10

Will change WebNotificationRecipient to an interface

in the implementation, as previously designed, but not

followed. Nothing really differed between indiv iduals

and groups with regards to method implementations in

the initial implementation.

Changed in R10 to handle contact and

group management events.

Updated for R10

Indiv iduals is now an array of WebNotificationContacts

Added methods for maintaining contacts and groups in the cache.

*1

WebNotificationAgency WebNotificationPerson

NotificationRecord

«datatype»

1

1

WebNotification

1

Notification

«interface»

1

NotificationRecipientData

1

1

WebUniquelyIdentifiable

«interface»

WebNotificationGroup WebNotificationIndividual

WebNotificationRecord

WebNotificationRecipient

«interface»

WebNotificationIndividualStatus

*

java.util.TimerTask

NotificationDiscoveryCmd

BasePushConsumer

1

1

WebNotificationCache

*

New For R10

NotificationPushConsumer

*1

QueueableCommand

«interface»

handleEventData(data:Any):void

handleNotificationRecordAdded(notificationInfo:Any) : void

handleNotificationRecordUpdated(notificationInfo:Any) : void

handleNotificationRecordTakenOffline(recordID:byte[]) : void

handleNotificationContactAdded(contactData:NotificationContactData): void

handleNotificationContactUpdated(contactData:NotificationContactData): void

handleNotificationContactRemoved(contactID:byte[]):void

handleNotificationGroupAdded(groupData:NotificationGroupData):void

handleNotificationGroupUpdated(groupData:NotificationGroupData):void

handleNotificationGroupRemoved(groupID:byte[]):void

getName() : String

getLastStatusTime() : Date

getLastStatusDesc() : String

successful() : boolean

failed() : boolean

getID() : Identifier

getTimestamp() : Date

getText() : String

getEventID() : Identifier

getOpCtrID() : Identifier

getOpCtrName() : String

getAuthor() : String

getStatusDesc() : String

getSelectedRecipients() : WebNotificationRecipient[]

getIndiv idualStatus() : WebNotificationIndiv idualStatus[]

updateCachedData(data:NotificationRecord) : void

m_notificationConsumer : NotificationPushConsumer

get() : WebNotificationCache

getNumCachedNotificationRecords(includeEventNotifications:boolean) : int

getAllCachedNotificationRecords() : WebNotificationRecord[]

getCachedNotificationRecord(id:Identifier) : WebNotificationRecord

getLatestNotificationRecord(optionalAuthor:String, isStandaloneRecord:Boolean) : WebNotificationRecord

getNotificationRecordsForTrafficEvent(eventID:Identifier) : WebNotificationRecord[]

getNotificationGroups() : WebNotificationGroup[]

getNotificationIndiv iduals() : WebNotificationIndiv idual[]

updateNotificationRecords(factoryRecords:HashMap<Identifier, NotificationRecord[]>) : void

updateNotificationRecipients(recipients:NotificationRecipientData[]) : void

notificationRecordAdded(record:NotificationRecord) : void

notificationRecordChanged(record:NotificationRecord) : void

notificationRecordTakenOffline(recordID: Identifier) : void

notificationContactAdded(contactData:NotificationContactData): void

notificationContactRemoved(contactID: Identifier): void

notificationGroupAdded(groupData:NotificationGroupData): void

notificationGroupRemoved(groupID: Identifier): void

m_cachedNotificationRecords : WebNotificationRecord[]

m_notificationRecordMap: HashMap{Identifier,WebNotificationRecord}

m_lastFactoryContactTimes : HashMap{Identifier,Date}

m_cachedGroups : WebNotificationGroup[]

m_cachedIndiv iduals : WebNotificationContact[]

m_systemContextProvider: SystemContextProvider

getName() : String

isGroup() : boolean

getJSONObject() : JSONObject

m_groupData: NotificationGroupData m_indiv idualData:NotificationContactData

getName():String

compareTo():int

getJSONObject():JSONObject

getName():String

compareTo():int

getJSONObject():JSONObject

getNotificationRef() : Notification

CHART R10 Detailed Design – Rev 3 10-171 08/14/2012

10.13.1.5 NotificationPushConsumer (Class)

This class handles CORBA events pushed on the notification event channel.

10.13.1.6 NotificationRecipientData (Class)

This object contains the data that is returned as a result of an object get recipient (groups or

contacts) request.

10.13.1.7 NotificationRecord (Class)

This object contains the data for an entry in the notification record which represents a

notification message in the CHART DB

10.13.1.8 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a

CommandQueue for asynchronous execution. Derived classes implement the execute

method to specify the actions taken by the command when it is executed. This interface

must be implemented by any device command in order that it may be queued on a

CommandQueue. The CommandQueue driver calls the execute method to execute a

command in the queue and a call to the interrupted method is made when a

CommandQueue is shut down.

10.13.1.9 WebNotification (Class)

This interface wraps a Notification interface from the IDL, which supports the querying and

sending of notification messages.

10.13.1.10 WebNotificationAgency (Class)

This class represents a notification recipient that is an agency.

10.13.1.11 WebNotificationCache (Class)

This class represents the cache of notification records in the GUI. The cache will contain

records for the last N hours, and also notifications sent for any online (open or closed)

traffic events.

10.13.1.12 WebNotificationGroup (Class)

This class represents a notification group that is configured in the notification COTS tool.

10.13.1.13 WebNotificationIndividual (Class)

This class represents an individual notification recipient.

10.13.1.14 WebNotificationIndividualStatus (Class)

This class represents the most recent status for the notification of an individual.

CHART R10 Detailed Design – Rev 3 10-172 08/14/2012

10.13.1.15 WebNotificationPerson (Class)

This class represents a notification contact that is a person.

10.13.1.16 WebNotificationRecipient (Class)

This class represents a notification recipient (group or individual).

10.13.1.17 WebNotificationRecord (Class)

This contains details about an attempt to notify some selected recipients.

10.13.1.18 WebUniquelyIdentifiable (Class)

This interface provides functionality for GUI objects that represent UniquelyIdentifiable

objects as defined in the IDL.

CHART R10 Detailed Design – Rev 3 10-173 08/14/2012

10.13.2 chartlite.data.notification.DiscoverNotificationClassesCommand:getMan

agerIndividuals (Sequence Diagram)

This diagram shows the processing that occurs when individuals are retrieved from a

notification manager and cached in the GUI. Individuals are either an agency or person.

The contacts are added to the GUI's NotificationCache's notification individuals HashMap.

This diagram shows the processing that occurs when individuals are retrieved from a notification manager

and cached in the GUI. Individuals are either an agency or person. The contacts are added to the GUI's NotificationCache's

notification individuals HashMap

DiscoverNotificationClassesCommand DiscoverNotificationClassesCommand NotificationManager

getManagerIndividuals(individualsMap:HashMap, mgr:NotificationManager)

getIndividuals(token:byte[])

NotificationContactData[]

[for each

NotificationContactData]

WebNotificationAgency

WebNotificationPerson

HashMap

[contactType agency]

new

[contactType person]

new

add(contactId:Identifier, contact:WebNotificationContact)

CHART R10 Detailed Design – Rev 3 10-174 08/14/2012

10.13.3 chartlite.data.notification:discoverNotificationClasses (Sequence

Diagram)

This diagram shows how the discovery of notification event channels and notification

classes will occur. The notification event channels are queried from the trading service(s)

and are connected to the push consumer. Next the Notification interface objects (i.e., the

"factory" objects) are queried. The returned CORBA reference is narrowed to a

Notification reference and is wrapped in a WebNotification object, and stored in the

DataModel cache. All online notification records are queried from the notification service

and are stored in a hash map along with the factory ID. The individuals and groups are also

queried and put into a recipient hash map. When all factories have been queried, the

WebNotificationCache is called to update its cached records and recipients. See the

updateNotificationRecords diagram for details.

Replace Recipients

In Cache

getGroups()

getIndiv iduals()

updateRecipients(notificationRecipientDataList)

NotificationRecordIterator

getMoreRecords()

Set Groups And Indiv iduals

Into Recipient HashMap

Keyed on ID

getRecords()

[* while

has more records]

[* for each

object returned]
Get all online notification records.

NotificationRecord[]

NotificationManager

WebNotification

org.omg.CORBA.Object[]

NotificationManager

getObject(id)

[not found]

create

number of channels added

DiscoverNotification

ClassesCommand

execute

NotificationManagerHelper DataModel

findAllObjectsOfType(

SERVICE_TYPE_NOTIFICATION_MGR.value)

narrow

getID()

WebNotification or null

[WebNotification created]

objectAdded()

This queries the trading service

for event channels and adds them to

the event consumer group.

Discovery

Driver
TraderGroup

destroy()

discoverEventChannelsOfName(

eventConsumerGroup,

channelName, pushConsumer)

NotificationRecipientData[]

NotificationRecordQueryResults

Add records to HashMap,

keyed by factory ID

WebNotificationCache

NotificationRecipientData[]

updateNotificationRecords(factoryRecordsMap)

get

See the updateNotificationRecords

sequence diagram for details.

CHART R10 Detailed Design – Rev 3 10-175 08/14/2012

10.14 chartlite.data.templates-data

10.14.1 GUIMessageTemplateDataClasses (Class Diagram)

This diagram shows GUI classes related to decision support and traveler information

message template data.

10.14.1.1 DynamicImageFileKeeper (Class)

This interface allows an object to keep dynamic image files from being deleted by the

DynImageCleanupTask, which periodically deletes files that are no longer needed.

10.14.1.2 WebDMSDecSuppMsgTemplate (Class)

This class wraps the DMSDecSuppMsgTemplate CORBA object representing a decision

support DMS message template. It caches the data represented by the remote object and

provides accessors for easy access to the cached data.

10.14.1.3 WebDMSDecSuppMsgTemplateConfig (Class)

This class wraps the DMSDecSupportMsgTemplateConfig CORBA structure representing

the configuration for a decision support DMS message template. This class provides

accessor methods for use in the GUI.

For R10, changed to use

DMSTrueDisplayMgr instead of

MultiMsgGIFEncoder.

DynamicImageFileKeeper

«interface»

1

WebDMSMsgTemplate

WebUniquelyIdentifiable

«interface»

WebDMSTravInfoMsgTemplate

1

WebDMSDecSuppMsgTemplate

1

WebMessageTemplateFactoryWrapper

1

1

WebDMSTravInfoMsgTemplateConfig WebDMSDecSuppMsgTemplateConfig

*

createDMSMsgTemplate(token:byte[], config:DMSMsgTemplateConfig) : WebDMSMsgTemplate

updateCachedTemplatesAndFormats() : void

getCachedDMSMsgTemplates() : WebDMSMsgTemplate[]

getCachedTollRateTimeFormats() : WebTollRateTimeFormat[]

getCachedTravelTimeFormats() : WebTravelTimeFormat[]

getCachedTravelTimeRangeFormats() : WebTravelTimeRangeFormat[]

getCachedTollRateFormats() : WebTollRateFormat[]

getCachedDistanceFormats() : WebDistanceFormat[]

get() : WebMessageTemplateFactoryWrapper

addTemplateToCache(template : WebDMSMsgTemplate) : void

removeTemplateFromCache(id : Identifier) : void

getCachedDMSMsgTemplate(id : Identifier) : WebDMSMsgTemplate

hasTemplateWithDescription(desc : String, idToExclude : Identifier) : boolean

m_wrapper : FirstAvailableOfferWrapper

m_dmsMsgTemplates : Hashtable

m_tollRateTimeFormats : WebTollRateTimeFormat[]

m_travelTimeFormats : WebTravelTimeFormat[]

m_travelTimeRangeFormats : WebTravelTimeRangeFormat[]

m_tollRateFormats : WebTollRateFormat[]

m_distanceFormats : WebDistanceFormat[]

WebDMSTravInfoMsgTemplate(id : Identifier,

 config : DMSTravInfoMsgTemplateConfig,

 ref : DMSTravInfoMsgTemplate)

getConfig() : WebDMSTravInfoMsgTemplateConfig

getRef() : DMSTravInfoMsgTemplate

updateCachedData(config : DMSTravInfoMsgTemplateConfig) : void

m_ref : DMSTravInfoMsgTemplate

areBeaconsEnabled() : boolean

getMulti() : String

getNumCharsPerRow() : int

getNumRows() : int

getRawConfig() : DMSMsgTemplateConfiguration

getTemplatePatgeHTMLTable(pageNum,

 DMSMessagePageInfo[]) : String

getTemplateType() : WebMessageTemplateType

getTrueDisplayImageFileInfo() : DMSImageFileInfo

hasBeacons() : boolean

updateTrueDisplayImage() : void

m_dmsTrueDisplayMgr : DMSTrueDisplayMgr

getName() : String

getNumRows() : int

getNumCols() : int

getNumPages() : int

getMessage() : String

getTravelTimeFormat() : WebTravelTimeFormat

getTravelTimeRangeFormat() : WebTravelTimeRangeFormat

getTollRateFormat() : WebTollRateFormat

getTollRateTimeFormat() : WebTollRateTimeFormat

getDistanceFormat() : WebDistanceFormat

isDestTagAlignmentLeft() : boolean

isDestTagAlignmentRight() : boolean

isDestTagAlignmentCenter() : boolean

isRowDiscardedIfRouteDataMissing() : boolean

isPageDiscardedIfRouteDataMissing() : boolean

isMessageDiscardedIfRouteDataMissing() : boolean

getPageOnTimeTenths() : int

getPageOffTimeTenths() : int

update(config : DMSTravInfoMsgTemplateConfig) : void

m_config : DMSTravInfoMsgTemplateConfig

WebDMSDecSuppMsgTemplate(id : Identifier,

 config : DMSDSMsgTemplateConfiguration,

 ref : DMSDecSuppMsgTemplate)

getConfig() : WebDMSDecSuppMsgTemplateConfig

getRef() : DMSDecSuppMsgTemplate

m_ref : DMSDecSuppMsgTemplate

getDesc() : String

getDistTypesSupported() : WebDistanceType[]

getEventTypesSupported() : WebTrafficEventType[]

getMaxColumnsSupported() : int

getMessageText() : String

getProximitiesSupported() : WebProximityInfo[]

getRawConfig() : DMSDecSuppMsgTemplateConfig

isDistanceTypeSupported(distanceType : WebDistanceType): boolean

isEventTypeSupported(trafficEventType : WebTrafficEventType): boolean

isProximitySupported(proximityType : WebProximityInfo): boolean

useBeacons boolean()

update(config : DMSDSMsgTemplateConfiguration) : void

m_config : DMSDSMsgTemplateConfiguration

CHART R10 Detailed Design – Rev 3 10-176 08/14/2012

10.14.1.4 WebDMSMsgTemplate (Class)

This class provides common functionality for DMS message templates.

10.14.1.5 WebDMSTravInfoMsgTemplate (Class)

This class wraps the DMSTravInfoMsgTemplate CORBA object representing a message

template. It caches the data represented by the remote object and provides accessors for

easy access to the cached data.

10.14.1.6 WebDMSTravInfoMsgTemplateConfig (Class)

This class wraps the DMSTravInfoMsgTemplateConfig CORBA structure and provides

accessor methods for use in the GUI.

10.14.1.7 WebMessageTemplateFactoryWrapper (Class)

This class provides access to functionality provided by the MessageTemplateFactory

CORBA objects in the system. It is also used to store cached data from the factories

including the data formats and message templates in the system.

10.14.1.8 WebUniquelyIdentifiable (Class)

This interface provides functionality for GUI objects that represent UniquelyIdentifiable

objects as defined in the IDL.

CHART R10 Detailed Design – Rev 3 10-177 08/14/2012

10.14.2 GUIMessageTemplateDataClasses2 (Class Diagram)

This diagram shows classes related to message templates.

10.14.2.1 BasePushConsumer (Class)

This is a base class for push consumers. Derived classes must implement

handleEventData().

10.14.2.2 DiscoverTemplateClassesCmd (Class)

This class is called to periodically discover message template classes from the trading

service and CHART Message Utility Service.

10.14.2.3 DMSDecSupMsgDataSupplier (Class)

This interface is implemented by objects that will supply decision support data for the

purpose of generating a DMS message template suggestion. The data supplied could be

"dummy" data which would be the case for editing a decision support dms message

template. The data represents a DMS / Event pair.

10.14.2.4 MessageTemplatePushConsumer (Class)

This class receives CORBA events related to message templates.

There are no changes for R10 on this diagram

WebTemplateTagFormat

WebDMSDecSuppMsgTemplateSampleData

DiscoverTemplateClassesCmd

WebTollRateFormat

WebDistanceFormat

WebTravelTimeRangeFormat

BasePushConsumer

The template tag values are

configurable based on values

in the MainServ let.props file.

DMSDecSupMsgDataSupplier

«interface»

QueueableCommand

«interface»

WebTollRateTimeFormat

WebTravelTimeFormat

MessageTemplatePushConsumer

getEventType() :short

getInc identType() :short

getRouteInfo() :RouteInfo

getRouteDir() : short

getExitProximity() : IntersectingFeatureProximityType

getExitInfo() : ExitInfo

getLaneConfiguration() : LaneConfiguration

getSignWidthColumns() : short

m_props : Serv letProperties

m_format : TollRateFormat

getExample() : String

getID() : Identifiable

getLength() : int

getName() : String

m_format : DistanceFormat

handleDMSTravInfoMsgTemplateAdded(info : DMSTravInfoMsgTemplateInfo) : void

handleDMSTravInfoMsgTemplateConfigChanged(info : DMSTravInfoMsgTemplateInfo) : void

handleMessageTemplateRemoved(id : byte[]) : void

m_format : TravelTimeRangeFormat

m_format : TravelTimeFormat

m_format : TollRateTimeFormat

CHART R10 Detailed Design – Rev 3 10-178 08/14/2012

10.14.2.5 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a

CommandQueue for asynchronous execution. Derived classes implement the execute

method to specify the actions taken by the command when it is executed. This interface

must be implemented by any device command in order that it may be queued on a

CommandQueue. The CommandQueue driver calls the execute method to execute a

command in the queue and a call to the interrupted method is made when a

CommandQueue is shut down.

10.14.2.6 WebDistanceFormat (Class)

This class wraps the DistanceFormat structure describing a specific format for distance (or

route length) template tags.

10.14.2.7 WebDMSDecSuppMsgTemplateSampleData (Class)

This class will provide tag data for the purpose of generating a DMS message template

sample message. The data is supplied by the ServletProperties class and is configurable.

10.14.2.8 WebTemplateTagFormat (Class)

This is a base class for traveler information message template tags.

10.14.2.9 WebTollRateFormat (Class)

This class wraps the TollRateFormat structure describing a specific format for toll rate

template tags.

10.14.2.10 WebTollRateTimeFormat (Class)

This class wraps the TollRateTimeFormat structure describing a specific format for toll rate

time template tags.

10.14.2.11 WebTravelTimeFormat (Class)

This class wraps the TravelTimeFormat structure describing a specific format for route

travel time template tags.

10.14.2.12 WebTravelTimeRangeFormat (Class)

This class wraps the TravelTimeRangeFormat structure describing a specific format for

route travel time range template tags.

10.14.3 WebDMSMsgTemplate:updateTrueDisplayImage (Sequence Diagram)

This diagram shows the processing to update the "true display" image for a DMS message

template. When something changes in the template that would require a new image to be

rendered, updateTrueDisplayImage() is called. If there is a previously-cached

CHART R10 Detailed Design – Rev 3 10-179 08/14/2012

DMSDisplayConfig matching the template's number of rows, columns, and beacons flag, it

will be used; otherwise, a static call is made to DMSDisplayConfig to create a default

character matrix display configuration with the given number of rows and columns. This

calls the DMSFontFactory, which loads the default font if not already cached, and then

creates a new DMSDisplayConfig object, which is cached in the template for later use.

The DMSTrueDisplayMgr class is called to create the true display image, using the

DMSDisplayConfig and the current message and beacon state.

DMSFont

create

DMSDisplayConfig

[matching DMSDisplayConfig

already cached]

Cache For Later Use

DMSImageFileInfo

WebDMSMsg

Template

WebDMSMsgTemplate

DMSTrueDisplayMgr

updateTrueDisplayImage()

getMulti()

createImage(dispConfig, multi, beaconsEnabled, 0)

DMSDisplayConfig DMSFontFactory

This will load the default

char matrix font, if not

already loaded.

DMSDisplayConfig

getNumRows()

getNumCols()

hasBeacons()

createDefaultCharMatrixDisplayConfig(

 name, numRows, charsPerRow,

hasBeacons)

getDefaultCharMatrixFont()

areBeaconsEnabled()

CHART R10 Detailed Design – Rev 3 10-180 08/14/2012

10.15 chartlite.data.video-data

10.15.1 GUIVideoDataClasses (Class Diagram)

This diagram shows GUI data classes related to video management.

10.15.1.1 DynListSubject (Class)

This interface is implemented by classes that wish to be capable of being displayed in a

dynamic list.

10.15.1.2 WebAORAssociatable (Class)

This interface describes an object that can have associated areas of responsibility.

10.15.1.3 WebAutoModeTourEntry (Class)

This class is used to wrap a AutoModeTourEntryInfo IDL struct. This class allows auto

mode tour entry related data to be cached in the CHART GUI servlet and to allow the

cached data to be accessed within Velocity templates.

1

1

WebControllableCamera

WebAutoModeTourEntry

R10. Updated

createCopy() method

to support new

AutoModeSettings.

WebMonitor

Updated for R10 Temp Presets

WebAORAssociatable

«interface»

1

*

*

New for R10.

Updated for R10 for new AutoMode

feature. New WebAutoModeTourEntry

array member and updateConfig() and

updateStatus() updated to handled new

auto mode related memebers for each.

Added getAssociatedAORs method.

WebCameraPreset

WebCameraTempPreset

WebVideoControlFlashStatus

* 1

WebVideoSource

WebDevice

«interface»

1

WebCameraConfig

NOTE: only the portions of the video classes

relevant to the location changes in R3B3 and later

 are shown here, as all existing GUI video

data classes would fill more than one class diagram.

1

WebCamera

WebVideoSink

WebVideoSourceConfig

WebObjectLocationSupporter

«interface»

WebVideoProviderConfig

1

*WebVideoControlFlashConfig

DynListSubject

«interface»

WebVideoProvider

WebUniquelyIdentifiable

«interface»

1

WebMonitorConfig

WebVideoSinkConfig

1 1

getID() : Identifier

getName() : String

isOffline() : boolean

isOnline() : boolean

isInMaintMode() : boolean

isHardwareFailed() : boolean

isCommFailed() : boolean

isCommMarginal() : boolean

getSFSHost() : String

streamExists() : boolean

isStreamBlocked() : boolean

setBlocked(blocked : boolean) : void

m_status : VideoControlFlashStatus

getVideoFabrics():WebVideoFabric[]

PROPERTY_NAME

PROPERTY_DESCRIPTION

PROPERTY_REGION

PROPERTY_LOCATION

PROPERTY_LOCAL_DISPLAYS

PROPERTY_STATUS

PROPERTY_OWNER

PROPERTY_CONTROLLED_BY

PROPERTY_ROUTE

PROPERTY_DIRECTION

PROPERTY_COUNTY

PROPERTY_MILE_POST

PROPERTY_CONN_SITE

getLocation() : WebObjectLocation

m_config: VideoSinkConfig

getSourceConfig() : WebVideoSourceConfig

getFlashStreamingStatus(sfsHost : String) : WebVideoControlFlashStatus

setBlockedToPublic(blocked : boolean) : void

ctor(CameraPreset : ps)

getDesc() : String

getNumber() : int

isDefault() : boolean

isDefined() : boolean

m_cameraPreset : CameraPreset

createCopy() : WebMonitorConfig

m_config : MonitorConfig

ctor(CameraTemporaryPreset : tp)

getDesc() : String

getNumber() : int

getId() : Identifier

getOwnerId() :Identifier

getOwnerType() :

 CameraTempPresetOWnerType

m_cameraTempPreset :

 CameraTemporaryPreset

getSendingDeviceConfigAry():WebVideoTransmissionDeviceConfig[]

copyVideoProviderConfig(src:VideoProviderConfig):VideoProviderConfig

getVideoCameraRef() : VideoCamera

getCameraConfig() : WebCameraConfig

updateConfig(config : VideoCameraConfig) : void

getLocationString() : String

m_camera : VideoCamera

getConfig(): WebVideoSinkConfig

PROP_NAME

PROP_OWNER

PROP_GROUPS

PROP_STATUS

PROP_CURRENT_DISPLAY

PROP_CONN_SITE

PROP_AORS

m_config: WebVideoSinkConfig

getFlashStreamingConfig(): WebVideoControlFlashConfig[]

m_config: VideoSourceConfig

ctor(ControllableVideoCamera : cam, Identifier : id,

 WebControllableCameraConfig : config,

 ControllableVideoCameraStatus : status,

 DataModel : dm)

getCamera() : ControllableVideoCamera

getPresets() : WebCameraPreset[]

getTempPresets() : WebCameraTempPreset[]

getTitle() : Sting

m_camera : ControllableVideoCamera

m_presets : ArrayList<WebCameraPreset>

m_tempPresets :

 ArrayList<WebCameraTempPreset>

getLocation() : WebObjectLocation

getLocationString() : String

setConfig(config : VideoCameraConfig) : void

m_config : VideoCameraConfig

getHostnameOrIPAddress():String

getPort():Int

getPassword():String

isPublic() : boolean

m_flashConfig:VideoControlFlashConfig

getVideoSourceId() : Identifier

getVideoSourceName() : String

getPresetNum() : Integer

getTempPresetId() : Identifier

hasPreset() : boolean

hasTempPreset() : boolean

getOwnerId() : Identifier

getOwnerName String()

m_entry : AutoModeTourEntryInfo

ctor(Monitor : mon, Identifier id,

 WebMonitorConfig : config,

 MonitorStatus : status,

 DataModel : dm)

isAutoModeEnabled() : boolean

getAutoModeDwellTimeSecs() : int

updateStatusMonitorStatus status()

updateConfigMonitorConfig config()

getAutoModeTourList

 ()WebAutoModeTourEntry[]()

getAssociatedAORS(): AOR[]

m_monitor : Monitor

m_autoModeTourList :

 ArrayList<WebAutoModeTourEntry>

CHART R10 Detailed Design – Rev 3 10-181 08/14/2012

10.15.1.4 WebCamera (Class)

This class is a wrapper for a VideoCamera CORBA object, used to cache data in the GUI

object cache and provide access to the VideoCamera configuration and status data on web

pages.

10.15.1.5 WebCameraConfig (Class)

This class wraps the VideoCameraConfig structure defined in the IDL and provides

accessor methods.

10.15.1.6 WebCameraPreset (Class)

This class wraps a CameraPreset IDL struct and provides access to its members.

10.15.1.7 WebCameraTempPreset (Class)

This class wraps a CameraTemporaryPreset IDL struct and provides access to its members.

10.15.1.8 WebControllableCamera (Class)

This class wraps a ControllableVideoCamera IDL interface and various other wrapper

classes. It provides access to its members and other helper methods.

10.15.1.9 WebDevice (Class)

This interface contains common functionality for CHART devices.

10.15.1.10 WebMonitor (Class)

This class is used to wrap a Monitor Interface. It extends WebVideoSink. This class

allows monitor related data to be cached in the CHART GUI servlet and to allow the

cached data to be accessed within Velocity templates.

10.15.1.11 WebMonitorConfig (Class)

This class is used to wrap a MonitofConfig object to allow it to be cached in the CHART

GUI servlet and to allow the cached data to be accessed within Velocity templates.

10.15.1.12 WebObjectLocationSupporter (Class)

This interface allows common processing for objects supporting an ObjectLocation via the

WebObjectLocation wrapper class.

10.15.1.13 WebUniquelyIdentifiable (Class)

This interface provides functionality for GUI objects that represent UniquelyIdentifiable

objects as defined in the IDL.

10.15.1.14 WebVideoControlFlashConfig (Class)

This class wraps a VideoControlFlashConfig struct for display on a web page.

CHART R10 Detailed Design – Rev 3 10-182 08/14/2012

10.15.1.15 WebVideoControlFlashStatus (Class)

This class contains information about whether a video stream exists within an SFS server,

and whether it is currently blocked. Note that in R9, this is the last status known to

CHART, and does not take into account any externally issued blocking commands, as there

is no way of querying the SFS server via its API for stream existence or blocked status.

10.15.1.16 WebVideoProvider (Class)

This class wraps the VideoProvider CORBA reference and stores cached configuration and

status for fast local access.

10.15.1.17 WebVideoProviderConfig (Class)

This class wraps the VideoProviderConfig structure defined in the IDL and provides

accessor methods.

10.15.1.18 WebVideoSink (Class)

This class wraps the VideoSink CORBA reference and stores cached configuration and

status for fast local access.

10.15.1.19 WebVideoSinkConfig (Class)

This class is used to wrap a VideoSinkConfig object to allow it to be cached in the CHART

GUI servlet and to allow the cached data to be accessed within Velocity templates. For

R10, a method was added to return the associated areas of responsibility.

10.15.1.20 WebVideoSource (Class)

This class wraps the VideoSource CORBA reference and stores cached configuration and

status for fast local access.

10.15.1.21 WebVideoSourceConfig (Class)

This class wraps the VideoSourceConfig structure defined in the IDL and provides accessor

methods.

CHART R10 Detailed Design – Rev 3 10-183 08/14/2012

10.16 chartlite.servlet.aor-servlet

10.16.1 AORServletClasses (Class Diagram)

This diagram shows GUI classes involved in processing area of responsibility management

requests.

10.16.1.1 AORDynListSubject (Class)

This class implements the DynListSubject interface and contains fields for displaying areas

of responsibility in dynamic lists.

10.16.1.2 AORDynListSupporter (Class)

This class implements the DynListDelegateSupporter for creating dynamic lists of areas of

responsibility.

10.16.1.3 AORFormData (Class)

This class represents the form data used to add or edit an area or responsibility. It contains a

method for parsing the form data from the request object.

10.16.1.4 AORReqHdlr (Class)

This class handles requests related to area or responsibility management. This class

includes methods for adding, editing, and removing areas of responsibility.

10.16.1.5 AssociateAORFormData (Class)

This class represents the form data used to associate areas or responsibility with other

CHART objects. It contains a method for parsing the form data from the request object.

FolderEnabled

«interface»

WebAORAssociatable

«interface»

RemoveAORFormDataAssociateAORFormData

Added for R10.

AORFormData

AORReqHdlr

AORDynListSubjectAORDynListSupporter

DynListSubject

«interface»

DynListDelegateSupporter

«interface»

viewAORList(req: HttpServletReq, resp: HttpServletResponse,
 ctx: Context, supporter: RequestHandlerSupporter): String
sortAORList(req: HttpServletReq, resp: HttpServletResponse,
 ctx: Context, supporter: RequestHandlerSupporter): String
filterAORList(req: HttpServletReq, resp: HttpServletResponse,
 ctx: Context, supporter: RequestHandlerSupporter): String
setAORListColumnVisibility(req: HttpServletReq, resp: HttpServletResponse,
 ctx: Context, supporter: RequestHandlerSupporter): String
getAOREditorForm(req: HttpServletReq, resp: HttpServletResponse,
 ctx: Context, supporter: RequestHandlerSupporter): String
addAOR(req: HttpServletReq, resp: HttpServletResponse,
 ctx: Context, supporter: RequestHandlerSupporter): String
editAOR(req: HttpServletReq, resp: HttpServletResponse,
 ctx: Context, supporter: RequestHandlerSupporter): String
deleteAOR(req: HttpServletReq, resp: HttpServletResponse,
 ctx: Context, supporter: RequestHandlerSupporter): String

m_aorMgr: WebAORManager

+ctor(id Identifier, targetID: Identifier, aors: AOR[], associatedAORs: Identifier[])
getID(): Identifier
getTargetID(): Identifier
getAORs(): AOR[]
getAssociatedAORs(): AOR[]
getUnassociatedAORs(): AOR[]
parseFormData(req: HttpServletReq, supporter: RequestHandlerSupporter): void

m_formDataID: Identifier
m_targetID: Identifier
m_aors: AOR[]
m_associatedAORs: Identifier[]

m_aorMgr: WebAORManager

getAOR(): AOR

m_aor: AOR

getID(): Identifier
getAOR(): AOR
parseFormData(req: HttpServletReq, supporter: RequestHandlerSupporter): void

m_formDataID: Identifier
m_aor: AOR

getAssociatedAORs(): AOR[]
getDetailsAction(): String

+ctor(id Identifier, aorID: Identifier, associatables: Collection<WebAORAssociatable>)
getID(): Identifier
getAORID(): Identifier
getAssociatables(): WebAORAssociatable[]
getAssociatableTypeNames(): String[]
parseFormData(req: HttpServletReq, supporter: RequestHandlerSupporter): void

m_formDataID: Identifier
m_aorID: Identifier
m_associatables: WebAORAssociatable[]

CHART R10 Detailed Design – Rev 3 10-184 08/14/2012

10.16.1.6 DynListDelegateSupporter (Class)

This interface contains functionality to support the DynListReqHdlrDelegate

10.16.1.7 DynListSubject (Class)

This interface is implemented by classes that wish to be capable of being displayed in a

dynamic list.

10.16.1.8 FolderEnabled (Class)

This interface provides access to information about an object that can be stored in a folder.

10.16.1.9 RemoveAORFormData (Class)

This class represents the form data used to remove an area or responsibility from the

system. It contains a method for parsing the form data from the request object.

10.16.1.10 WebAORAssociatable (Class)

This interface describes an object that can have associated areas of responsibility.

10.16.2 AORReqHdlr:addAOR (Sequence Diagram)

This diagram shows the processing performed when the AORReqHdlr class receives a

request to add a new area of responsibility. First, the AORReqHdlr class invokes the

checkAccess method to see if the user has the rights to add a new area of responsibility. If

the user has the required rights, the formDataID is obtained from the request and used to

lookup the formData object in the temp object store. The AORReqHdlr class then invokes

the parseFormData method on the AORFormData class to parse the form data and check for

invalid data. The polygons request parameter contains GeoJSON which can be parsed to

return an array of Geometry objects. If the form data is valid, the AORReqHdlr class then

invokes the isDuplicate method on the AORManager to determine if an area or

responsibility with the same name already exists in the cache. If the name is unique, the

AORReqHdlr class then passes the AOR object to the GISMappingXMLHelper class

through the getCreateAORXML method which returns an XMLDocument representing the

area of responsibility. The XML is then posted to the GIS Mapping Web Service to create

the new area of responsibility. If the XML returned by the GIS Mapping Web Service

contains a status of success, the GISMappingXMLHelper class is used to convert the XML

back to an AOR object which is then added to the cache by invoking the aorAdded method.

The request is then redirected to view the areas of responsibility list page to display all

existing areas of responsibility including the one just added. If the XML returned by the

GIS Mapping Web Service contains a status of failure or an Exception is thrown, the Error

template will be returned in the response.

CHART R10 Detailed Design – Rev 3 10-185 08/14/2012

aorResponse

responseCode

[access denied]
Error Template

[formDataID is null]
Error Template

getTrimmedParameter(req, "color")

geometries

getTrimmedParameter(req, "polygons")

aor

The "polygons" request parameter
contains GeoJSON describing the
polygons for the AOR.

getGeometries(polygons)

[name or color or geometries is null
or geometries is zero length]

Error Template isDuplicate(null, name)

[is duplicate]
Error Template

addAOR(aor)

aor

getAOR()

getTrimmedParameter(req, "name")

checkAccess()

RequestHandlerSupporter TempObjectStore

AORFormData

getTempObjectStore()

getObject(formDataID)
aorFormData

[formData is null]
Error Template

content

parseFormData(req, supporter)

This is a generated
JAXB class.

XMLDocument

CreateAORResult

Add the AOR
to the cache.

getResponseCode()

[responseCode not equal to HTTP_OK]
Error Template getContent()

[content is null]

Error Template

aorXML

getCreateAORResult(aorXML)

Check if the user
has the rights to
add an AOR.

XMLHTTPResponse

[exception]

aorRequest

post(aorRequest)

GISMappingJAXBProvider

GISMappingXMLHelper

createAORResult

XMLHTTPRequest

Error Template

Redirect to AOR list page

getJAXBProvider()

getCreateAORXML(aor: AOR)

url

setSignatureKey(privateKey)

getXMLHelper()

xml: String

setClientID(clientID)

AORReqHdlr

ServletUtil

AORManager

addAOR(req: HttpServletReq, resp: HttpServletResponse,
 ctx: Context, supporter: RequestHandlerSupporter)

getTrimmedParameter(req, "formDataID")

getResultCode()

[resultCode not equal to SUCCESS]

Error Template getAOR(createAORResult)

aorAdded(aor)

CHART R10 Detailed Design – Rev 3 10-186 08/14/2012

10.16.3 AORReqHdlr:getAddAORForm (Sequence Diagram)

This diagram shows the processing performed when the AORReqHdlr class receives a

request to view the add area of responsibility form. First, the AORReqHdlr class invokes

the checkAccess method to see if the user has the rights to add a new area of responsibility.

If the user has the rights, the formDataID is created. A default area of responsibility form

data object is created and the formDataID is used to add the form data object to the temp

object store. The form data and page content are added to the Velocity context and the

request handler returns the template name in the response. If the user does not have the

rights to add an area of responsibility or an Exception is thrown, the Error template will be

returned in the response.

Check if the user
has the rights to
add an AOR.

aorFormData

[user does not have rights]
Error Template

tempObjectStore

AORReqHdlr

put("formData", aorFormData)

AORFormData

RequestHandlerSupporter TempObjectStore

getTempObjectStore()

createTempObjectID()
aorFormDataID

Context

getAddAORForm(req: HttpServletReq, resp: HttpServletResponse,
 ctx: Context, supporter: RequestHandlerSupporter)

checkAccess()

add(aorFormDataID, aorFormData)

put("pageContent", "AOREditor.vm")

CHART R10 Detailed Design – Rev 3 10-187 08/14/2012

10.16.4 AORReqHdlr:removeAOR (Sequence Diagram)

This diagram shows the processing performed when the AORReqHdlr class receives a

request to remove an area of responsibility. First, the AORReqHdlr class invokes the

checkAccess method to see if the user has the rights to remove an area of responsibility. If

the user has the required rights, the aorID is obtained from the request and used to lookup

the area of responsibility object in the AORManager cache. If the area of responsibility

object exists, the AORReqHdlr class then passes the ID of the area of responsibility to the

GISMappingXMLHelper class through the getDeleteAORXML method which returns an

XMLDocument representing the ID of area of responsibility. The XML is then posted to

the GIS Mapping Web Service to remove the area of responsibility. If the XML returned by

the GIS Mapping Web Service contains a status of success, the area of responsibility is

removed from the cache by invoking the aorRemoved method. The request is then

redirected to view the areas of responsibility list page to display all existing areas of

responsibility. If the XML returned by the GIS Mapping Web Service contains a status of

failure or an Exception is thrown, the Error template will be returned in the response.

removeAOR(aorID)

removeAOR(req: HttpServletReq, resp: HttpServletResponse,
 ctx: Context, supporter: RequestHandlerSupporter)

getIdentifierParam(req, "aorID")

[aorID is null]
Error Template

checkAccess()

Error Template

aorRemoved(aorID)

aorResponse

AORReqHdlr Check if the user has the
rights to remove an AOR.

WebAORManager ServletUtil

GISMappingJAXBProvider

GISMappingXMLHelper

Remove the AOR
from the cache.

XMLHTTPResponse

XMLHTTPRequest

XMLDocument

This is a generated
JAXB class.

DeleteAORResult

getAOR(aorID)

[aor is null]
Error Template

[exception]
Error Template

Redirect to AOR lis t page

getJAXBProvider()

getXMLHelper()

getDeleteAORXML(aorID: Identifier)
xml: String

url

aorRequest

setClientID(clientID)

setSignatureKey(privateKey)

[access denied]
Error Template

getResponseCode()

responseCode
[responseCode not equal to HTTP_OK]

Error Template getContent()
content

[content is null]
Error Template

aorXML

getDeleteAORResult(aorXML)
createAORResult

getResultCode()

[resultCode not equal to SUCCESS]

post(aorRequest)

CHART R10 Detailed Design – Rev 3 10-188 08/14/2012

10.16.5 AORReqHdlr:viewRemoveAORPage (Sequence Diagram)

This diagram shows the processing performed when the AORReqHdlr class receives a

request to view the remove AOR page. First, the AORReqHdlr class invokes the

checkAccess method to see if the user has the rights to remove an area of responsibility. If

the user has the rights, the aorID is obtained from the request and used to lookup the area of

responsibility object in the AORManager. The DataModel is queried to obtain the list of

WebAORAssociatable objects. For each WebAORAssociatable object, the list of associated

areas of responsibility is obtained. If the target area of responsibility is in the list, the

WebAORAssociatable object is added to a map of applicable objects. An ArrayList is

created that contains the list of applicable WebAORAssociatable objects. The target area of

responsibility, WebAORAssociatable object list, and page content are added to the Velocity

context. The request handler returns the template name in the response. If the user does not

have the rights to remove an area of responsibility or an Exception is thrown, the Error

template will be returned in the response.

HashMap

AOR

[for each webAORAssociatable object]

Check if the user has the
rights to remove an AOR.

AORReqHdlr

Context

put("associatedObjects", removeAORFormData)

[user does not have rights]
Error Template

viewRemoveAORPage(req: HttpServletReq, resp: HttpServletResponse,
 ctx: Context, supporter: RequestHandlerSupporter)

checkAccess()

put("pageContent", "RemoveAOR.vm")

ServletUtil

webAORAssociatableList

sort(webAORAssociatableList)

ArrayList Collections

getIdentifierParam(req, "aorID", null)

[aorID is null]
Error Template

ctor(webAORAssociatableMap.values())

webAORAssociatableMap

[for each associatedAOR]

getID()

put("aor", aor)

WebAORAssociatable

webAORAssociatables

<Identifier, WebAORAssociatable>

getAssociatedAORs()

[associatedAORID equals aorID]
add(webAORAssociatable.getID(), webAORAssociatable)

AORManager

RequestHandlerSupporter

ObjectCache

DataModel
getAOR(aorID)

aor
[aor is null]

Error Template
getObjectCache()

getDataModel()

getObjectsOfType(WebAORAssociatable.class)

associatedAORID

CHART R10 Detailed Design – Rev 3 10-189 08/14/2012

10.17 chartlite.servlet.servlet-dms

10.17.1 GUIDMSServletClasses (Class Diagram)

This diagram shows CHART GUI servlet classes related to dynamic message signs.

10.17.1.1 AddDMSFormData (Class)

This class represents the data in the Add DMS and Copy DMS forms.

10.17.1.2 ChangeDMSDisplayConfigPageData (Class)

This class contains warnings used to notify the user of objects that may be affected when

they change the display configuration specified for a DMS. This object groups the

warnings by type of object for the warning page to display.

10.17.1.3 ChangeDMSDisplayConfigWarning (Class)

This class is used to hold information used to warn the user of an object that may be

affected when they change the display configuration assigned to the DMS.

Changed for R10:
Use display configs instead
of geometries.

DMSDisplayConfigEditorData

DynamicImageFileKeeper

«interface»

New for R10

Changed for R10:

viewAddDMSForm and addDMS are existing
but were not included on this diagram. Changes
will be made in those methods.

AddDMSFormData

EditObjectLocationSupporter

«interface»

EditDMSLocationSupporter

RequestHandler

«interface»

DMSReqHdlr

FitCheckResults

New in R10

DMSDisplayConfigReqHdlr

DMSEditorData

ChangeDMSDisplayConfigWarning

ChangeDMSDisplayConfigPageData

*

1

setDMSConfigBasicSettings(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter) : String
viewDMSMessageEditorForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter) : String
prepareDMSEditorFormData(req:HttpServletRequest, ctx:Context, supporter:RequestHandlerSupporter) : String
createDMSEditorData(req:HttpServletRequest, supporter:RequestHandlerSupporter) : DMSEditorData
createDMSTravInfoMsgTemplateEditorData(req:HttpServletRequest, supporter:RequestHandlerSupporter) : DMSEditorData
saveDMSEditorDataFromForm(req:HttpServletRequest, supporter:RequestHandlerSupporter) : DMSEditorData
submitDMSTravInfoMsgTemplateEditorForm(editorData : DMSTravInfoMsgTemplateEditorData, req : HttpServletRequest) : String
createOrUpdateDMSTravInfoMsgTemplate(token : byte[], editorData : DMSTravInfoMsgTemplateEditorData) : String
getEditDMSLocationForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter) : String
getAddEditDMSTravelerInfoMsgForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter) : String
getDMSTravelerInfoMsgTemplateDataJSON(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context,
 supporter:RequestHandlerSupporter) : String
-parseTravelerInfoMsg(req:HttpServletRequest, supporter:RequestHandlerSupporter) : WebDMSTravInfoMsg
getDMSTravelerInfoMsgImageJSON(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter) : String
submitDMSTravelerInfoMsgForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter) : String
createDMSDecSuppMsgTemplateEditorData(req:HttpServletRequest, supporter:RequestHandlerSupporter) : DMSEditorData
createOrUpdateDMSDecSuppMsgTemplate(token : byte[], editorData : DMSDecSuppMsgTemplateEditorData) : String
-parseDMSDecSuppMsgTemplateData(req:HttpServletRequest, supporter:RequestHandlerSupporter) : WebDMSDecSuppMsgTemplate
submitDMSDecSuppMsgTemplateEditorForm(editorData : DMSDecSuppMsgTemplateEditorData, req : HttpServletRequest) : String
viewAddDMSForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
addDMS(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

-copyFontFromDMSDisplayConfig(req : HttpServletReq, resp : HttpServletResponse, ctx : Context, supporter : RequestHandlerSupporter) : String
-filterDMSDisplayConfigList(req : HttpServletReq, resp : HttpServletResponse, ctx : Context, supporter : RequestHandlerSupporter) : String
-getAddEditDMSDisplayConfigForm(req : HttpServletReq, resp : HttpServletResponse, ctx : Context, supporter : RequestHandlerSupporter) : String
-getAllDMSDisplayConfigs(supporter : RequestHandlerSupporter) : List<DMSDisplayConfig>
-getDMSDisplayConfigList(req : HttpServletReq, resp : HttpServletResponse, ctx : Context, supporter : RequestHandlerSupporter) : String
-parseDMSDisplayConfig(supporter : RequestHandlerSupporter, editorData : DMSDisplayConfigEditorData, paramSupplier : HttpRequestParameterSupplier) : void
-queryDMSDisplayConfigFontFromNTCIPDMS(req : HttpServletReq, resp : HttpServletResponse, ctx : Context, supporter : RequestHandlerSupporter) : String
-removeDMSDisplayConfig(supporter : RequestHandlerSupporter, editorData : DMSDisplayConfigEditorData, paramSupplier : HttpRequestParameterSupplier) : void
-setDMSDisplayConfigListColumnVisibility(req : HttpServletReq, resp : HttpServletResponse, ctx : Context, supporter : RequestHandlerSupporter) : String
-sortDMSDisplayConfigList(req : HttpServletReq, resp : HttpServletResponse, ctx : Context, supporter : RequestHandlerSupporter) : String
-submitDMSDisplayConfigForm(req : HttpServletReq, resp : HttpServletResponse, ctx : Context, supporter : RequestHandlerSupporter) : String
-updateDMSDisplayConfigImageJSON(req : HttpServletReq, resp : HttpServletResponse, ctx : Context, supporter : RequestHandlerSupporter) : void
-updateFontInDMSDisplayConfigForm(req : MultipartReq, font : DMSFont, fontNumber : DMSFontNumber, editorData : DMSDisplayConfigEditorData) : void
-uploadDMSDisplayConfigFontFile(req : HttpServletReq, resp : HttpServletResponse, ctx : Context, supporter : RequestHandlerSupporter) : String
-uploadFont(multiPartReq : MultipartRequest, fontFileParamName : String) : DMSFont

m_dynListDelegate : DynListReqHdlrDelegate
m_fontUploadDir : File

hasWarnings():boolean

m_DMS : WebDMS
m_proposedDMSDisplayConfig : DMSDisplayConfig
m_notificationMsgWarning:ChangeDMSDisplayConfigWarning
m_travInfoMsgWarnings:ArrayList<ChangeDMSDisplayConfigWarning>
m_planItemWarnings:ArrayList<ChangeDMSDisplayConfigWarning>
m_rpiWarnings:ArrayList<ChangeDMSDisplayConfigWarning>

DMSEditorData(editorDataID:String,
 displayConfigs : ArrayList<DMSDisplayConfig>,
 manualEditor : boolean, submitAction : String)
beaconsEnabled() : boolean
getCurrentDisplayConfig() : DMSDisplayConfig
getCurrentDisplayConfigIdx() : int
getFormattedMulti() : String
getFormTitle() : String
getDisplayConfigs() : DMSDisplayConfig[]
getDisplayConfig(idx : int) : DMSDisplayConfig
getID() : String
getLastValidEditorImageFilename() : String
getMaxCharCols() : int
getMaxCharRows() : int
getMaxPages() : int
getMinMaxHalfSecondPageTimeValue() : int
getMsgDescPrefix() : String
getMulti() : String
getNativeOrConvertedMulti() : String
getNumDisplayConfigs() : int
getPagesFromMulti() : DMSMessagePageInfo[]
getPlanTextMessage() : String
getSubmitFormAction() : String
hasBeacons() : boolean
hasEditRights(loginSession : UserLoginSessionImpl) : boolean
isManualEditor() : boolean
isMessageEdited() : boolean
isMessageTextRequired() : boolean
needsSpellCheck() : boolean
setBeaconsEnabled(enabled : boolean) : void
setCurrentDisplayConfigIdx(idx : int) : void
setLastValidEditorImageFilename(filename : String) : void
setMessageEdited(edited : boolean) : void
setMsgDescPrefix(prefix : String) : void
setMulti(multi : String) : void
setNeedsSpellCheck(needsSpellCheck : boolean) : void
setPlanTextMsg(msg : String) : void
setShowAdvancedEditor(showAdv : boolean) : void
showAdvancedEditor() : boolean
supportsCategory() : boolean
supportsDescription() : boolean

m_editorDataID : String
m_submitFormAction : String
m_displayConfigs : ArrayList<DMSDisplayConfig>
m_isManualEditor : boolean
m_isManualAdvancedEditor : boolean
m_hasBeacons : boolean
m_beaconsEnabled : boolean
m_multiMsg : String
m_plainTextMsg : String
m_lastValidTrueDisplayImageFilename : String
m_currentDispConfigIdx : int
m_isMessageEdited : boolean
m_needsSpellCheck : boolean
m_msgDescPrefix : String

m_msgDoesNotFit:boolean
m_warningMsg:String
m_detailsURL:String
m_trueDisplayImage:DMSImageFileInfo

m_lineTooLong:boolean
m_tooManyRows:boolean
m_tooManyPages:boolean
m_fittingMulti : String

DMSDisplayConfigEditorData(editorDataID : String,
 dispConfig : DMSDisplayConfig, dynImagesDir : String)
clearCurrentTrueDisplayFileInfo() : void
-createDisplayConfigForFontSample(font : DMSFont) :
 DMSDisplayConfig
clearFontSampleImage(fontNum : DMSFontNumber) : void
getAndClearErrMsg() : String
getDMSDisplayConfig() : DMSDisplayConfig
getFontSampleFileInfo(fontNum :DMSFontNumber) : DMSImageFileInfo
-getFontSampleMulti() : String
getID() : String
getTrueDisplayImageInfo() : DMSImageFileInfo
setErrMsg(errMsg : String) : void
updateFontSampleImage(fontNum : DMSFontNumber) : void
updateTrueDisplay() : void

m_editorDataID : String
m_displayConfig : DMSDisplayConfig
m_dynImagesDir : String
m_errMsg : String
m_fontSampleFileInfoMap :
 Hashtable<DMSFontNumber><DMSImageFileInfo>
m_trueDisplayMgr : DMSTrueDisplayMgr

getConfig() : WebDMSConfiguration
getLastErrorMessage() : String
getSelectedFactoryID() : Identifier
setLastErrorMessage(errMsg : String) : void
setSelectedFactoryID(id : Identifier) : void

m_dmsConfig : WebDMSConfiguration
m_lastErrorMsg : String
m_selectedFactoryID : Identifier

EditDMSLocationSupporter(
 dms : WebDMS)
EditDMSLocationSupporter(
 formData : AddDMSFormData)

m_dms : WebDMS
m_formData : AddDMSFormData

CHART R10 Detailed Design – Rev 3 10-190 08/14/2012

10.17.1.4 DMSDisplayConfigEditorData (Class)

This class is used to store the current editor state while the Add/Edit DMS Display Config

form is displayed.

10.17.1.5 DMSDisplayConfigReqHdlr (Class)

This class handles various requests related to management of DMS Display Configurations.

10.17.1.6 DMSEditorData (Class)

This class represents an instance of a DMS message being edited in an editor. It provides

storage so that the message and editor state can be preserved during interim requests before

the form is submitted. It also has logic for manipulating the editor session. This is a base

class and will be extended for specific editor types.

10.17.1.7 DMSReqHdlr (Class)

This class is a request handler used to process requests related to dynamic message signs

(DMS).

10.17.1.8 DynamicImageFileKeeper (Class)

This interface allows an object to keep dynamic image files from being deleted by the

DynImageCleanupTask, which periodically deletes files that are no longer needed.

10.17.1.9 EditDMSLocationSupporter (Class)

This class is used to support editing the location of an existing or new DMS.

10.17.1.10 EditObjectLocationSupporter (Class)

This interface provides functionality allowing the location data to be edited. (For example,

the target of the edited location may be an existing object, or it may be a form data object

for creating a new object).

10.17.1.11 FitCheckResults (Class)

This class is used to hold data related to the results of an operation that checks if a message

will fit on a DMS based on its display configuration.

10.17.1.12 RequestHandler (Class)

This interface specifies methods that are to be implemented by classes that are used to

process requests.

10.17.2 chartlite.servlet.dms.dynlist_classes (Class Diagram)

This diagram shows classes used when displaying dynamic lists of DMSs and

DMSDisplayConfig objects.

CHART R10 Detailed Design – Rev 3 10-191 08/14/2012

10.17.2.1 DMSDisplayConfig (Class)

This class holds data related to the configuration properties of a DMS related to its display,

such as its geometry and font. A display configuration can be shared by more than one

DMS.

10.17.2.2 DMSDisplayConfigGeomComparator (Class)

This class compares two DMSDisplayConfigSubject objects based on the default sort (sign

type, number of rows, characters, etc.)

10.17.2.3 DMSDisplayConfigListSupporter (Class)

This class implements the DynListDelegateSupporter for creating dynamic lists of

DMSDisplayConfig objects.

10.17.2.4 DMSDisplayConfigSubject (Class)

This class represents a DMSDisplayConfig within a dynamic list, and provides

functionality to display its data in the list.

Updated for R10:
Added PROP_DISPLAY_CONFIG

DMSDisplayConfigListSupporter

DMSTrueDisplayMgr

1

1

DMSDisplayConfigSubj ect

DMSDisplayConfig

DMSDisplayConfigGeomComparator

1

1

DMSDynListSubj ect

DMSListSupporter

DynListSubj ect
«interface»

DynListDelegateSupporter
«interface»

DynList
«interface»

DMSDynList

Added for R10.

DynListComparator
«interface»

PROP_BEACONS: String
PROP_CONNECTIONSITE : String
PROP_COUNTY : String
PROP_CURRENT_MSG: String
PROP_DIRECTION : String
PROP_DISPLAY_CONFIG : String
PROP_LOCATION: String
PROP_MAINTAINING_ORG : String
PROP_MODEL : String
PROP_NAME : String
PROP_OWNING_ORG : String
PROP_PORTMANAGERS : String
PROP_ROUTE: String
PROP_SHOW_ON_MAP_NAME : String
PROP_SHOW_ON_MAP_VALUE : String
PROP_STATE_MILEPOST : String
PROP_STATUS: String
PROP_TRAVELTIME_SCHEDULE_OVERRIDDEN: String
PROP_USED_BY: String

PROP_NAME : String
PROP_SIGN_TYPE : String
PROP_HAS_BEACONS : String
PROP_MAX_PAGES : String
PROP_DEFAULT_FONT : String
PROP_WIDTH_PIXELS : String
PROP_HEIGHT_PIXELS : String
PROP_CHAR_WIDTH_PIXELS : String
PROP_CHAR_HEIGHT_PIXELS : String
PROP_GEOM_DESC : String
PROP_ROWS : String
PROP_CHARS_PER_ROW : String
PROP_SAMPLE_MSG : String
PROP_NUM_DMS : String
m_dmsDisplayConfig : DMSDisplayConfig
m_dmsDisplayConfigCounter : HashCounter<Identifier>
m_nonOfflineDMSDisplayConfigCounter : HashCounter<Identifier>
m_trueDisplayMgr : DMSTrueDisplayMgr
m_lastRenderedDisplayConfig : DMSDisplayConfig

getShowTureDisplayInLists() : boolean
setShowTrueDisplayInLists(flag:boolean)

m_showTrueDisplayInLists: boolean

-createColumns() : ArrayList<DynListCol>

CHART R10 Detailed Design – Rev 3 10-192 08/14/2012

10.17.2.5 DMSDynList (Class)

This class implements the dynlist interface for external devices in dynamic lists.

10.17.2.6 DMSDynListSubject (Class)

This class implements the DynListSubject interface and contains fields for displaying

DMSs in dynamic lists.

10.17.2.7 DMSListSupporter (Class)

This class implements the DynListDelegateSupporter for creating dynamic lists of DMS's.

10.17.2.8 DMSTrueDisplayMgr (Class)

This class is used to manage the DMS "true display" images for a single purpose (i.e.,

where there is a single image that represents the state of the display). It could represent one

of: a message being edited, the current message on a DMS, a library message, a response

plan item, etc.. If an instance of this class is called to render additional images (for example

if an editor message is updated), some of the older image filenames are stored (for use by

the DynamicImageFileKeeper interface, which this class implements) to be able to prevent

the GUI's periodic file cleanup code from deleting the image files prematurely, as the older

images could still be needed on web pages. This class uses the MultiMsgGIFEncoder

internally, but hides the details from the caller. It has methods that can create a true display

image for MULTI or to represent a pixel test in progress. It also has static methods that can

be used to determine the image size that result to show a true display for a specific

DMSDisplayConfig.

10.17.2.9 DynList (Class)

This interface is implemented by classes that wish to provide dynamic list capabilities. A

dynamic list is a list of items that has one or more columns that can optionally be sorted,

and the list can be filtered by column values or by global filters.

10.17.2.10 DynListComparator (Class)

This interface is implemented by classes that are used to sort dynamic lists.

10.17.2.11 DynListDelegateSupporter (Class)

This interface contains functionality to support the DynListReqHdlrDelegate

10.17.2.12 DynListSubject (Class)

This interface is implemented by classes that wish to be capable of being displayed in a

dynamic list.

10.17.3 DMSDisplayConfigListSupporter:createColumns (Sequence Diagram)

This diagram shows the columns being added to the dynamic list of DMSDisplayConfig

CHART R10 Detailed Design – Rev 3 10-193 08/14/2012

objects. Filters and sort comparators are added to the columns to support filtering and

sorting. A flag is set for columns not displayed by default.

10.17.4 DMSDisplayConfigReqHdlr:copyFontFromDMSDisplayConfig (Sequence

Diagram)

This diagram shows the processing when copy a font from an existing DMS Display

Configuration for the Add / Edit DMS Display Configuration form. After checking rights,

the ID for the source DMSDisplayConfig object is parsed from the request, as well as the

source and target font numbers (which default to the default font). The

DMSDisplayConfigEditorData object is retrieved from the TempObjectStore, and the

source DMSDisplayConfig object is retrieved from the cache. The font is retrieved from

the font table of the source DMSDisplayConfig, and

updateFontInDMSDisplayConfigForm() is called to store the font in the destination font

setFilter(new TextValueColFilter())
setDisplayedByDefault(false)

Create ArrayList and Add Columns

ArrayList<DynListCol>

NOTE - The following columns do not
have sort comparators shown here, but
will support sorting based on the
default text-based sort:

Name
Sign Type
Has Beacons
Font Name

DMSDisplayConfig
ListSupporter

DMSDisplayConfig
ListSupporter DefaultDynListCol

createColumns()

create(PROP_NAME, false)

create(PROP_SIGN_TYPE, false)
setFilter(new TextValueColFilter())

create(PROP_SAMPLE_MSG, false)

create(PROP_NUM_DMS, false)
setSortComparator(new SubjectIntegerPropertyComparator())

setFilter(new TextValueColFilter())

create(PROP_GEOM_DESC, false)
setSortComparator(new DMSDisplayConfigGeomComparator())

setFilter(new TextValueColFilter())

create(PROP_HAS_BEACONS, false)
setFilter(new TextValueColFilter())

setDisplayedByDefault(false)

create(PROP_DEFAULT_FONT, false)
setFilter(new TextValueColFilter())

setDisplayedByDefault(false)

create(PROP_ROWS, false)
setSortComparator(new SubjectIntegerPropertyComparator())

setFilter(new TextValueColFilter())
setDisplayedByDefault(false)

create(PROP_CHARS_PER_ROW, false)
setSortComparator(new SubjectIntegerPropertyComparator())

setFilter(new TextValueColFilter())
setDisplayedByDefault(false)

create(PROP_MAX_PAGES, false)
setSortComparator(new SubjectIntegerPropertyComparator())

setFilter(new TextValueColFilter())
setDisplayedByDefault(false)

create(PROP_WIDTH_PIXELS, false)
setSortComparator(new SubjectIntegerPropertyComparator())

setFilter(new TextValueColFilter())
setDisplayedByDefault(false)

create(PROP_HEIGHT_PIXELS, false)
setSortComparator(new SubjectIntegerPropertyComparator())

setFilter(new TextValueColFilter())
setDisplayedByDefault(false)

create(PROP_CHAR_WIDTH_PIXELS, false)
setSortComparator(new SubjectIntegerPropertyComparator())

setFilter(new TextValueColFilter())
setDisplayedByDefault(false)

create(PROP_CHAR_HEIGHT_PIXELS, false)
setSortComparator(new SubjectIntegerPropertyComparator())

CHART R10 Detailed Design – Rev 3 10-194 08/14/2012

table in the editor data and update the sample font image. The other form fields are then

parsed and stored in the editor data via parseDMSDisplayConfig(), in case the user changed

any fields before changing the font. Finally the response is redirected to display the

Add/Edit Display Configuration form again to show the updated form.

Diagram)

srcConfig :
DMSDisplayConfig DMSFontTable DMSFontAndSpacing

Since there is no way for
the contents of a font to
change in CHART, we can
just store it without making
a copy.

getFontTable()

get(srcFontNumber)
DMSFontAndSpacing

getFont()

[font is null]
Error page

DMSFont

User

DMSDisplayConfig
ReqHdlr

MultipartRequest

RequestHandlerSupporter

MultipartRequest
ParameterSupplierImpl

ServletUtil TempObjectStore

Saves the rest of the form fields,
including the line and inter-char spacing,
if applicable.

Note that, if the font is not compatible with
the s ign type and size in the rest of the form
the font will be discarded and an error message
displayed.

Stores the font to the font table
and updates the font sample image.
See the sequence diagram for details .

copyFontFromDMSDisplayConfig(
req, resp, ctx, supporter)

Check Rights

[no rights]
Error page

getObject(editorDataID)

[editor data is null]
Error page

getIntParameter(paramSupplier, "srcFontNumber", DefaultFontNumberValues.DEFAULT_FONT)

create(req,
m_fontUploadDir.getAbsolutePath())

create(multipartReq)

[source config ID not specified]
Error page

getTempObjectStore()

DMSDisplayConfigEditorData or null

updateFontInDMSDisplayConfigForm(
multipartReq, dmsFont, dmsFontNumber,

dmsDisplayConfigEditorData)

Redirect Response To Display Editor Form

[error redirecting]
Error Page

getIntParameter(paramSupplier, "fontNumber", DefaultFontNumberValues.DEFAULT_FONT)

null

getCachedObject(srcConfigID)

[source confi is null]
Error page

getIdentifierParameter(paramSupplier, "srcConfigID", null)

DMSDisplayConfig or null

parseDMSDisplayConfig(supporter, editorData, paramSupplier)

CHART R10 Detailed Design – Rev 3 10-195 08/14/2012

10.17.5 DMSDisplayConfigReqHdlr:filterDMSDisplayConfigList (Sequence

Diagram)

This diagram shows how the DMS Display Configuration List is filtered. When a request is

received to filter the list, filterDynList() of the DynListReqHdlrDelegate object is called to

set or clear the filter value and redisplay the list (see that diagram for details). If an error

occurred the error template is returned.

Figure 10-1. DMSDisplayConfigReqHdlr:filterDMSDisplayConfigList (Sequence Diagram)

10.17.6 DMSDisplayConfigReqHdlr:getAddEditDMSDisplayConfigForm

(Sequence Diagram)

This diagram shows the request to display the Add/Edit DMS Display Configuration form.

After checking the users rights, the editor data ID parameter is retrieved. If it is specified,

the DMSDisplayConfigEditorData object is queried from the TempObjectStore. If the

editor data ID was specified but the editor data was not found (probably due to a form

timeout, which shouldn't happen), an error page is displayed. If the editor data ID was not

specified in the request, it is the first time the form was requested, so a new

DMSDisplayConfigEditorData object will be created. If the configID parameter was

specified, it is an Edit operation, so the DMSDisplayConfig object is queried from the

cache. If not found, the error page is displayed; otherwise, if it was found, the

WebChart2DMS objects are retrieved from the cache and checked to make sure that any

DMSs using the same display configuration are offline. If some are not offline, an error

page is displayed. If the display config ID was not specified in the request, it is an Add

operation, and a new default DMSDisplayConfig object is created. The new

DMSDisplayConfigEditorData object is created (for either Add or Edit) and added to the

TempObjectStore, and the response is redirected to display the form again using the editor

data ID. If the DMSDisplayConfigEditorData object was found (meaning it is not the first

Error Msg or null

User

DMSDisplayConfigReqHdlr DynListReqHdlrDelegate

See the DynListReqHdlrDelegate : filterDynList SD
for details.

Context RequestHandlerSupporter ServletProperties

filterDMSDisplayConfigList(
req, resp, ctx,supporter)

filterDynList(
req, resp, ctx, supporter)

[no error]
null

put("errMsg", errMsg)
put("pageContent", errorTemplate)

framing template name

getProperties()

getErrorTemplate()
getFramingTemplate()

CHART R10 Detailed Design – Rev 3 10-196 08/14/2012

time the form was requested), it is put into the Velocity context so that it can be used by the

Velocity template. The list of all DMSDisplayConfig objects is retrieved from the object

cache, sorted, and also added to the context, to allow them to be shown in a list so that the

user can copy fonts from them. Finally the Velocity template is returned to show the editor

form.

If configID is not null It is an Edit operation,
so check to make sure the display config
is not used by any DMS that is not offline.

WebChart2DMS

WebDMS
Configuration

WebChart2DMS[][configID is null]

isOffline()[DMS display config ID matches configID
and DMS is not offline]

Error page

DMSDisplayConfig

getCachedObjectsOfType(
WebChart2DMS.class)

getConfig()
getDisplayConfig()

getID()

[* for each DMS]

Note - this will create a copy
of the DMSDisplayConfig, to avoid
changing the original (in the case of
an Edit operation) until the form is
submitted.

put("editorData", editorData)

put("allConfigs", dmsDisplayConfigList)

"PopupTemplate.vm"

User
DMSDisplayConfigReqHdlr RequestHandlerSupporter

DMSDisplayConfig
DefaultComparator

ServletUtil TempObjectStore

getAddEditDMSDisplayConfigForm
(req, resp, ctx, supporter)

Check Rights

[no rights]
Error page

getAllDisplayConfigs(supporter)

getCachedObjectsOfType(
DMSDisplayConfig.c lass)

DMSDisplayConfig[]

create

Sort Display Configs

DMSDisplayConfig[]

getStringParameter("editorDataID")
getTempObjectStore()

[editorDataID not null]
getObject(editorDataID)

DMSDisplayConfigEditorData or null
[editorDataID != null && editorData == null]

Error page

getIdentifierParam("configID")

[configID not null]
getCachedObject(configID)

newConfig :
DMSDisplayConfig

If configID is null, it is an Add
operation, so create a default
DMSDisplayConfig with a null ID
and no fonts. The null ID will be
used when submitting the form
to indicate that it is an Add.

DMSDisplayConfig
EditorData

SystemContextProvider HttpServletResponse Context

[editorData
not null]

DMSDisplayConfig or null[configID not null and
DMSDisplayConfig is null]

Error page

[configID is null]
create()

createTempObjectID()

create(dataID, displayConfig, dynImagesDir)

getSystemContextProvider()
getDynamicImagePath()

add(editorDataID,editorData)

encodeRedirectURL("app?action=getAddEditDMSDisplayConfigForm&editorDataID=" + id)
sendRedirect(url)

null

put("errMsg", editorData.getAndClearErrMsg())

put("pageContent", "dmsmgt\DMSDispalyConfig.vm")

CHART R10 Detailed Design – Rev 3 10-197 08/14/2012

10.17.7 DMSDisplayConfigReqHdlr:getDMSDisplayConfigList (Sequence

Diagram)

This diagram shows how the dynamic list of DMSDisplayConfig objects is displayed. If

the list ID is specified in the request, the existing DynList is retrieved from the

TempObjectStore. If not specified or the previous list timed out, the

DMSDisplayConfigDynListSupporter is called to create a new DynList. It creates the

columns for the list, then creates the list itself. It sets the column visibility settings key, so

that column visibility settings will be persisted, then does an initial sort on the Geometry

Desc column. The new DynList is then added to the TempObjectStore, the column

visibility settings are initialized, and the response is redirected to display the list using the

list ID (which causes this to be called again). If the DynList exists, getDynListSubjects() is

called to get the list items. The supporter creates two counters: one for counting the

number of DMSs using each DMSDisplayConfig, and another for the number of non-

offline DMSs using them. The DMSs are retrieved from the cache, and the counters are

incremented. The DMSDisplayConfig objects are then retrieved from the cache. If they

are not system generated, they are added to the set to return. The subjects are set into the

DynList, the Velocity context is populated, and the velocity template is returned.

getDisplayConfig()

WebDMS
Configuration

See the DMSDisplayConfigList : createColumns SD
for details.

DMSDisplayConfigSubject

[not system generated]
create

DynListSubject[]

setSubjects(subjects)

Clear Filters If Requested

Populate Velocity Context

null or errMsg

"EnclosingTemplate.vm"

[errMsg]
Populate Velocity Context For Error

displayConfigCounter :
HashCounter<Identifier>

The two counters are used for
counting the number of DMSs
using each DMSDisplayConfig
(which is used to determine whether
to show the Remove link for
each DMS Display Configuration),
and the number of non-offline
DMSss using them (which is used
to determine whether to show the
Edit link).

WebDMS DMSDisplayConfig

nonOfflineCounter :
HashCounter<Identier>

[not null]

Redirect To View Dyn List (With ID)

getDynListSubjects()

create

create

getCachedObjectsOfType(WebDMS.class)

WebDMS[]

getConfig()
WebDMSConfiguration

getID()increment(
displayConfigID)

isOffline()

[not offline]
increment(displayConfigID)

[* for each DMS]

getCachedObjectsOfType(
DMSDisplayConfig.c lass)

DMSDisplayConfig[]

isSystemGenerated()

[not system generated]
Add To Set

[* for each DMSDisplayConfig]

getObject(dynListID)
DynList or null

createDynList(req, supporter, dynListID)

Check Configure System Rights

[no rights]
Error

createColumns()

User
DMSDisplayConfigReqHdlrDynListReqHdlrDelegateTempObjectStore

DMSDisplayConfig
DynListSupporter RequestHandlerSupporter

getDMSDisplayConfigReqList(
req, resp, ctx, supporter)

v iewDynList(
req, resp, ctx, supporter)

DefaultDynList

ArrayList<DynListCol>

create(dynListID, name, columns)

setColumnVisibilitySettingsKey(
"DMSDisplayConfigList")

getColumn(PROP_GEOM_DESC)

sort(col)
DynList

add(dynListID, dynList,
maxAgeSec)

initColumnVisibility(req, resp, dynList, false)

CHART R10 Detailed Design – Rev 3 10-198 08/14/2012

10.17.8 DMSDisplayConfigReqHdlr:parseDMSDisplayConfig (Sequence

Diagram)

This diagram shows how the Add / Edit DMS Display Configuration form data is parsed.

(Note that any fonts that were specified are already in the DMSDisplayConfig's font table.)

The name is parsed and set into the display config. The sign type parameter is parsed,

which indicates whether the sign is char, line, or full matrix. The following size fields are

read: for char matrix, char rows, char cols, char height, and char width; for line matrix,

char rows, pixel width, char height; for full matrix, pixel width and pixel height. The total

size in pixels is calculated (height for char/line matrix and width for char matrix), and these

values are set into the DisplayProperties class. Next, each font in the font table is checked

to see if the character sizes are compatible with the sign type and dimensions. If not

compatible, the font is removed from the font table. If the font is compatible, the char and

line spacing values are read and stored in the font table with the font. Next, the allowable

limits for max pages, max rows per page, and max chars per row are parsed and set into the

DMSDisplayConfig. The MULTI defaults for page and line justification, and page on/off

time are parsed and set into the MultiDefaults object. If any errors occurred, the error

message is set into the DMSDisplayConfigEditorData object. If all necessary parameters

are specified, the editor data is called to update the true display image; otherwise, it is

called to clear the current true display image.

CHART R10 Detailed Design – Rev 3 10-199 08/14/2012

The maximum pages will be limited to a maximum value
of 3 on the form.

[font removed]
clearFontSampleImage(fontNum)

isCheckboxChecked(paramSupplier, "hasBeacons")

The char spacing is required for line or full matrix.

The line spacing is required for full matrxi.

DMSConfigReqHdlr

DMSDisplayConfigReqHdlr
DMSDisplayConfig

EditorData ServletUtil DMSDisplayConfig DMSFontTable

DisplayProperties

The char height (for line and char matrix)
and char width (for char matrix) will be
specified on the form (rather than just
getting it from the font, as shown in the
prototype), for the following reasons:
- narrow font selection list more easily
- make sure the font (especially if more than one)
is consistent with sign size

DMSFont
TableEntry

DMSFont
AndSpacing DMSFont

MultiDefaults

The value of charWidth will be 0 if it's a line or full matrix.
The value of charHeight will be 0 if it's a full matrix.
The DisplayProperties class uses the values specified for
charWIdth and/or charHeight to determine the sign type.

getDMSDisplayConfig()

getFontTable()
getEntries()

getFont()

[char or line matrix] getHeight()
[char matrix] isFixedWidth()

getFontAndSpacing()

[line or full matrix]
getIntParam(paramSupplier, "charSpacing" + fontNum, -1)

[line or full matrix]
setCharSpacing(charSpacing)

[full matrix]
getIntParam(paramSupplier, "lineSpacing" + fontNum, -1)

[full matrix]
setLineSpacing(lineSpacing)

[font removed]

[char matrix] getMaxCharWidth()

[font size mismatch)
remove(fNum)

setPageJustification(pageJustification)

getMultiDefaults()

setLineJustification(lineJustification)

setPageOnTimeTenths(defaultPageOnTimeTenths)

setPageOffTimeTenths(defaultPageOffTimeTenths)
[error, required params missing,

or default font not specified]
setErrMsg(errMsg)

[all parameters specified]
updateTrueDIsplay()

[not all parameters specified,
or default font missing]

clearCurrentTrueDisplayFileInf()

getIntParam(paramSupplier, "defaultPageJustification", -1)

getIntParam(paramSupplier, "defaultLineJustification", -1)

getIntParam(paramSupplier, "defaultPageOnTimeTenths", -1)

getIntParam(paramSupplier, "defaultPageOffTimeTenths", -1)

[* for each font]

verifyFontDisplayableOnSign(font)

[(char or line matrix and height mismatch) or (char matrix and width mismatch)]
false

getIntParam(paramSupplier, "maxRowsPerPageAllowed", -1)
setMaxRowsPerPageAllowed(maxRowsPerPageAllowed)

setName(name)

getIntParam(paramSupplier, "maxCharsPerRowAllowed", -1)
setMaxCharsPerRowAllowed(maxCharsPerRowAllowed)

getIntParam(paramSupplier, "maxPagesAllowed", -1)
setMaxPagesAllowed(maxPages)

getDisplayProperties()
setSizes(pixelWidth, pixelHeight, charWidth, charHeight)

[char or line matrix]
Calculate Display Pixel Width and Height

getStringParam(paramSupplier, "signType", null)

[s ignType is "char"]
getIntParam(paramSupplier, "charCols", -1)

[signType is "char"]
getIntParam(paramSupplier, "charWidth", -1)

[signType is "line" or "full"]
getIntParam(paramSupplier, "pixelWidth", -1)

getStringParam(paramSupplier, "name", null)

[s ignType is "char" or "line"]
getIntParam(paramSupplier, "charRows", -1)

[signType is "char" or "line"]
getIntParam(paramSupplier, "charHeight", -1)

[signType is "full"]
getIntParam(paramSupplier, "pixelHeight", -1)

parseDMSDisplayConfig(supporter,
editorData, paramSupplier)

setHasBeacons(hasBeacons)

CHART R10 Detailed Design – Rev 3 10-200 08/14/2012

10.17.9 DMSDisplayConfigReqHdlr:queryDMSDisplayConfigFontFromNTCIPDM

S (Sequence Diagram)

This diagram shows the processing when querying a font from an NTCIP DMS for the Add

/ Edit DMS Display Configuration form. The necessary parameters are parsed from the

form for communicating with the NTCIP DMS. The DMSDisplayConfigEditorData object

is retrieved from the TempObjectStore. The WebChart2DMSFactory wrapper objects are

retrieved from the cache, and a CORBA call is made to each factory to query the font from

the NTCIP DMS, until a factory succeeds or a fatal error occurs that would indicate that

none of the other factories would succeed. If successful, the DMSFontInfo object will be

returned and a DMSFont object is created, and updateFontInDMSDisplayConfigForm() is

called to store the font in the font table in the editor data and update the sample font image.

The other form fields are then parsed and stored in the editor data via

parseDMSDisplayConfig(), in case the user changed any fields before changing the font.

Finally the response is redirected to display the Add/Edit Display Configuration form again

to show the updated form.

RequestHandlerSupporter

getCachedObjectsOfType(WebChart2DMSFactory.c lass)

User

DMSDisplayConfig
ReqHdlr ServletUtil

MultipartRequest

MultipartRequest
ParameterSupplierImpl

queryDMSDisplayConfigFontFromNTCIPDMS(
req, resp, ctx, supporter)

Check Rights

[no rights]
Error page

getStringParameter(paramSupplier, "ipAddress", null)
getIntParameter(paramSupplier, "tcpPort", -1)

getIntParameter(paramSupplier, "ntc ipFontNumber", -1)
getStringParameter(paramSupplier, "ntc ipCommunity", null)

isCheckboxChecked(paramSupplier, "hdlcFramingRequired")

create(req,
m_fontUploadDir.getAbsolutePath())

create(multipartReq)

getStringParameter(paramSupplier, "editorDataID", null)

queryNTCIPDMSFont(token, ntc ipDMSFontQueryParams)

DMSFontInfo

[* for each factory
until successful

or fatal error]

create(dmsFontInfo)

updateFontInDMSDisplayConfigForm(
multipartReq, dmsFont, dmsFontNumber,

dmsDisplayConfigEditorData)

Redirect Response To Display Editor Form

[error redirecting]
Error Page

NTCIPDMS
FontQueryParams

create() and populate

Query Font
From NTCIP DMS

See server-side processing SD.DMSFont

getIntParameter(paramSupplier, "fontNumber", DefaultFontNumberValues.DEFAULT_FONT)[param not specified]
Error page

WebChart2DMSFactory

WebChart2DMSFactory[]

Stores the font to the font table
and updates the font sample image.
See the sequence diagram for details.

Saves the rest of the form fields,
including the line and inter-char spacing,
if applicable.

Note that, if the font is incompatible with the
sign type and/or char s ize, the font will be
discarded and an error message will be
displayed.

TempObjectStore

getTempObjectStore()
getObject(editorDataID)

DMSDisplayConfigEditorData or null

[editor data is null]
Error page

Chart2DMSFactory

This is synchronous to keep
the processing simple. This
is expected to take a fairly short
time, especially s ince it's using
TCP/IP comms only. This is also
a rarely used feature so hopefully
it can be kept s imple.

getChart2DMSFactoryRef()

parseDMSDisplayConfig(supporter, editorData, paramSupplier)

null

CHART R10 Detailed Design – Rev 3 10-201 08/14/2012

10.17.10 DMSDisplayConfigReqHdlr:removeDMSDisplayConfig (Sequence

Diagram)

This diagram shows the processing for the removal of a DMSDisplayConfig object. After

checking user rights, the display configuration ID and dynamic list ID parameters are

parsed from the request. The WebChart2DMS objects are retrieved from the cache, and

each is checked to determine whether it is using the display configuration with the same ID.

If any are found that use the same ID, an error page is displayed, as a display configuration

is not allowed to be removed if it is in use by any DMSs. If the display configuration is not

in use, the WebDMSDisplayConfigFactory objects are retrieved from the cache, and each is

called until one of them can successfully remove the display configuration. (Only one is

called, as the data is assumed to be replicated if there are multiple factories). If an error

occurred an error page is displayed; otherwise, the response is redirected to display the

DMS Display Config List page to show the list with the display configuration removed.

WebDMSDisplay
ConfigFactory

DMSDisplayConfig
Factory ObjectCache DataModel

HttpServletResponse

getFactoryRef()

removeDMSDisplayConfig(token, configID)

getObjectCache()

getDataModel()

[successful]
objectRemoved(configID)

[* for each
WebDMSDisplayConfigFactory

until successful]

getStringParam(
req, "dynListID", null)

sendRedirect(url)

Set URL = "app?encodedApp&action=getDMSDisplayConfigList&dynListID=" + id

encodeRedirectURL(url)

[error occurred]
Error page

null

User

DMSDisplayConfigReqHdlr ServletUtil
RequestHandler

Supporter WebChart2DMS WebDMSConfiguration DMSDisplayConfig

removeDMSDisplayConfig(
req, resp, ctx, supporter)

Check Rights

[no rights]
Error page getIdentifierParam(

req, "configID", null)

getCachedObjectsOfType(
WebDMSDisplayConfigFactory.class)

WebDMSDisplayConfigFactory[]

getCachedObjectsOfType(WebChart2DMS.class)

WebChart2DMS[]

getConfig()

getDMSDisplayConfig()

getID()
[ID matches configID]

Error page

[* for each WebChart2DMS]

CHART R10 Detailed Design – Rev 3 10-202 08/14/2012

10.17.11 DMSDisplayConfigReqHdlr:setDMSDisplayConfigListColumnVisibility

(Sequence Diagram)

This diagram shows how the DMS Display Configuration List column visibility is set.

When a request is received to set the column visibility, setColumnVisibility() of the

DynListReqHdlrDelegate object is called to apply the visibility settings and redisplay the

list (see that diagram for details). If an error occurred the error template is returned.

10.17.12 DMSDisplayConfigReqHdlr:sortDMSDisplayConfigList (Sequence

Diagram)

This diagram shows how the DMS Display Configuration List is sorted. When a request is

received to sort the list, sortDynList() of the DynListReqHdlrDelegate object is called to

sort and redisplay the list (see that diagram for details). If an error occurred the error

template is returned.

[no error]
null

put("pageContent", errorTemplate)

getProperties()

getErrorTemplate()

User

DMSDisplayConfigReqHdlr DynListReqHdlrDelegate

See the DynListReqHdlrDelegate : setColumnVisibility SD
for details.

Context RequestHandlerSupporter ServletProperties

Error Msg or null

setDMSDisplayConfigListColumnVisibility(
req, resp, ctx,supporter)

put("errMsg", errMsg)

framing template name

getFramingTemplate()

setColumnVisibility(
req, resp, ctx, supporter)

getFramingTemplate()
getErrorTemplate()

User

DMSDisplayConfigReqHdlr DynListReqHdlrDelegate

See the DynListReqHdlrDelegate : sortDynList SD
for details.

Context RequestHandlerSupporter ServletProperties

Error Msg or null

sortDMSDisplayConfigList(
req, resp, ctx,supporter)

sortDynList(
req, resp, ctx, supporter)

[no error]
null

put("errMsg", errMsg)
put("pageContent", errorTemplate)

framing template name

getProperties()

CHART R10 Detailed Design – Rev 3 10-203 08/14/2012

10.17.13 DMSDisplayConfigReqHdlr:submitDMSDisplayConfigForm (Sequence

Diagram)

This diagram shows the submission of the Add / Edit DMS Display Configuration form.

After checking the user's rights, a MultipartRequest object is created to extract the form

parameters (a multi-part request is required to get the font file(s), which may have been

previously uploaded). The "editorDataID" parameter from the request is used to look up

the DMSDisplayConfigEditorData object from the TempObjectStore. The form parameters

are then parsed, storing the results into the DMSDisplayConfig object within the editor

data. The ID of the DMSDisplayConfig is used to determine whether it is an Add or Edit

operation (if null, it's an Add operation). The WebDMSDisplayConfigFactory objects are

retrieved from the cache. If it's an Add operation, a CORBA call is made:

addDMSDisplayConfig() is called to add the display configuration, and it returns a

DMSDisplayConfigInfo object with the ID that was assigned by the server. A new

DMSDisplayConfig wrapper object is created and added to the cache. If it was an Edit

operation, setDMSDisplayConfig() is called to set the configuration data. If successful, the

DMSDisplayConfig object in the DataModel cache is retrieved and updated with the data

from the copy that was stored in the editor data. If any errors occurred, the editor is

displayed again with the error message. If no errors occurred, the PopupSubmissionCloser

is loaded to close the popup window and display the DMSDisplayConfig List page.

Check Rights

[no rights]
Error page create(req,

m_fontUploadDir.getAbsolutePath())

getParameter("editorDataID")

[editorDataID not specified]
Error page

getTempObjectStore()

getObject(editorDataID)
DMSDisplayConfigEditorData or null[editor data is null]

Error page

create

parseDMSDisplayConfig(supporter,
editorData, paramSupplier)

[error msg not null]
Error page

getAndClearErrMsg()

The DMSDisplayConfigInfo
returned from addDMSDisplayConfig()
will have the real ID assigned by the server.

DataModel

newConfig :
DMSDisplayConfig

Gets the original one from the cache,
not the copy from the editor data.

cachedConfig :
DMSDisplayConfig

Context

addDMSDisplayConfig(token, editorDataDMSDisplayConfigInfo.configData)
new DMSDisplayConfigInfo

objectAdded(newConfig.getID(), newConfig)
create(newDMSDisplayConfigInfo)[config ID not null]

setDMSDisplayConfig(configID.getID(), editorDataDMSDisplayConfigInfo.configData)

getCachedObject(configID)
DMSDisplayConfig

[cachedConfig not null]
update(editorDataConfig)

[* for each factory
until succesful]

[unsuccessful calling factory]
setErrMsg(errMsg)

[unsuccessful calling factory]
Error Page

put("targetURL", resp.encodeURL("app?getDMSDisplayConfigList"))
"PopupSubmissionCloser.vm"

NOTE - if editing, this is a COPY of the one stored in the
DataModel cache.

WebDMSDisplay
ConfigFactory

DMSDisplay
ConfigFactory

editorDataConfig :
DMSDisplayConfig

getFactoryRef()
DMSDisplayConfigFactory

getDMSDisplayConfig()
DMSDisplayConfig

getID()
Identifier (for Edit) or null (for Add)

getDMSDisplayConfigInfo()
DMSDisplayConfigInfo

getCachedObjectsOfType(
WebDMSDisplayConfigFactory.c lass)

WebDMSDisplayConfigFactory[]

User

DMSDisplayConfigReqHdlr

MultipartRequest

RequestHandlerSupporter TempObjectStore

MultipartRequest
ParameterSupplierImpl

This saves any data from the form
to the DMSDisplayConfig object in the
editor data. If any errors occur while parsing,
an error message will be set into the editor data.

DMSDisplayConfig
EditorData

submitDMSDisplayConfigForm(
req, resp, ctx, supporter)

CHART R10 Detailed Design – Rev 3 10-204 08/14/2012

10.17.14 DMSDisplayConfigReqHdlr:updateFontInDMSDisplayConfigForm

(Sequence Diagram)

This diagram shows the processing for updating the Add / Edit DMS Display Config form

data, given a font that has been loaded. First the initial values for the line and inter-char

spacing are parsed from the request. A DMSFontAndSpacing object is created and is

stored in the DMSFontTable that is part of the DMSDisplayConfig stored in the

DMSDisplayConfigEditorData. The DMSDisplayConfigEditorData is then called to

update the sample image for the font. A temporary DMSDisplayConfig is created, using

only the font (the line/char spacing are not used for this purpose) and the

DMSTrueDisplayMgr is called to create the image file. The DMSImageFileInfo

containing the metadata for the image is then stored in the DMSDisplayConfigEditorData

for retrieval by font number.

DMSFontAndSpacing or null

put(dmsFontNumber, dmsFontAndSpacing)

create(dmsFont, lineSpacing, interCharSpacing)

create

updateFontSampleImage(dmsFontNumber)

DMSDisplayConfig
EditorData

DMSDisplayConfig DMSFontTable

DMSFont
AndSpacing

MultipartRequest
ParameterSupplierImpl

ServletUtil

getDMSDisplayConfig()

getFontTable()

create()

create(multipartReq)

getIntParam(paramSupplier,
"lineSpacing" + dmsFontNumber.getNumber(),

dmsFont.getDefaultLineSpacing())

getIntParam(paramSupplier,
"interCharSpacing" + dmsFontNumber.getNumber(),

dmsFont.getDefaultCharSpacing())

DMSDisplayConfig
ReqHdlr

DMSDisplayConfigReqHdlr

updateFontInDMSDisplayConfigForm(
multipartReq,

dmsFont, dmsFontNumber,
dmsDisplayConfigEditorData)

[fpmt and spacing is null]
clearFontSampleImage(dmsFontNumber)

These will also be parsed when
the other form fields are parsed, but
because the font and spacing are stored
together in the font table, we have to
initialize them to something so parse the
initial values here.

DMSTrueDisplayMgr

fontSampleDisplayConfig :
DMSDisplayConfig

m_fontSampleFileInfoMap :
Hashtable

get(dmsFontNumber)

createDMSDisplayConfigForFontSample(dmsFont)

DMSDisplayConfig

createImage(m_dynImagesDir, fontSampleDisplayConfig, multi,
false, 0, m_editorDataID + "fontsample" + dmsFontNumber.fontNumber())

put(dmsFontNumber, dmsImageFileInfo)

DMSFontTableEntry

DMSImageFileInfo

getFontSampleMulti()

CHART R10 Detailed Design – Rev 3 10-205 08/14/2012

10.17.15 DMSDisplayConfigReqHdlr:uploadDMSDisplayConfigFontFile

(Sequence Diagram)

This diagram shows the processing when uploading a font file within the Add / Edit DMS

Display Configuration form. If the font upload directory does not exist, it is created. A

multi-part request object is created to allow the file to be passed as a parameter. The

"editorDataID" parameter is used to retrieve the DMSDisplayConfigEditorData object from

the TempObjectStore. The uploadFont() helper method is called, which calls the

MultipartRequest object to get the File which has been uploaded. A static method in

DMSFontUtil is called to parse the file, and attempts are made to parse the file by creating a

JSONDMSFontLoader and a DaktronicsDMSFontLoader. If either of them are able to

parse the file, they create and return the DMSFontImpl object and return the DMSFont

interface to it. After the DMSFont is created, updateFontInDMSDisplayConfigForm() is

called to store the font in the font table in the editor data and update the sample font image.

The other form fields are then parsed and stored in the editor data via

parseDMSDisplayConfig(), in case the user changed any fields before changing the font.

Finally the response is redirected to display the Add/Edit Display Configuration form again

to show the updated form.

[* for font loader classes:
JSONDMSFontLoader,

DaktronicsDMSFontLoader]

Stores the font to the font table
and updates the font sample image.
See the sequence diagram for details.

getIntParameter(paramSupplier, "fontNumber", DefaultFontNumberValues.DEFAULT_FONT)

updateFontInDMSDisplayConfigForm(
multipartReq, dmsFont, dmsFontNumber,

dmsDisplayConfigEditorData)

[file exists]
loadFont(fontFile)

[font parsed successully]
create

DMSFont

DMSFont or null

close()

delete()

User

DMSDisplayConfigReqHdlr

uploadDMSDisplayFontFile(
req, resp, ctx, supporter)

ServletUtil

MultipartRequest
ParameterSupplierImpl

Saves the rest of the form fields,
including the line and inter-char spacing,
if applicable.

Note that, if the font is incompatible with the
sign type and/or char size, the font will be
discarded and an error message will be
displayed.

create(multipartRequest)

parseDMSDisplayConfig(supporter, editorData, paramSupplier)

Redirect Response To Display Editor Form

null

[error redirecting]
Error Page

m_fontUploadDir :
File

create()

MultipartRequest

RequestHandlerSupporter TempObjectStore

fontFile :
File

DMSDisplayConfig
EditorData

FileInputStream

DMSFontUtil

newFont :
DMSFontImpl

exists()

[does not exist]
mkdir()

create(req,
m_fontUploadDir.getAbsolutePath(),

maxSize)

getParameter("editorDataID")
[editorDataID not specified]

Error Page

getTempObjectStore()
getObject(editorDataID)

DMSDisplayConfigEditorData or null

[editorData is null]
Error Page

uploadFont(multiPartReq, "fontFile" + fontNumber)

getFile(fontParamName)

File or null

[file not specified or error reading file]
setErrMsg(errMsg)

create

[fontFile not null]
exists()

loadFont(fontFile, fontFile.getName())

Parse Font

FontLoader

CHART R10 Detailed Design – Rev 3 10-206 08/14/2012

10.17.16 DMSReqHdlr:addDMS (Sequence Diagram)

This diagram shows the processing that is performed when the user submits the Add DMS

form. The AddDMSFormData object is retrieved from the temporary object store and the

saveAddDMSFormData method is called to parse the request parameters and store them

into the form data object. In R10, saveAddDMSFormData is changed to no longer parse

display related parameters and to instead parse the ID of the DMS Display Configuration.

After the request parameters have been parsed, the DMSFactory (server side object) is

called to create the new DMS. A new WebDMS wrapper object is created and stored in the

GUI object cache and the user is redirected to the viewDMSProps request, which shows the

details page for the newly added DMS.

10.17.17 DMSReqHdlr:changeDMSDisplayConfig (Sequence Diagram)

This diagram shows the processing that takes place when the form used to change a DMS's

display configuration is submitted. The request must include the dmsID and the ID of the

display configuration to be assigned to the DMS. The DMS must be offline and must be a

CHART DMS. The user must have the configureDMS right for the owning organization of

the DMS. If the request does not have the "noWarning" parameter specified the system will

check other objects that might be affected by the DMS display configuration change. The

system will check the HAR Notifier and Traveler Info Messsages specified for the DMS. It

will also check plan items that contain the DMS and response plan items that contain the

DMS. If any of these objects exist and warrant a warning, warning objects will be created.

If any warning messages are created, the user will be redirected to the warning page where

they can review the warnings and choose to go ahead with the change (in which case this

same method will be called but with "noWarning" set to true). If there are no warnings (or

DataModel

[Exception caught]
Error

createDMS(DMSInfo)

WebDMS

objectAdded(dmsID, WebDMS)

redirect to v iewDMSProps

This call is made
when the user submits
the Add DMS form.

addDMS()

WebDMSFactory DMSFactory

getFactoryRef()

DMSFactory

createDMS()

DMSInfo or Exception

[user doesn't have
configureDMS right for the

selected owning org]
Error

[error detected when
parsing form data]

redirect to v iewAddDMSForm

AddDMSFormData

[error detected when parsing form data]
setLastErrorMessage()

TempObjectStore

This method parses the request
parameters and stores them in
the form data.

Changed in R10:

This method will no longer parse display
related settings and will instead parse the
ID of a DMSDisplayConfig.

[formDataID not in request]
Error

getObject(formDataID)
AddDMSFormData or null

[form data not found]
Error

saveAddDMSFormData(req, formData, supporter)

Administrator

DMSReqHdlr

CHART R10 Detailed Design – Rev 3 10-207 08/14/2012

the warning checks are skipped), the current DMS configuration is retrieved and the newly

selected DMS Display Config ID is placed in the configuration. A command status object

is created to pass to the DMS setConfiguration() method, which is asynchronous. The

popup submission closer template is returned with a target URL that causes the popup form

window to close and causes the working window to redirect to view the command status

page.

WebChart2DMSRequestHandlerSupporter

dmsDisplayConfigID not
in request]

Error

WebDMS or null

[DMS not offline]
Error

[User doesn't have configureDMS
right for the DMS owning org]

Error

DMSReqHdlr

changeDMSDisplayConfig()

getCachedObject(dmsID)

[DMS not found in cache]
Error

[DMS not CHART DMS]
Error

Administrator

This is called when the user
submits the Change DMS Display
Config form.

DMS DMSConfiguration

getDMSRef()

DMS

getConfiguration()

DMSConfiguration

[noWarning request
parameter is true]

createDispConfigChangeWarningForNotifierMessage()

createDispConfigChangeWarningForTravInfoMessages()

createDispConfigChangeWarningForPlanItems()

createDispConfigChangeWarningForRPIs()

[warnings exist]
redirect to

v iewDisplayConfigChangeWarnings

Context

create command status obj

setConfiguration()

PopupSubmissionCloser.vm

put("targetURL", urlForViewingCommandStatus)

[Exception caught]
Error

set m_dmsDisplayConfigID

ChangeDMSDisplayConfigPageData

TempObjectStore

create(WebDMS, DMSDisplayConfig)

hasWarnings()

boolean

[warnings exist]
addObject(ChangeDMSDisplayConfigPageData)

[dmsID not in request]
Error

CHART R10 Detailed Design – Rev 3 10-208 08/14/2012

10.17.18 DMSReqHdlr:createDispConfigChangeWarningForNotifierMessage

(Sequence Diagram)

This diagram shows the processing that is performed to create a warning regarding an

existing HAR notification message when changing the display configuration assigned to a

DMS. If there is no HAR notification specified then no warning will be produced.

Otherwise checkMessageFit is called to determine if the notification message will fit the

new display configuration. If the message doesn't fit, we'll use the fit check error message

as the warning message and indicate that the message doesn't fit. Otherwise, we'll still

create a warning because the message may fit but may lay out differently (especially if the

message was created using the auto formatting editor). In this case we'll use a warning

message that indicates the message fits but the layout may have changed. We'll then create

a true display image using the multi from the fit check algorithm that is truncated to fit (so

we can show the user the truncation points if any). Next we create a warning object and

store it in the ChangeDMSDisplayConfigPageData object as the warning for the HAR

notification message. The warning page can then use this data to show the user whether or

not the message will fit with the new display configuration and can show a true display

image of what the message will look like, before the user actually changes the display

config.

Note: we create a warning even if there is no error message in the FitCheckResults.
If there is an error message, we'll use it and set m_doesNotFit to true. Otherwise
we'll use a generic warning message such as "Message fits but layout may have changed."
which could be the case if using a plain text message or even if the message is multi and they
used left or right line justification (you could have more or less blank space to the left or right).
So even if the message fits, we'll show a warning so they can see the true display.

DMSTrueDisplayMgr

String

DMSImageFileInfo

ChangeDMSDisplayConfigWarningcreate()

getErrorMsg()
String

FitCheckResults
checkMessageFit(DMSDisplayConfig, msgText, isMulti)

getProposedDispConfig()
DMSDisplayConfig

create

DMSReqHdlr
DMSReqHdlr ChangeDMSDisplayConfigPageDataWebChart2DMS WebChart2DMSConfiguration DMSMessage

createDispConfigChangeWarningForNotifierMessage()

getDMS()
WebDMS

[not CHART DMS]
return getConfig()

WebChart2DMSConfiguration

getNotifierMessageRaw()
DMSMessage()

get m_isMessageTextMulti
boolean

get m_dmsMessageString

String multi or plain text

setHARNotificationMsgWarning()

getFittingMulti()

createImage()

[message is empty]
return

CHART R10 Detailed Design – Rev 3 10-209 08/14/2012

10.17.19 DMSReqHdlr:createDispConfigChangeWarningForPlanItems (Sequence

Diagram)

This diagram shows the processing that is performed to create warning objects for each

DMS Plan Item that targets a DMS when the user chooses to change the display

configuration for a DMS. This is part of the processing that is done after the user selects a

new display configuration but before that new display configuration has been assigned to

the DMS to show the user the effects their change will have on objects related to the DMS.

The DMS plan items are retrieved from the GUI cache and a warning will be created for

each one that targets the DMS. The WebDMSPlanItem is called to get its DMS Stored

message and the message text and multi flag are retrieved. The proposed DMS Display

Config along with the message text and multi flag are passed to a method to check if the

message will fit the display config. The result of this operation will become part of the

warning object. Next the proposed DMS Display Config, message text, and isMulti flag are

used to create a true display image which will also become part of the warning object. A

new warning object is created and stored into the warning page info object that collects all

warnings to be displayed to the user.

DMSTrueDisplayMgr

WebDMSStoredMessage

Includes flag to indicate if message
fits and the true display preview image

getDMSStoredMessage()

WebDMSStoredMessage

getMessageText()

String

isMessageTextMulti()

boolean

checkMessageFit(proposedDispConfig,
msgText, isMulti)

createPreviewImage(proposedDispConfig, msgText, isMulti, 0)

This is based on createImage()
but does not store the new
image as the current image.ChangeDMSDisplayConfigWarning

DMSImageFileInfo

create

[* for each DMS plan item]

DMSTrueDisplayMgr

This is the proposed new display config

DMSDisplayConfig

getDMSTrueDisplayMgr()

WebDMSPlanItem[]

[plan item target id
not equal to DMS id

addPlanItemWarning(warning)

DMSReqHdlr

createDispConfigChangeWarningForPlanItems()

WebDMS

RequestHandlerSupporter

getObjectsOfType(WebDMSPlanItem.class)

getDispConfig()

getTargetID()

Identifier

DMSReqHdlr
ChangeDMSDisplayConfigPageData

getDMS()

[not CHART DMS]
return

WebDMSPlanItem

CHART R10 Detailed Design – Rev 3 10-210 08/14/2012

10.17.20 DMSReqHdlr:createDispConfigChangeWarningForRPIs (Sequence

Diagram)

This diagram shows the processing that is performed to create warning objects for each

DMS Response Plan Item that targets a DMS when the user chooses to change the display

configuration for a DMS. This is part of the processing that is done after the user selects a

new display configuration but before that new display configuration has been assigned to

the DMS to show the user the effects their change will have on objects related to the DMS.

The traffic events using the DMS are retrieved and each one is processed. The

WebDMSResponsePlanItem is retreived from the traffic event and it's message and multi

flag are retrieved. The proposed DMS Display Config, the message text, and multi flag are

passed to a method to check if the message will fit the display config. The result of this

operation will become part of the warning object. Next the proposed DMS Display Config,

message text, and isMulti flag are used to create a true display image which will also

become part of the warning object. A new warning object is created and stored into the

warning page info object that collects all warnings to be displayed to the user.

addRPIWarning()

[* for each traffic event]

ChangeDMSDisplayConfigWarning
Includes flag to indicate if message
fits and the true display preview image

createPreviewImage(proposedDispConfig, msgText, isMulti, 0)

DMSImageFileInfo

create

DMSTrueDisplayMgr

getTrueDisplayMgr()

DMSTrueDisplayMgr

checkMessageFit(proposedDispConfig,
msgText, isMulti)

[no plan item
for target]

getMessageText()

String

isMessageTextMulti()

boolean

add(webTrafficEvent)
[* for each

traffic event]

WebDMSResponsePlanItem WebDMSMessage

getMessage()

WebDMSMessage

getResponsePlanItemForTarget(dmsID)

WebDMSResponsePlanItem or null

DMSReqHdlr
DMSReqHdlr

This is the proposed new display config,
the one the user has selected for the DMS
but has not yet been committed.

ChangeDMSDisplayConfigPageData

getDispConfig()

DMSDisplayConfig

WebChart2DMS

Note: the DMS has to be offline to change
its display config, so there shouldn't be any
active traffic events, but we'll make this call
anyway just to be safe.

ArrayList

WebTrafficEvent

createDispConfigChangeWarningForRPIs()

getDMS()

WebDMS
[Not CHART DMS]

return

getInactiveTrafficEvents()

WebTrafficEvent[]

getActiveTrafficEvents()

WebTrafficEvent

create

CHART R10 Detailed Design – Rev 3 10-211 08/14/2012

10.17.21 DMSReqHdlr:createDispConfigChangeWarningForTravInfoMessages

(Sequence Diagram)

This diagram shows the processing that is performed to create warning objects for each of a

DMS's traveler info messages when the user chooses to change the display configuration

for a DMS. This is part of the processing that is done after the user selects a new display

configuration but before that new display configuration has been assigned to the DMS to

show the user the effects their change will have on objects related to the DMS. The trav

info messages are retrieved from the DMS and a separate warning will be generated for

each. The template is retrieved from the trav info message and a method is called to

determine if the new display config is compatible with the template, based on the size of the

template and the minimum columns, max rows, and max pages supported by the display

config. If the sizes are not compatible, the warning will indicate this. If the sizes are

compatible, a true display image will be created to show the user what the trav info

message will look like when the newly selected (proposed) display configuration is used.

This is done by getting the DMSTravInfoMsgTrueDisplayMgr from the trav info message

and calling the createPreviewImage() method, a method new for R10 that is based closely

on the existing updateGIF() method except that it takes a display configuration as a

parameter instead of using the DMS's current display config. It also calls

createPreviewImage() in the DMSTrueDisplayMgr (instead of createImage() used by

updateGIF) which is based closely on the existing createImage method. The preview

message stores the created image in the cache of images to keep however it does not make

the preview image the current image (thus not affecting the current image for the trav info

message but still keeping the message from being deleted prematurely). A warning object

is created, using the new true display image if one was created, and the warning is added to

the warning page info object that collects all warnings to be displayed to the user.

ChangeDMSDisplayConfigPageData

WebDMS

DMSReqHdlr

getTrueDisplayMgr()

WebDMSTravInfoMsgTemplate

boolean

getTemplate()

addTravInfoMsgWarning(warning)

DMSTravInfoMsgTrueDisplayMgr

DMSTrueDisplayMgr

DMSTravInfoMsgTrueDisplayMgr

isCompatibleWithDMSSize(dmsDisplayConfig)

WebDMSTravInfoMsg

WebDMSTravInfoMsgTemplate

ArrayList<WebDMSTravInfoMsg>

ChangeDMSDisplayConfigWarning
create()

[*for each trav
info message]

This is the proposed new display config,
the one the user has selected for the DMS
but has not yet been committed.

getDispConfig()

DMSDisplayConfig

New flavor of the createImage method
that does not s tore the created
image as the current image.

This method is just like the existing
updateGIF() except it takes a display
config instead of us ing the DMS's
current display config, so we can show
an image of what the message will
look like with the newly selected (but
not yet committed) display config

createPreviewImage(proposedDispConfig)

createPreviewImage(proposedDispConfig, multi, false, 0)

DMSImageFileInfo

DMSImageFileInfo

[s ize not
compatible]

WebChart2DMS

getDMS()

[not CHART DMS]
return

DMSReqHdlr

createDispConfigChangeWarningForTravInfoMessages()

getDMSTravInfoMsgs()

CHART R10 Detailed Design – Rev 3 10-212 08/14/2012

10.17.22 DMSReqHdlr:viewAddDMSForm (Sequence Diagram)

This diagram shows the processing that is performed when the user requests to view the

form used to add a new DMS to the system. The user must have the Configure DMS right

for at least one organization to be able to perform this operation. A form data object is used

to keep track of the user's form entries during interim submits of the form. If the form is

being redisplayed a formDataID will be present in the request and that will be used to

retrieve the form data from the temp object store. If it is the first request to view the form, a

new form data object will be created and stored in the temp object store. Various objects

needed to populate select lists on the form are retrieved from the GUI object cache via the

request handler supporter. The velocity context is loaded and the AddDMS.vm template is

returned, which the velocity template engine processes and eventually the HTML for the

add DMS form is returned to the user's browser.

WebNotificationCache

New for R10

getCachedObjectsOfType(WebOpCenter.class)
WebOpCenter[]

getNotificationGroups()
WebNotificationGroup[]

getCachedObjectsOfType(WebPortManager.class)
WebPortManager[]

getCachedObjectsOfType(DMSDisplayConfig.class)
DMSDisplayConfig[]

Context

Load the context with calls to the Context object. The following data is put into the context:
formDataID, formData, organizations, opCenters, notifyGroups, factories, portManagers,
rs232PortManagerList, rs232PortMap, portLocationData, priorityLevels, isCopy, and dmsDisplayConfigList

put(key, object)

AddDMS.vm

RequestHandlerSupporter

getCachedObjectsOfType(WebDMSFactory.class)
WebDMSFactory[]

[no factories]
Error

getCachedObjectsOfType(WebOrganization.class)
WebOrganization[]

[no organizations]
Error

getOrgsConfigurableByUser(req, supporter)

[no orgs for which user
has configureDMS right]

Error

Administrator

DMSReqHdlr

This call is made
when the user clicks
the link to add a new DMS.

TempObjectStore

AddDMSFormData

viewAddDMSForm()
[user doesn't have ConfigureDMS

right for any organization]
Error

[formDataID in request]
getObject

AddDMSFormData or null

[formDataID not in request]
create

[formDataID not in request]
add(formData)

[form data not found]
Error

[formDataID in
request and

form data found]

CHART R10 Detailed Design – Rev 3 10-213 08/14/2012

10.17.23 DMSReqHdlr:viewChangeDMSDisplayConfigForm (Sequence Diagram)

This diagram shows the processing that occurs when the user chooses to display the form

used to change the display configuration specified for a DMS. The DMS must be offline

and must be a CHART DMS to perform this action. The user must have the Configure

DMS user right for the DMS's owning organization. The list of DMSDisplayConfig objects

defined in the system is retrieved from the GUI cache and the Velocity context is loaded.

The form is then displayed to the user, with the DMS's current display configuration pre-

selected.

[DMS not a CHART DMS]
Error

[user doesn't have configureDMS
right for the DMS owning org]

Error

DMSDisplayConfig[]

Administrator

DMSReqHdlr

This is called when the user
clicks the link to change the
DMS Display Config specified
for a DMS.

viewChangeDMSDisplayConfigForm()

Context

put("dms", WebDMS)

put("DMSDisplayConfigList", DMSDisplayConfig[])

[no DMSDisplayConfig objects
in cache]

Error

ChangeDMSDisplayConfigForm.vm

RequestHandlerSupporter

getCachedObject(dmsID)

[dmsID not present in request]
Error

WebDMS or null

[DMS not found in cache]
Error

[DMS not offline]
Error

getCachedObjectsOfType(DMSDisplayConfig.class)

CHART R10 Detailed Design – Rev 3 10-214 08/14/2012

10.17.24 chartlite.servlet.dms:createDMSDecSuppMsgTemplateData (Sequence

Diagram)

This diagram shows the processing used to create the DMSEditorData derived object used

to support the decision support DMS template editor. If a templateID parameter is present,

the form is being displayed to edit an existing template and the template is retrieved from

the cache. If not found an exception is thrown. The list of DMS display configs is

retrieved; this will be used to allow the user to see how the template will look on each

different display config that exists in the system. The list of display configs is passed to the

DecisionSupportManager to allow it to determine the maximum template column width,

which is at least 21 characters but may be larger if a DMS Display Config exists whose

minimum chars per row (taking font into consideration) is larger than 21. Various

supporting objects are collected and passed to the DMSDecSuppMsgTemlateEditorData

constructor. Note that this method exists as of R9 and is changed in R10 to utilze display

configurations.

RequestHandlerSupporter

UserLoginSessionImpl

DMSDecSuppMsgTemplateEditorData
Changed for R10. Construct with display configs
instead of geometries.

getSystemContextProvider()

SystemContextProvider

getUserLoginSession(req)
UserLoginSessionImpl

getUserProfile()
UserProfileProperties

create(tempID, template, dispConfigs,
maxTemplateCols, contextProvider, userProfile)

setShowAdvancedEditor(true)

DMSDecSuppMsgTemplateEditorData

Changed for R10:
Get display configs instead of geometries.
Get max template columns from the available
display configs (changed from getMaxDMSColumns().
Note, a minimum max of 21 is used in existing code
and will continue to be used in R10. This just determines
the max list value for setting the max sign size to limit a
template for use on only small DMSs.

getMaxTemplateColumns(ArrayList<DMSDisplayConfig>)
int

TempObjectStore WebDMSDislayConfigFactory

String

ArrayList<DMSDisplayConfig>

DMSReqHdlr
DMSReqHdlr WebMessageTemplateFactoryWrapper

getIdentifierParam(req, "templateID", null)

[templateID not null]
getCachedDMSDecSuppMsgTemplate(templateID)

[templateID not null
AND

template not found]
CHARTLiteException

getCachedDMSDisplayConfigs(DataModel)

createTempObjectID()

ServletUtil

createDMSDecSuppMsgTemplateData(
req, supporter)

Identifier or null

WebDMSDecSuppMsgTemplate or null

Decis ionSupportManager

CHART R10 Detailed Design – Rev 3 10-215 08/14/2012

10.17.25 chartlite.servlet.dms:createDMSDeviceMsgEditorData (Sequence

Diagram)

This diagram shows the processing that is done to create an object used for editing the DMS

maintenance mode message. This is part of the processing that is done to prepare the DMS

message editor for display to the user when they choose to set the maint mode message

using the manual or automatic DMS editor. The dmsID is retrieved (multiple DMSs are

supported but not used in practice) and each DMS is retrieved from the data model. The

DMSDisplayConfig is retrieved from each DMS and the DMSs and DMSDisplayConfig

objects are used to construct a DMSDeviceMsgEditorData object, a flavor of

DMSEditorData used for the maintenance mode editor.

Changed for R10
Use DMSDisplayConfig
instead of DMSDisplayInfo

DMSDeviceMsgEditorData

[* for each DMS]

create(tempObjID,
dmsArr, displayConfigList,

manualEditorFlag)

DMSDeviceMsgEditorData

TempObjectStore

ArrayList<DMSDisplayConfig>

WebChart2DMS

createTempObjectID()
String

toArray()
WebChart2DMS[]

create

getConfig().getDisplayConfig()
DMSDisplayConfig

add(DMSDisplayConfig)

DMSReqHdlr
DMSReqHdlr HttpServletRequest SeverletUtil

ArrayList

createDMSDeviceMsgEditorData(
req, supporter, manualEditorFlag)

getParameterValues("dmsID")
String[]

getObjectFromIDString(dmsID)
WebChart2DMS or null

create

[*for each dmsID]
[dms not null]

add(webChart2DMS)

[list of dms is empty]
error message

CHART R10 Detailed Design – Rev 3 10-216 08/14/2012

10.17.26 chartlite.servlet.dms:createDMSEditorData (Sequence Diagram)

This diagram shows the processing that takes place in the createDMSEditorData() method

in the DMSReqHdlr class. This method is called when a request has been made to view

any DMS message editor via the viewDMSMessageEditorForm request. Parameters

passsed to that request determine the type of editor being invoked, and this method uses

those parameters to determine the subclass of DMSEditorData to create using the

appropriate helper method. The DMSEditorData is used to store information for the form

so the form's state can be saved across multiple stateless http requests.

[invalid editor type requested]
CHARTLiteException

[cancelAction not null]
setCancelAction(cancelAction)

DMSEditorData

create

create

create

create

create

create

DMSReqHdlr
DMSReqHdlr HttpServletRequest

The following parameters are retrieved
from the reques if present:

eventID, libraryID, editMaintModeMessage,
editHARNotificationMessage, manualEditor,
editDMSDecSuppMsgTemplate,
editDMSTravInfoMsgTemplate, cancelAction

createDMSEditorData(req, supporter)

String or null

[libraryID param present]
createDMSStoredMsgEditorData(req, supporter,

libraryID, manualEditorFlag)

[editDMSTravInfoMsgTemplateData param is true]
createDMSTravInfoMsgTemplateData(re, supporter)

[editHARNotificationMessage param is true]
createDMSHARNotificationMsgEditorData(re, supporter,

manualEditorFlag)

DMSEditorData

getParameter()

[eventID param present]
createDMSRPIMsgEditorData(req,

supporter, libraryID, manualEditorFlag)

[editDMSDecSuppMsgTemplateData param is true]
createDMSDecSuppMsgTemplateData(req, supporter)

[editMaintModeMsg param is true]
createDMSDeviceMsgEditorData(req, supporter,

manualEditorFlag)

CHART R10 Detailed Design – Rev 3 10-217 08/14/2012

10.17.27 chartlite.servlet.dms:createDMSHARNotificationMsgEditorData

(Sequence Diagram)

This diagram shows the processing that is performed to create the DMSEditorData subclass

used to support the DMS message editor when used to edit the HAR notification message

for a DMS. This processing is performed after the user has requested to display the

message editor. The DMS whose HAR notification message is being edited is retrieved

from the data model and it is passed to the DMSHARNotificationMsgEditorData

constructor. The DMS display configuration (new for R10) is retrieved and passed as a list

of 1 to the DMSEditorData constructor. This editor data class is used to persist data needed

by the editor across multiple http requests.

DMSReqHdlr

DMSReqHdlr HttpServletRequest ServletUtil TempObjectStore

DMSHARNotificationMsgEditorData

DMSMsgEditorData

WebChart2DMS

New in R10:
Pass display configuration to
DMSEditorData constructor
instead of DMSDisplayInfo

createDMSHARNotificationMsgEditorData()

getParameter("dmsID")

String

getObjectFromIDString(dataModel, dmsIDStr)
WebChart2DMS or null

[WebChart2DMS not found]
CHARTLiteException

createTempObjectID()
String

create(tempObjID, WebChart2DMS)

getDisplayConfigAsList()
ArrayList<DMSDisplayConfig>

super(editorID, displayConfigList,true,
"submitDMSHARNotificationMsgEditorForm")

DMSHARNotificationMsgEditorData
DMSHARNotificationMsgEditorData

CHART R10 Detailed Design – Rev 3 10-218 08/14/2012

10.17.28 chartlite.servlet.dms:createDMSRPIMsgEditorData (Sequence Diagram)

This diagram shows the processing that is performed to create the DMSEditorData derived

object to support the DMS Editor (manual or auto) used to edit the DMS Message for one

or more of a traffic event's DMS response plan items. The traffic event is obtained from the

GUI cache and if not found an exception is thrown. Based on a request parameter, either all

DMS response plan items in the traffic event are retrieved or selected DMS response plan

items are retrieved. If no response plan items are found (or none were selected) an

exception is thrown. Each DMS response plan item is processed to get the

DMSDisplayConfig from each DMS. They are stored in a list which is passed to the

DMSEditorData derived object. The editor form uses this list to allow the user to view how

the message will appear on any of the selected DMSs. Note that the DMSEditorData base

class takes care of removing duplicates from this list.

getDMS()

WebChart2DMS

getDisplayConfig()
DMSDisplayConfig

add(DMSDisplayConfig)

[* for each DMSRPIInfo]

ArrayList<DMSDisplayConfig>

[traffic event not found]
CHARTLiteException

DMSRPIInfo

create

[selectAll is false]
getParameterValues("selectedRPIID")

String[]

[selectAll is false]
getRPIInfo(eventIDStr, rpiIDs, supporter)

[DMSRPIInfo array null
or zero length]

CHARTLiteException

boolean

DMSRPIInfo[]

DMSReqHdlr
DMSReqHdlr Serv letUtil HttpServ letRequestDMSReqHdlr

Same instance, shown twice to
allow documentation of internal calls .

TempObjectStore

DMSRPIMsgEditorData

createTempObjectID()
String

getBooleanParam(req, "autoExecuteOnSubmit")

boolean

create(tempID,
WebTrafficEvent,

RPIInfo[],
ArrayList<DMSDisplayConfig>,

manualEditorFlag,
autoExecuteOnCommitFlag)

DMSRPIMsgEditorData

WebChart2DMS

createDMSRPIMsgEditorData(
req, supporter, eventIDStr,

manualEditorFlag)

lookupTrafficEvent(eventIDStr,
supporter)

[selectAll is true]
getAllEventRPIs(eventIDStr, supporter)

DMSRPIInfo[]

getBooleanParam(req, "selectAll")

WebTrafficEvent or null

CHART R10 Detailed Design – Rev 3 10-219 08/14/2012

10.17.29 chartlite.servlet.dms:createDMSStoredMsgEditorData (Sequence

Diagram)

This diagram shows the processing that takes place to create the DMSEditorData derived

object used for the DMS editor for library messages. This is called as part of the processing

that takes place when the user chooses to add or edit a library message and the object

created is used to support the DMS editor form. A flag is used to determine if the manual

or auto editor is requested. The library where the message is to be added (or edited) is

retreived from the data model and if not found an exception is thrown. If a message ID is

specified, that indicates this is an edit and the message being edited is retrieved from the

message library. The list of all known DMS Display configuration objects is retrieved from

the data model. If none exist an exception is thrown. A temp object ID is created and a

DMSStoredMsgEditorData object is created and returned. This object is then used by the

DMS message editor form to initialize the form.

add(DMSDisplayConfig)

createTempObjectID()

create(tempID, WebMessageLibrary,
WebDMSStoredMessage,

displayConfigList, manualEditorFlag)

String

String or null

WebDMSStoredMessage

Changed for R10
Use display configurations that exist in the system
instead of getting all DMSs in system and retreiving
their geometries. The base DMSMsgEditorData class
uses display configs instead of geometries.

DMSReqHdlr
DMSReqHdlr ServletUtil DataModel TempObjectStore

ArrayList<DMSDisplayConfig>

DMSStoredMsgEditorData

HttpServletRequest

WebMessageLibrary

createDMSStoredMsgEditorData(
req, supporter, libraryID,

manualEditorFlag)
getObjectFromIDString(dataModel, libraryID)

WebMessageLibrary or null

[library not found]
CHARTLiteException

getObjectsOfType(DMSDisplayConfig.class)
DMSDisplayConfig[][no DMSDisplayConfig

objects found]
CHARTLiteException

create

[*for each
display config]

getParameter("storedMsgID")

[storedMsgID not null or empty]
getStoredMessage(storedMsgID)

DMSStoredMsgEditorData

CHART R10 Detailed Design – Rev 3 10-220 08/14/2012

10.17.30 chartlite.servlet.dms:createDMSTravInfoMsgTemplateData (Sequence

Diagram)

This diagram shows the creation of a subclass of DMS editor data to support DMS message

templates. This is called from createDMSEditorData() if the "editTravInfoMsgTemplate"

parameter is present. If the user is editing an existing template, the "templateID" parameter

will be passed and this ID will be used to retrieve the cached template wrapper object from

the template factory wrapper, and the rows and columns will be queried from the template.

If the templateID is not specified, the user is editing a new template, and the rows and

columns must be specified in the request to specify the template's size. A display

configuration will be created for use by the editor for fit checks and for creating the graphic

that shows a sample message. This Display Configuration will use a sign type of character

matrix with a sign size that matches the template size and it will use a default fixed width

font. The template factory wrapper is called to retrieve the list of all formats for each

appropriate type of tag. A new DMSTravInfoMsgTemplateEditorData object is created to

represent the editor state. If editing an existing template, the formats used in the template

will be added to the list of available formats if necessary so that they are guaranteed to be in

the selectable lists. The flag to show the advanced version of the editor will be set to true.

Changed for R10
Create a DMSDisplayConfig
object using a character matrix
sign type, a size that matches
the template size, and a default
fixed width 7x5 font.

[template ID specified]
getCachedDMSTravInfoMsgTemplate(templateID)

get()

[existing template]
getNumRows()

DMSEditorData

[existing template]
getNumCols()

getCachedTravelTimeFormats()

getCachedTravelTimeRangeFormats()

WebTravelTimeFormat[]

WebTravelTimeRangeFormat[]

getCachedTollRateFormats()
WebTollRateFormat[]

getCachedTollRateTimeFormats()
WebTollRateTimeFormat[]

getCachedDistanceFormats()
WebDistanceFormat[]

DMSReqHdlr

DMSReqHdlr HttpServletRequest

DMSDisplayConfig

DMSTravInfoMsgTemplate
EditorData

RequestHandlerSupporter TempObjectStore

createDMSEditorData(req, supporter)

[editTravInfoMsgTemplate param found]
createDMSTravInfoMsgTemplateData(req, supporter)

getParameter("editTravInfoMsgTemplate")

[template ID not specified]
getParameter("charCols")

[template ID not specified]
getParameter("charRows")

create

[template ID not specified and
rows or columns not specified]

throw exception

create(editorDataID, template, displayConfig, allTravelTimeFormats, allTravelTimeRangeFormats,
 allTollRateFormats, allTollRateTimeFormats, allDistanceFormats)

setShowAdvancedEditor(true)

getTempObjectStore()

createTempObjectID()

DMSEditorData

Create Other Type Of DMSEditorData
Based On Other Parameters

[existing template]
Add Template's Formats

Are Present In Format Lists
If Necessary

If the user is editing an existing template,
the templateID parameter will be specified.
If templateID is not specified, a new template
is being requested and in that case the
charCols and charRows parameters are required
to specify the template dimensions.

WebMessageTemplate
FactoryWrapper

WebDMSTravInfo
MsgTemplate

getParameter("templateID")

WebDMSTravInfoMsgTemplate or null
[template ID specified but template not found]

throw exception

[editTravInfoMsgTemplate param found]
DMSEditorData

CHART R10 Detailed Design – Rev 3 10-221 08/14/2012

10.17.31 chartlite.servlet.dms:getAddEditDMSTravInfoMsgForm (Sequence

Diagram)

This diagram shows how the form is displayed for adding or editing a DMS traveler info

message. The DMS ID is specified in the request and is used to look up the

WebChart2DMS object from the cache. After checking for the necessary user rights, the

DMS's Display Configuration is obtained and all cached WebDMSTravInfoMsgTemplate

objects are checked for compatiblity with the display configuration. Compatibility is

determined based on the sign type in the display configuration and the minimum number of

characters it is capable of displaying (both characters per row and character rows per page)

using the default font. For character matrix signs, an exact match with the template's

character rows and characters per row is used. For line and full matrix signs the minimum

characters they are capable of displaying is used and the minimums must be equal to or

greater than the rows and characters per row specified in the template. For all sign types,

the number of pages allowed on the DMS must be greater than or equal to the number of

pages specified in the template. If the template dimensions are compatible with the DMS

Display Configuration the template is added to a list. If it is an edit operation, the

travInfoMsgID parameter will be specified and will be used to look up the cached

WebDMSTravInfoMsg object. The templates, message, and DMS wrapper objects are put

into Velocity context so that the Velocity template engine can access the data while

building the HTML to return.

TempObjectStore

getTempObjectStore()

createTempObjectID()

put("trueDisplayMgrID", tempObjID)

[message ID specified but
WebDMSTravInfoMsg

not found in config]
error

[travInfoMsgID not specified]
createUniqueID()

put("newTravInfoMsgID", newMsgID)

"PopupTemplate.vm"

put("pageContent", "dmsmgmt\AddEditDMSTravInfoMsg.vm")

WebDMSTrav
InfoMsgConfig

getParameter("travInfoMsgID")

getDMSTravInfoMsgConfig()

put("templates", templates)

[travInfoMsgID specified]
getDMSTravInfoMsg(travInfoMsgID)

WebDMSTravInfoMsg or null

Sort Templates By Name

put("travInfoMsg", message)
put("dms", dms)

User

DMSReqHdlr HttpRequestHandler
RequestHandler

Supporter

WebMessage
TemplateFactory

Wrapper
WebDMSTravInfo

MsgTemplate
WebDMSTravInfo

MsgTemplateConfigWebChart2DMS
WebChart2
DMSConfig Context

getAddEditDMSTrav
InfoMsgForm(

req, resp, ctx, supporter) getParameter("dmsID")

getCachedObject(dmsID)

WebChart2DMS or null

[not specified]
error

[DMS not found]
error

Check User's Rights
For The DMS's Organization

[no rights]
error

get()

getCachedDMSTravInfoMsgTemplates()

WebDMSTravInfoMsgTemplate[]

DMSDisplayConfig

Changed for R10.

Instead of checking just rows,
cols, and pages to see if template
applies, use display config and
consider the font, sign type, and
minimum characters that will fit.

getDisplayConfig()

isCompatible(DMSFontNumberValues.DEFAULT_FONT, charsPerCol, rowsPerPage, numPages)

boolean

[is compatible] Add to List

getConfig()

getNumRows()

getNumCols()

getChart2DMSConfig()

getNumPages()

[no matching templates]
error

[* for each template]

CHART R10 Detailed Design – Rev 3 10-222 08/14/2012

10.17.32 chartlite.servlet.dms:getDMSEditorImage (Sequence Diagram)

This diagram shows the processing that occurs to update the DMS true display image

shown in a DMS message editor. This is called as the user types the message text. In

addition to updating the image, it checks if the message will fit the currently selected

display configuration in the editor. (Some versions of the editor only have 1 display

configuration so it is by default the currently selected display configuration). A helper

method is called to read the http request parameters, retrieve the DMSEditorData object

from the temp object store, and to store the state of the editor. The currently selected

display config index as well as the newly selected display config index are retrieved. The

message text is retrieved from the editor data (either as MULTI or plain text). If the editor

is the decision support template editor the maximum columns setting is also retrieved. The

number of display configs in the editor data is retrieved and a loop is performed to check

the currently specified message against each display configuration to see if the message will

fit. The index of each display configuration where the message will not fit is stored to

allow the DMS editor to indicate that fact. When the currently selected display config is

checked for fit, those fit check results are saved so the editor can display an error message

that applies to the currently selected display config if the message doesn't fit. After

checking the message for fit on each of the display configs, if the message fits on the

currently selected config a true display image is created using the currently selected display

config. The new image data is stored into the editor data and the velocity context is loaded.

The DMSEditorImage.vm template file is returned and the velocity engine creates HTML

which is returned to the browser. This HTML is displayed in an IFRAME on the DMS

editor form and the list of display config indexes where the message does not fit is used to

modify the list of display configurations (if any) to color the display configs red where the

message will not fit.

CHART R10 Detailed Design – Rev 3 10-223 08/14/2012

DMSTrueDisplayMgr

DMSEditorImageData

getIntParam(req, "startPageIdx", 0)
int

createImage(dynImagePath, displayConfig, fittingMulti, beaconsEnabled, startPageIdx, "DMSEditor_")

beaconsEnabled()
boolean

DMSImageFileInfo

create(fileInfo, selectedIndex)
setLastValidEditorImageData()

setCurrentDispConfigIdx()

load context

If the user changed the display config selection,
clear out the prior image data.

getDisplayConfig(selectedIndex)

DMSDisplayConfig

ArrayList<Integer>

FitCheckResults

getNumDisplayConfigs()

create

DMSDisplayConfig

create

boolean

[index == selected index]
store fit check results

If decision support template editor
get the max cols setting which we
will use below when determining
message fit.

[auto editor]
getPlainTextMsg()

String

[Decision Support Template Editor]
getMaxColumnsSupported()

int (-1 indicates no limit)

User
DMSReqHdlr DMSEditorData

This will commit the parameters
representing the user's current form
inputs into the DMSEditorData object.
This requires that the parameters in
the request be the same as those
submitted when the form is submitted.

HttpServletRequest ServletUtil

If it is the DMSTravInfoMsgTemplateEditorData
or DMSDecSuppMsgTemplateEditorData
it will replace the tags in the MULTI. For other
manual editor types, it will return the MULTI as is.
For auto editors it will return null.

int

getDisplayConfig(index)

checkMessageFit(dispConfig, msgText,
 isMulti, maxColsSupported)

[fit check
results for

selected display
config has error]

hasError()

getDMSEditorImage(
req, resp, ctx, supporter)

[manual editor]
getFormattedMulti()

MULTI

DMSEditorData

saveDMSEditorDataFromForm(
req, supporter)

[has error]
add(index)

DMSEditorImage.vml

[* for index from
zero to num

display configs]

If the fit check for the currently selected display config doesn't have an error, generate a true display image

getCurrentDisplayConfigIdx()

getParameter("selectedDisplayConfigIdx")

[selectedDisplayConfigIdx param not null]
getIntParam(req, "selectedDisplayConfigIdx", 0)

[new display config
was selected]

setLastValidEditorImageData(null)

List of indices of display configs
where the message will not fit.
This will be the list to turn red in
the GUI (and to prevent selection)

In this loop, we check the fit of the
currently specified message against
each display config in the editor
and keep track of whether or not
the message fits using that display
config. We also store the fit check
results for the currently selected
display config so we can show an
error message to the user for that one.

CHART R10 Detailed Design – Rev 3 10-224 08/14/2012

10.17.33 chartlite.servlet.dms:parseBasicConfigSettings (Sequence Diagram)

This diagram shows the processing done by the DMSReqHdlr to parse the parameters

passed from the DMS basic configuration data form. This existing method is being

modified for R10 to remove fields that have been moved to the DMSDisplayConfiguration

object.

Changed in R10
Removed the following:
signType
dmsCharRows
dmsCharCols
maxPages
charSizePixels
defaultLineJustifcation
defaultPageOnTimeTenths
defaultPageOffTimeTenths
hasBeacons
ntcipFontNumber
ntcipFontSpacing
ntcipPageJustification
ntcipInterCharacterFontSpacing

getParameter("owningOrgID")

getParameter("communityString")

getParameter("deviceFailureNotficationGroupID")

getParameter("ntcipSupportsV2Features")

getParameter("commFailureAlertOpCtrID")

getParameter("commFailureNotificationGroupID")

getParameter("travelTimeArbQueueBucketID")

getParameter("tollRateArbQueueBucketID")

getParameter("deviceLoggingEnabled")
getParameter("alertOpCenterID")

return Error Message For
Values That Can Be Corrected

by the User

[required params missing]
throw CHARTLiteException

Set Chart2DMSConfiguration Fields
For Parameters With Valid Values

[any invalid values that
are not correctable by the user]

throw CHARTLiteException

DMSReqHdlr

DMSReqHdlr HttpServletRequest

parseBasicConfigSettings
getParameter("dmsName")

getParameter("locationDesc")
getParameter("direction")

getParameter("signModel")

CHART R10 Detailed Design – Rev 3 10-225 08/14/2012

10.17.34 chartlite.servlet.dms:setMessageFromDMSDeviceMsgEditorData

(Sequence Diagram)

This diagram shows the processing performed to set the maintenance mode message on a

DMS using data from a DMSDeviceMsgEditorData object. At the point when this method

is called, a spelling check, banned word check, and fit check has already been performed.

If the manual editor was used to set the message, the MULTI is retrieved from the editor

data. Otherwise the MULTI is formatted specifically for each DMS included in the editor

data using the Display Configuration for each DMS, which includes the font. The software

supports setting the message on multiple DMSs at this level but the user interface only

allows maint mode messages to be set individually. Each DMS is processed, formatting

MULTI if needed, creating a command status object used to track the asynchronous

operations, and then calling the DMS object. A CommandStatusRecord is returned to the

caller, and this contains the last command status object and error message if any. The user

will be redirected to the command status page by the caller. If multiple messages were set

(not currently allowed via the user interface) the user would be able to go to the command

status management page to see the command status for all DMSs whose message was set.

byte[]

[auto editor]
getConfig().getDisplayConfig()

DMSDisplayConfig

[auto editor]
getPlainTextMsg()

String

[auto editor]
getMultiMessageThrows(plainTextMsg, displayConfig)

MULTI String

Changed in R10
Use DMSDisplayConfig
when formatting MULTI
message for auto editor.

DMSMessageImpl

CommandStatusImpl

DMS

CommandStatusRecord

create(multi,
beaconsEnabled, true)

beaconsEnabled()
boolean

create

getDMSRef()
DMS

setMessage(token, msg, CommandStatus)
success or Exception

[Exception]
completed(false, errMsg)

[* for each DMS]

create

CommandStatusRecord

DMSReqHdlr
DMSReqHdlr DMSDeviceMsgEditorData UserLoginSessionImpl WebChart2DMS WebDMSMessage

setMessageFromDMSDeviceMsgEditorData(
editorData, req, supporter)

isManualEditor()
boolean

[is manual editor]
getMulti()

MULTI string

getAccessToken()

CHART R10 Detailed Design – Rev 3 10-226 08/14/2012

10.17.35 chartlite.servlet.dms:submitDMSHARNotificationMsgEditorForm

(Sequence Diagram)

This diagram shows the processing that takes place when the user submits the form used to

edit the HAR Notification Message for a DMS. The saveDMSEditorFormData() method is

called to find the editor data in the temp object store and then parse the request parameters,

including the message text. The WebChart2DMS is retrieved from the editor data and a

check is made to ensure the user has rights to edit the DMS. A banned word check is done

followed by a fit check, which makes sure the message fits on the DMS, using the DMS

Display Configuration of the DMS. A spelling check is done, and finally the DMS

configuration is retrieved from the server and the m_shazamMessage variable is replaced

with the new DMS message. A command status is created and the server is called passing

the updated configuration and the command status. The user is redirected to the command

status page where they can track the asynchronous operation.

DMS

Chart2DMSConfiguration

DMSMessageImpl

CommandStatusImpl

TempObjectStore

checkDMSEditorForSpelling(editorData, req, ctx,
resp, false)

boolean
[spelling error]
error message

getFittingMulti()

String

getDMSRef()

DMS

getConfiguration()

Chart2DMSConfiguration

create

set m_shazamMessage

create

setConfiguration(dmsConfig)

removeObject(editorData)

redirect to command status page

checkMessageFit(dispConfig, msgText, isMulti)

FitCheckResults

create

hasError()

boolean
[fit check error]
error message

checkDMSEditorDataForBannedWords(editorData)

String

User
DMSReqHdlr DMSReqHdlr

submitDMSHARNotificationMsgEditorForm()

DMSHARNotificationMsgEditorData
or CHARTLiteException

DMSHARNotificationMsgEditorData WebChart2DMS NavLinkRights

New for R10

[banned words exist]
error message

getDMS()
WebChart2DMS

canConfigureDMS(dms)

boolean
[no rights to configure DMS]

error message

isManualEditor()

boolean

[is manual editor]
getFormattedMULTI()

String

[not manual editor]
getPlainTextMsg()

String

getCurrentDisplayConfig()

DMSDisplayConfiguration

FitCheckResults

This is called when the user
submits the form used to edit
the HAR Notification message
for a DMS.

Same instance, used to show
calls to helper methods in same class

[Exception or null editor data]
error message

saveDMSEditorFormData(req, supporter)

CHART R10 Detailed Design – Rev 3 10-227 08/14/2012

10.18 chartlite.servlet.video

10.18.1 GUIVideoServletClasses (Class Diagram)

This diagram shows GUI classes involved in processing video-related requests.

10.18.1.1 ControlVideoSourceReqHdlr (Class)

This class handles all requests to control video devices.

10.18.1.2 DynListDelegateSupporter (Class)

This interface contains functionality to support the DynListReqHdlrDelegate

10.18.1.3 DynListReqHdlrDelegate (Class)

This class helps request handlers support dynamic lists. Requests to view, sort, or filter

dynamic lists can be passed from a request handler to this class, provided the URL used for

the requests contain parameters required by this class, such as the id of the list, the property

name, and/or the filter value.

Updated in R10 for
Temporary Camera Presets

VideoTourReqHdlr

1

FormUtilSelectMonitorsListSupporter

SelectVideoSourcesListVideoSourceSelectListSupporter

ViewVideoSourceReqHdlr

1

EditObjectLocationSupporter

«interface»

VideoSourceListSupporter

1

DynListReqHdlrDelegate

1

VideoSourceConfigReqHdlr

VideoSinkReqHdlr

VideoSinkConfigReqHdlr

R10 updates.
AOR methods added.
Auto Mode Monitor
related methods added.

VIdeoSessionListSupporter

EditVideoCameraLocationSupporter

MonitorListSupporter

1

DynListDelegateSupporter

«interface»

1

SelectMonitorsList

ControlVideoSourceReqHdlr

processViewDetailsReq(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter): String
processViewVideoSourceListReq(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter): String

processViewTourListDetailsReq(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter): String

getAddVideoSourceForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter): String
getEditCameraLocationForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter) : String
parseWebVideoSourceConfig(formData:UserFormData, dataModel:DataModel, existingSource:WebVideoSource,isCamera:Boolean,supporter:RequestHandlerSupporter):WebVideoSourceConfig
populateFormData(formData:UserFormData, config:WebVideoSourceConfig):void
copyEditableFields(dest:VideoSourceConfig, src:VideoSourceConfig, videoSource:WebVideoSource):void
removeTempPreset(req: HttpServletrequest, resp HttpServletREsponse, ctx: Context, supporter: RequestHAndlerSupporter) : String

getName() : String
getObjectLocation() : WebObjectLocation
getUpdateParentPageURLParamStr() : String
hideGeoLocationFields() : boolean
allowComboDirections() : boolean
allowNoneDirection() : boolean
setObjectLocation(location:ObjectLocation,
 supporter : RequestHandlerSupporter,
 req : HttpServletRequest) : String

EditCameraLocationSupporter(camera : WebCamera)
EditCameraLocationSupporter(formData : UserFormData,
 supporter : RequestHandlerSupporter)

m_camera : WebCamera
m_addCameraFormData : UserFormData
m_supporter : RequestHandlerSupporter

isSinkLocalToSource(): boolean
setRoutingInfo(sourceFabricIDs:Identifier[],routedFabricList:HashTable):void

m_sourceFabricIDs: HashMap

createDynList(req:HttpServletRequest, supporter:RequestHandlerSupporter,dynListID:Identifier)
getDynListSubjects(req:HttpServletRequest, supporter:RequestHandlerSupporter, dynList:DynList):DynListSubject[]
getFilterValue(col:DynListCol, filterValueStr:String):Object

setRoutingInfo(req:HttpServletRequest,supporter:HttpRequestHandlerSupporter,dynList SelectVIdeoSourcesList)

setRoutingInfo(req:HttpServletRequest,supporter:HttpRequestHandlerSupporter,dynList SelectVIdeoSourcesList)

getAssociateAORForm(req: HttpServletRequest, resp: HttpServletResponse,
 ctx: Context, supporter: RequestHandlerSupporter)
associateAORs(req: HttpServletRequest, resp: HttpServletResponse,
 ctx: Context, supporter: RequestHandlerSupporter)
disassociateAOR(req: HttpServletRequest, resp: HttpServletResponse,
 ctx: Context, supporter: RequestHandlerSupporter)
removeAutoModeTourList(req: HttpServletrequest, resp HttpServletREsponse,
 ctx: Context, supporter: RequestHAndlerSupporter) : String
setAutoModeEnabled(req: HttpServletrequest, resp HttpServletREsponse,
 ctx: Context, supporter: RequestHAndlerSupporter) : String

m_aorMgr: AORManager

processSetSFSBlocked(req: HTTPServletRequest, resp:HTTPServletResponse, ctx : Context, supporter : RequestHandlerSupporter) : String

parseVideoTransmissionDeviceConfigList(UserFormData formData, Boolean isSendingDevice, DataModel dm)
populateFormData(WebVideoTransmissionDeviceConfig[] sendingDeviceConfig, UserFormData formData)

isSourceLocalToTarget(WebVideoSource):boolean

m_sourceFabricIDs: HashMap

CHART R10 Detailed Design – Rev 3 10-228 08/14/2012

10.18.1.4 EditObjectLocationSupporter (Class)

This interface provides functionality allowing the location data to be edited. (For example,

the target of the edited location may be an existing object, or it may be a form data object

for creating a new object).

10.18.1.5 EditVideoCameraLocationSupporter (Class)

This class is used to support editing the location of an existing or new VideoCamera.

10.18.1.6 FormUtil (Class)

This class contains methods for handling form processing.

10.18.1.7 MonitorListSupporter (Class)

This class is a DynListDelegateSupporter that provides Monitor specific functionality to the

generic DynListReqHdlrDelegate.

10.18.1.8 SelectMonitorsList (Class)

This class represents the select monitors dynamic list

10.18.1.9 SelectMonitorsListSupporter (Class)

This class provides functionality required by the DynListReqHdlrDelegate object for the

Select Monitors page.

10.18.1.10 SelectVideoSourcesList (Class)

This class is a DynList used to select video sources. It supports single or multiple select

models. The caller specifies a target action that should be invoked when the selection is

complete and a caller ID that should be passed back to the caller. After selection is

complete, a request url of the following format will be created.

10.18.1.11 VIdeoSessionListSupporter (Class)

This class provides functionality allowing the Video Session dynamic list to be displayed.

10.18.1.12 VideoSinkConfigReqHdlr (Class)

This class handles requests related to video sink configuration. For R10, methods for

managing area of responsibility associations were added.

10.18.1.13 VideoSinkReqHdlr (Class)

This class is a request handler that processes requests related to video sinks such as

Monitors.

10.18.1.14 VideoSourceConfigReqHdlr (Class)

This class handles requests related to video source configuration.

CHART R10 Detailed Design – Rev 3 10-229 08/14/2012

10.18.1.15 VideoSourceListSupporter (Class)

This class is a DynListDelegateSupporter that provides Video Source specific functionality

to the generic DynListReqHdlrDelegate.

10.18.1.16 VideoSourceSelectListSupporter (Class)

This class provides functionality required by the DynListReqHdlrDelegate object for the

Video Source Selection List page.

10.18.1.17 VideoTourReqHdlr (Class)

This class handles requests for Video Tour functionality.

10.18.1.18 ViewVideoSourceReqHdlr (Class)

This class handles requests that allow the user to view a video source or list of video

sources.

CHART R10 Detailed Design – Rev 3 10-230 08/14/2012

10.18.2 VideoSinkConfigReqHdlr:associateAORs (Sequence Diagram)

This diagram shows the processing performed when the VideoSinkConfigReqHdlr class

receives a request to associate areas of responsibility with a monitor. First, the

VideoSinkConfigReqHdlr class invokes the checkAccess method to see if the user has the

rights to associate areas of responsibility. If the user has the rights, the formDataID is

obtained from the request and used to lookup the formData object in the temp object store.

The VideoSinkConfigReqHdlr class then invokes the parseFormData method on the

AssociateAORFormData class to parse the form data and check for invalid data. Next, the

targetID is used to lookup the monitor object in the object cache. The monitor configuration

is obtained from the server. The current list of associated areas of responsibility is obtained

from the AssociateAORFormData class and used to update the list of associated areas of

responsibility in the monitor configuration. The monitor configuration is then updated on

the server and in the cache. The request is then redirected to the view the monitor details

page which shows the list of associated areas of responsibility. If the XML returned by the

GIS Mapping Web Service contains a status of failure or an Exception is thrown, the Error

template will be returned in the response. If the user does not have the rights to associate

areas of responsibility, the monitor object cannot be found in the object cache, or an

Exception is thrown while updating the configuration, the Error template will be returned in

the response.

Redirect to Monitor Details page

setMonitorConfig(token, monitorConfig)

ObjectCache DataModel

WebMonitor
Monitor

MonitorConfig

getObjectCache()
getDataModel()

getObject(targetID)

webMonitor

[webMonitor is null]
Error Template

getMonitorRef()
getMonitorConfig(token)

monitorConfig

[error getting monitor config]
Error Template

getAssociatedAORs()

m_associatedAORs = associatedAORs

associatedAORs

RequestHandlerSupporter

VideoSinkConfigReqHdlr AssociateAORFormData Check if the user has the rights to
associate AORs (i.e. configure monitor).

Serv letUtil TempObjectStore

getTempObjectStore()
getObject(formDataID)
associateAORFormData

[formData is null]
Error Template

parseFormData(req, supporter)
getTrimmedParameter(req, "targetID")

[error updating monitor config]
Error Template

[error updating cached config]
Error Template

[access denied]
Error Template

getMonitorRef()

updateConfig(monitorConfig)

[targetID or associatedAORs is null]
Error Template

associateAOR(req: HttpServ letReq, resp: HttpServ letResponse,
 c tx : Context, supporter: RequestHandlerSupporter)

getTrimmedParameter(req, "formDataID")

[formDataID is null]
Error Template

getIdentifierParamValues(req, "associatedAORs")

checkAccess()

CHART R10 Detailed Design – Rev 3 10-231 08/14/2012

10.18.3 VideoSinkConfigReqHdlr:getAssociateAORForm (Sequence Diagram)

This diagram shows the processing performed when the VideoSinkConfigReqHdlr class

receives a request to view the associated area of responsibility form. First, the

VideoSinkConfigReqHdlr class invokes the checkAccess method to see if the user has the

rights to associate areas of responsibility. If the user has the rights, the targetID is obtained

from the request and used to lookup the monitor object in the object cache. The monitor is

used to obtain the current list of associated areas of responsibility. The current list of areas

of responsibility is retrieved from the AOR manager singleton. Next, a formDataID is

created. An area of responsibility form data object is created (using the targeted, list of

areas of responsibility, and list of associated areas of responsibility) and the formDataID is

used to add the form data object to the temp object store. The form data and page content

are added to the Velocity context and the request handler returns the template name in the

response. If the user does not have the rights to associate areas of responsibility, the

monitor object cannot be found in the object cache, or an Exception is thrown, the Error

template will be returned in the response.

getObject(targetID)

[monitor is null]
Error Template

WebVideoSinkConfig

The aors and associatedAORs lists
are used by the Velocity template to
populate the Unassociated and
Assocaited AOR list boxes.

getMonitorConfig()

getVideoSinkConfig()

getAssociatedAORs()

getAORs()

monitor

tempObjectStore

put("pageContent", "AOREditor.vm")

associateAORFormDataID

[targetID is null]
Error Template

ServletUtil

ObjectCache

DataModel

WebMonitor

getObjectCache()
getDataModel()

getTempObjectStore()

createTempObjectID()

add(associateAORFormDataID, associateAORFormData)

WebMonitorConfig

AORManager

ctor(targetID, aors, associatedAORs)

webMonitorConfig

webVideoSinkConfig

associatedAORs

aors

VideoSinkConfigReqHdlr
Check if the user
has the rights to
associate AORs.

RequestHandlerSupporter

Context

AssociateAORFormData

getIdentifierParam(req, "targetID", null)

getAssociateAORForm(req: HttpServletReq, resp: HttpServletResponse,
 ctx: Context, supporter: RequestHandlerSupporter)

put("formData", associateAORFormData)

associateAORFormData

targetID

checkAccess()

[user does not have rights]
Error Template

TempObjectStore

CHART R10 Detailed Design – Rev 3 10-232 08/14/2012

10.19 chartlite.truedisplay

10.19.1 TrueDisplayClasses (Class Diagram)

This diagram shows classes involved in the creation of graphical "true display" image files

to represent a DMS message on a display.

10.19.1.1 DMSGraphicMessage (Class)

This class is used by the MultiMsgGIFEncoder class to act as a model for a DMS messsage.

10.19.1.2 DMSGraphicMessagePage (Class)

This class is used by the MultiMsgGIFEncoder class to represent a page of a message.

10.19.1.3 DMSImageFileInfo (Class)

This class contains information about a true display image file that was rendered. It has the

name, width / height (in pixels), plain message text, and also any formatting messages that

may have occurred while rendering the message.

10.19.1.4 DMSTrueDisplayMgr (Class)

This class contains functionality to create and manage DMS true display images

representing a single display or message, but one for which the content can change. It has

1

*

creates

DMSGraphicMessage

MultiParseListener

«interface»

DMSGraphicMessagePage

*1

creates

New for R10

DMSTrueDisplayMgr

MultiMsgGIFEncoder

MultiMsgGIFEncoder is changed for R10 to handle

specified inter-character spacing for line and full matrix DMSs.

In R10, as in prior releases, for char matrix s igns MultiMsgGIFEncoder

uses a "v irtual" inter-char spacing for rendering purposes, us ing

simulated pixels to show v isual separation between characters.

Callers of this c lass have to specify the v irtual character

spacing for char matrix s igns, and account for it

in the s ign pixel cols . Similarly , a v irtual line spacing

is used for char/line matrix s igns, which is also accounted for

in the s ign pixel rows.

To isolate callers from these rendering details , in R10 the use of

MultiMsgGIFEncoder is being encapsulated so that it is ONLY

used by DMSTrueDisplayMgr. Any c lass needing true display

functionality will now use DMSTrueDisplayMgr instead.

In R10, MultiMsgGIFEncoder can still only handle one font

per message. Changing it to handle multiple fonts is not

in scope for R10. However, a benefit of encapsulating

the use of MultiMsgGIFEncoder is that even a complete redesign

of MultiMsgGIFEncoder to support multiple fonts should

not affect the public API of the DMSTrueDisplayMgr c lass.

*1

uses

DMSImageFileInfo

1

1

*

1

DMSTrueDisplayMgr(dynImageDir : String, filenameBase : String)

c learCurrentFileInfo() : void

createImage(DMSDisplayConfig, multi : String,

 beaconEnabled:boolean, s tartPageIdx : int) : DMSImageFileInfo

encodePixelTestImage(DMSDisplayConfig, beaconsEnabled) :

 DMSImageFileInfo

getCurrentFileInfo() : DMSImageFileInfo

-saveImageFileInfo(DMSImageFileInfo) : void

$createImage(imageDir : String, DMSDisplayConfig, multi : String,

 beaconsEnabled : boolean, s tartPageIdx : int, filenameBase:String) :

 DMSImageFileInfo

$createPreviewImage(imageDir : String, DMSDisplayConfig,

 multi : String, beaconsEnabled : boolean, s tartPageIdx : int,

 filenameBase : String) : DMSImageFileInfo

$-createMultiMsgGIFEncoder(DMSDisplayConfig,

 fontNum : DMSFontNumber) : MultiMsgGIFEncoder

$getImageHeightPixels(DMSDisplayConfig) : int

$getImageWidthPixels(DMSDisplayConfig) : int

$-getTrueDisplayLineSpacingPixels(DisplayProperties, DMSFontAndSpacing) : int

$-getTrueDisplayCharSpacingPixels(DisplayProperties, DMSFontAndSpacing) : int

$-getTrueDisplayMessageAreaPixelCols(DisplayProperties) : int

$-getTrueDisplayMessageAreaPixelRows(DisplayProperties,

 lineSpacing : int) : int

addFormattingMessage(msg : String) : void

getFilename() : String

getFormattingMessages() : String[]

getHeight() : int

getJSONObject() : JSONObject

getPixelCols() : int

getPixelRows() : int

getPlainTextMsg() : String

getWidth() : int

MultiMsgGIFEncoder(font : DMSFont,

 pixelCols : int, pixelRows : int,

 MultiDefaults , hasBeacons : boolean, dmsSignType : short,

 charSpacing : int, lineSpacing : int,

 maxPages : int)

encodeImage(multi : String, beaconsEnabled : boolean,

 s tartPageIdx : int, annotation : String, filenameBase : String,

 dir : File) : File

encodePixelTestImage(beaconsEnabled : boolean,

 annotation : String, filenameBase : String, dir : File) : File

getImageHeight() : int

getImageWidth() : int

$getImageHeight(pixelRows : int, hasBeacons : boolean) : int

$getImageWidth(pixelCols : int) : int

DMSGraphicMessage(

 font : DMSFont,

 pixelRows : int, pixelCols : int,

 MultiDefaults ,

 dmsSignType : short,

 charSpacing : int, lineSpacing : int)

createPixelTestMessage() : void

getPageCount() : int

getPageTimeOff() : int

getPageTimeOn() : int

getPixMap(pageNum : int) : byte[][]

setMessage(multi : String) : void

m_fontAndSpacing : DMSFontAndSpacing

DMSGraphicMessagePage(

 font : DMSFont,

 pixelRows : int,

 pixelCols : int,

 MultiDefaults ,

 dmsSignType : short,

 charSpacing : int)

getPageTimeOff() : int

getPageTimeOn() : int

getPixMap() : byte[][]

getText() : String

newLine(pixelSkip : int) : void

setJustification(just : int) : void

setPIxMap(pixMap : byte[][]) : void

showString(multi : String) : void

m_fontAndSpacing : DMSFontAndSpacing

CHART R10 Detailed Design – Rev 3 10-233 08/14/2012

static methods that can be used to create images. Internally this class uses

MultiMsgGIFEncoder to encode GIF files, but this class encapsulates the use of that class,

as it requires presentation-level logic that calling code shouldn't need to be aware of.

10.19.1.5 MultiMsgGIFEncoder (Class)

This class creates animated GIF image files to represent a MULTI string (or test image) on

a DMS display.

10.19.1.6 MultiParseListener (Class)

A MultiParseListener works in conjunction with the MultiConverter to allow an implementing

class to be notified as parsing of a MULTI message occurs. An exemplary use of a

MultiParseListener would be the MessageView window which will need to have the MULTI

message parsed in order to display it as a pixmap.

10.19.2 DMSTrueDisplayMgr:createImage (Sequence Diagram)

This diagram shows how a true display image is created via the DMSTrueDisplayMgr

class. The createImage() method is called, which calls createMultiGIFEncoder() to create a

MultiGIFEncoder object using the default font. (The default font is the only font supported

as of R10, and the MultiMsgGIFEncoder currently only supports one font). The default

font and char/line spacing are retrieved from the DMSDisplayConfig's font table.

Calculations are then done to find the effective line and character spacing, and pixel

width/height of the true display image. For character matrix signs a virtual character

spacing of 1 is used, and for character and line matrix signs a virtual line spacing of 1 is

used; otherwise, the specified font spacing from the DMSFontAndSpacing object is used.

The virtual spacing values are also included in the pixel width and height of the overall

display; otherwise, the values from the DMSDisplayProperties are used. After the values

are calculated, a MultiMsgGIFEncoder object is created and is called to actually encode the

image file. The MULTI is converted to plain text by calling

MultiConverter.multiToPlainText(). The filename of the new file and other information

including dimensions and plain text message are put into a DMSImageFileInfo object and

returned.

CHART R10 Detailed Design – Rev 3 10-234 08/14/2012

DMSImageFileInfo

MultiMsgGIFEncoder

MultiConverter

DMSImageFileInfo

create(font, pixelWidth, pixelHeight, multiDefaults, hasBeacons, dmsSignType, charSpacing, lineSpacing, maxPages)

getFont()

getMultiDefaults()

hasBeacons()

getMaxPagesAllowed()

MultiMsgGIFEncoder

encodeImage(multi, beaconsEnabled, startPageIdx, "", fileNameBase, dynImageDir)

File

multiToPlainText(multi)

create(imageFile.getName(), imageWidth, imageHeight, plainTextMsg

getImageWidth()

getImageHeight()

DMSTrue

DisplayMgr

DMSTrueDisplayMgr

For R10, just use the default font number,

 as that is the only one supported.

DMSDisplayConfig DMSFontTable DMSFontAndSpacing DisplayProperties

createImage(

imageDir, dispConfig,

multi, beaconsEnabled,

startPageIdx, fileNameBase)
createMultiMsgGIFEncoder(dispConfig,

DMSFontNumber.DefaultFont)

getFontTable()

get(fontNumber)

[not full matrix]

getCharHeightPixels()

getTrueDisplayLineSpacingPixels(dispProps, fontAndSpacing)

Calculate effective

pixel height for display.

getTrueDisplayMessageAreaPixelRows(dispProps)

isFullMatrix()

[full matrix]

getHeightPixels()

[not full matrix]

getRowsPerPage()

pixel height, if full matrix; otherwise

rowsPerPage * (charHeight + 1) - 1 if char or line matrix

This does the actual encoding

of the image file.

Calculate effective

line spacing for display.

Calculate effective

char spacing for display.

Calculate effective

pixel width for display.

isCharMatrix()

DMSFontAndSpacing

getTrueDisplayCharSpacingPixels(dispProps, fontAndSpacing)

[not char matrix]

getCharSpacing()

char spacing (1 for char matrix, or actual line spacing for line or full matrix)

getTrueDisplayMessageAreaPixelCols(dispProps)

isFullMatrix()

isLineMatrix()

[line or full matrix]

getWidthPixels()

[char matrix]

getCharsPerRow()

[char matrix]

getCharWidthPixels()

pixel width, if line or full matrix; otherwise

charsPerRow * (charWidth + 1) - 1 if char matrix

line spacing (1 for char or line matrix, or actual line spacing for full matrix)

isFullMatrix()

getDisplayProperties()

[full matrix]

getLineSpacing()

CHART R10 Detailed Design – Rev 3 10-235 08/14/2012

10.20 webservices.wsutil.aor-util

10.20.1 AORUtilClasses (Class Diagram)

This diagram shows structures related to utility methods for areas of responsibility.

10.20.1.1 AOR (Class)

This class represents an area of responsibility with its ID, name, color, and geometries.

10.20.1.2 AORManager (Class)

This class provides utility methods that are applicable to areas of responsibility. It includes

methods for getting areas of responsibility based on a specified location (i.e. a

latitude/longitude), getting the areas of responsibility that have changed since a specified

date/time, checking if an area of responsibility still exists in the system, etc. It can be

configured to maintain a cache of areas of responsibility. It can also be configured without

the cache and used simply to check for the existence of areas of responsibility.

10.20.1.3 GISMappingJAXBProvider (Class)

This class provides access to JAXB marshaller and unmarshaller objects (specific to the

GIS Mapping web service) and an XML helper object used to transform XML to objects

and back again.

10.20.1.4 GISMappingXMLHelper (Class)

This class provides utility methods (specific to the GIS Mapping web service) to convert

XML to objects and back again.

TimerTask

SynchAORCacheTimerTask

11

1

1

GISMappingJAXBProvider

GISMappingXMLHelper

AORManager

AOR

XMLHTTPService

*1

MaintainAORCacheTimerTask

-ctor()
addAOR(aor: AOR): AOR
checkAORsExist(ids: Identifier[]): Identifier[]
get(): AORManager
getAOR(id: Identifier): AOR
getAORs(): AOR[]
getAORsByApplication(applicationIDs: Identifier[]): AOR[]
getAORsByLocation(location: GeoLocation): AOR[]
getAORsModifiedSince(date: Date): AOR[]
getGeometries(polygonJSON: String): Geometry[]
getJAXBProvider(): GISMappingJAXBProvider
initialize(URL: String): void
initialize(URL: String, synchIntervalMins: long, refreshIntervalMins: long): void
isDuplicate(id: Identifier, name: String) : boolean
-post(aorRequest: XMLHTTPRequest): XMLHTTPResponse
removeAOR(id: Identifier): void
updateAOR(aor: AOR): AOR
updateAORsModifiedSince(date: Date): AOR[]
updateCache(): void

m_aors: AOR[]
m_instance: AORManager
m_jaxbProvider: GISMappingJAXBProvider
m_updateCacheTimer: Timer
m_synchCacheTimer: Timer

getJAXBContext(): JAXBContext
getMarshaller(): Marshaller
getUnmashaller(): Unmarshaller
getXMLHelper(): GISMappingXMLHelper

m_jaxbContext: JAXBContext
m_marshaller: Marshaller
m_unmarshaller: Unmarshaller
m_xmlHelper: GISMappingXMLHelper

getID(): Identifier
getName(): String
getColor(): String
getGeometries(): Geometry[]
getLastModifiedDate(): Date
isActive(): boolean
containsCoordinate(point: Point): boolean

m_id: Identifier
m_applicationID: String
m_name: String
m_color: String
m_geometries: Geometry[]
m_lastModifiedDate: Date
m_active: boolean

getCreateAORXML(aor: AOR):String
getCreateAORResult(createAORXML: XMLDocument):CreateAORResult
getUpdateAORXML(aor: AOR):String
getUpdateAORResult(updateAORXML: XMLDocument):UpdateAORResult
getDeleteAORXML(id: Identifier):String
getDeleteAORResult(deleteAORXML: XMLDocument):boolean
getGetAORsByApplicationXML(applicationIDs: Identifier[]):String
getGetAORsByApplicationResult(getAORsXML: XMLDocument):GetAORsByApplicationResult
getGetAORsByLatLonXML(double lat, double lon, applicationIDs: Identifier[]):String
getGetAORsByLatLonResult(getAORXML: XMLDocument):GetAORsByLatLonResult
getAOR(createAORResult: CreateAORResult):AOR
getAOR(updateAORResult: UpdateAORResult):AOR
getAORs(getAORsByApplicationResult: GetAORsByApplicationResult):AOR[]
getAORs(getAORsByLatLonResult: GetAORsByLatLonResult):AOR[]

m_marshaller: Marshaller
m_unmarshaller: Unmarshaller

m_aorMgr: AORManager m_aorMgr: AORManager

CHART R10 Detailed Design – Rev 3 10-236 08/14/2012

10.20.1.5 MaintainAORCacheTimerTask (Class)

This class represents a task that updates the AOR cache with data from the GIS Mapping

web service using the AORManager. The task can be scheduled for repeated execution at a

specified interval.

10.20.1.6 SynchAORCacheTimerTask (Class)

This class represents a task that synchs the AOR cache with data from the GIS Mapping

web service using the AORManager. The task can be scheduled for repeated execution at a

specified interval.

10.20.1.7 TimerTask (Class)

This class represents a task that can be scheduled for one-time or repeated execution by a

Timer.

10.20.1.8 XMLHTTPService (Class)

This class represents a remote XML/HTTP based web service at a specified URL. It supports

operations to perform HTTP get and post operations on the remote service.

